首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study determines whether changes in the EMG values of two important muscles of the shoulder and neck region, the anterior deltoid and the upper trapezius, are due to changes in torque production or due to fatigue processes during sustained activity. Contractions at 20, 40, 60, 80 and 100% MVC were performed during a flexion of the arm in the sagittal plane at 90 degrees, to examine the relation between torque and EMG. A sustained contraction at 20% MVC was performed to endurance point in the same position. RMS, a new parameter called activity, (ACT), and MPF of the deltoid anterior and the upper trapezius were analysed. The amplitude values correlated highly with increasing torque production, both for the deltoid muscle (range r = 0.95-0.96), and the trapezius muscle (range r = 0.83-0.87), whereas no significant difference was found for MPF. For the endurance task, the decrease in MPF was far more pronounced for the deltoid than for the trapezius, whereas the opposite occurred with RMS (P < or = 0.01). Furthermore, there was no significant difference over time for the ACT values of the deltoid, whereas there were significant increases in ACT for the trapezius (P < or = 0.01). The RMS/ACT ratio correlated highly (r = 0.81) with the MPF. Regression coefficients of these parameters differed significantly for the trapezius muscle but not for the deltoid muscle. Therefore, the RMS/ACT ratio may be extremely important in analysing the fatigue effects during sustained efforts, independent of torque variations, which can influence indicators of fatigue.  相似文献   

2.
Different behaviours of the EMG power spectrum across increasing force levels have been reported for the masseter muscle. A factor that could explain these different behaviours may be the type of contraction used, as was recently shown for certain upper limb muscles5. The purpose of this study was to compare, between two types of isometric contractions, the behaviour of EMG power spectrum statistics (median frequency (MF) and mean power frequency (MPF)) obtained across increasing force levels. Ten women exerted, while biting in the intercuspal position, three 5 s ramp contractions that increased linearly from 0 to 100% of the maximal voluntary contraction (MVC). They also completed three step contractions (constant EMG amplitude) at each of the following levels: 20, 40, 60 and 80% MVC. EMG signals from the masseter muscle were recorded with miniature surface electrodes. The RMS, as well as the MPF and MF of the power spectrum were calculated at 20, 40, 60 and 80% MVC for each type of contraction. As expected, the RMS values showed similar increases with increasing levels of effort for both types of contractions. Different behaviours for both MPF (contraction*force interaction, ANOVA, P<0.05) and MF (contraction*force interaction, ANOVA, P>0.05) across increasing levels of effort were found between the two types of contraction. The use of step contractions gave rise to a decrease of both MPF and MF with increasing force, while the use of ramp contractions gave rise to an increase in both statistics up to at least 40% MVC followed by a decrease at higher force levels. These findings suggest that the type of contraction used does influence the behaviour of the spectral statistics across increasing force levels and that this could explain the differences obtained in previous studies for the masseter muscle.  相似文献   

3.
The aims of the study were to obtain information (1) on surface electromyograms (SEMG) from the lumbar erector spinae muscles at different interelectrode distances and postures during short isometric contractions with constant force, (2) on the relationships between SEMG and extension force at different postures, and (3) on changes in SEMG during fatiguing isometric contractions at different postures and strengths. Six male subjects developed target forces in prone postures without gravity confounding the measurement of the extension torque. The angles between the constantly horizontal upper trunk and thighs were 90 degrees (P1), 135 degrees (P2), 170 degrees (P3), and 190 degrees (P4). Standard deviations of the distribution of SEMG amplitudes (RMS values), autoregressive (AR) time series models of the 15th order and spectral densities, including mean power frequency (MPF), were computed. Smaller interelectrode distances accompanied smaller RMS values and higher MPF. At a constant extension torque of about 110 Nm, RMS values and MPF increased from P1 to P4. Changes of interelectrode distance were of relatively minor importance, compared with the variation in the posture. With increasing torque, the increase in RMS values was steeper at P3 than at P2. The AR structure and MPF did not exhibit distinct effects of force. During sustained contractions at P2 and P3, only the highest force (mean = 140 Nm) at P3 caused a significant decrease of the MPF at the very beginning of the contraction. Endurance at P2 was greater than at P3. Higher forces and/or shorter muscles (P3) induced more pronounced and earlier relative decreases of the MPF and residual variance of AR models. Up to the "failure point", RMS values increased slightly, but without significant differences.  相似文献   

4.
When using electromyographic techniques in the evaluation of muscular load it is necessary to determine the mathematical relationship between the torque and the amplitude of the electromyographic signal. Isometric gradually increasing contractions up to 100% MVC can then be used. Often more than linear increases for the amplitude (RMS)--force regression have been reported. The present study was designed to test whether changes in power spectral density function take place during a gradually increasing isometric contraction (duration 10 s). Twenty-two clinically healthy females performed an increasing isometric shoulder forward flexion for 10 s using an isokinetic dynamometer. Electromyographic activity was measured in trapezius, deltoid, infraspinatus and biceps brachii using surface electrodes. Mean torque values were determined together with mean power frequency (MPF) and root mean square values (RMS) from the EMG signals for each 256 ms period. The RMS-torque regressions showed higher regression coefficients during the 6th to 9th sec than during the first 5 s. No significant correlation existed between MPF for the four muscles and the torque. A gradual decrease in MPF was generally found from the 6th s. It is concluded that this decrease in power spectral density function might have contributed to the significantly higher regression coefficient for the RMS torque regression at the high output part of the gradually increasing isometric contraction.  相似文献   

5.
The purpose of this study was to determine the effect of gender on changes in electromyographic (EMG) signal characteristics of the quadriceps muscles with increasing force and with fatigue. A total of fourteen healthy adults (seven men, seven women) participated in the study. Subjects had to perform isometric ramp contractions in knee extension with the force gradually increasing from 0 to 100% of the maximal voluntary contraction (MVC) in a 6-s period. Subjects then performed a fatigue task, consisting of a sustained maximum isometric knee extension contraction held until force decreased below 50% of the pre-fatigue MVC. Subjects also performed a single ramp contraction immediately after the fatigue task. The Root Mean Square (RMS) amplitude, mean power frequency (MPF) and median frequency (MF) of EMG signals obtained from the vastus lateralis, vastus medialis and rectus femoris were calculated at nine different force levels from the ramp contractions (10, 20, 30, 40, 50, 60, 70, 80 and 90% MVC), as well as every 5 s during the fatigue task. The main results were a more pronounced increase in EMG RMS amplitude for the three muscles and in MPF for the VL muscle with force in men compared with women. No significant effect of gender was found with regards to fatigue. These observations most likely reflect a moderately greater type II fiber content and/or area in the VL muscle of men compared to that of women.  相似文献   

6.
The origin of the slow component (SC) of oxygen uptake kinetics, presenting during exercise above the ventilatory threshold (VT), remains unclear. Possible physiologic mechanisms include a progressive recruitment of type II muscle fibers. The purpose of this study was to examine alterations in muscle activity through electromyography (EMG) and mean power frequency (MPF) analysis during heavy cycling exercise. Eight trained cyclists (mean +/- S.E.; age = 30 +/- 3 years, height = 1771 +/- 4 cm, weight = 73.8 +/- 6.5 kg, VO2max = 4.33 +/- 0.28 l min(-1)) completed transitions from 20W to a workload equaling 50% of the difference between V(T) and VO2max. VO2 was monitored using a breath-by-breath measurement system, and EMG data were gathered from surface electrodes placed on the gastrocnemius lateralis and vastus lateralis oblique. Breath-by-breath data were time aligned, averaged, interpolated to 1-s intervals, and modeled with non-linear regression. Mean power frequency (MPF) and RMS EMG values were calculated for each minute during the exercise bout. Additionally, MPF was determined using both isolated EMG bursts and complete pedal revolutions. All subjects exhibited a VO2 SC (mean amplitude = 0.98 +/- 0.16 l min(-1)), yet no significant differences were observed during the exercise bout in MPF or RMS EMG data (p > 0.05) using either analysis technique. While it is possible that the sensitivity of EMG may be insufficient to identify changes in muscle activity theorized to affect the VO2 SC, the data indicated no relationship between MPF/EMG and the SC during heavy cycling.  相似文献   

7.
The photosynthetic reaction center (RC) of green sulfur bacteria contains two [4Fe-4S] clusters named F(A) and F(B), by analogy with photosystem I (PS I). PS I also contains an interpolypeptide [4Fe-4S] cluster named F(X); however, spectroscopic evidence for an analogous iron-sulfur cluster in green sulfur bacteria remains equivocal. To minimize oxidative damage to the iron-sulfur clusters, we studied the sensitivity of F(A) and F(B) to molecular oxygen in whole cells of Chlorobium vibrioforme and Chlorobium tepidum and obtained highly photoactive membranes and RCs from Cb. tepidum by adjusting isolation conditions to maximize the amplitude of the F(A)(-)/F(B)(-) electron paramagnetic resonance signal at g = 1.89 (measured at 126 mW of microwave power and 14 K) relative to the P840(+) signal at g = 2.0028 (measured at 800 microW of microwave power and 14 K). In these optimized preparations we were able to differentiate F(X)(-) from F(A)(-)/F(B)(-) by their different relaxation properties. At temperatures between 4 and 9 K, isolated membranes and RCs of Cb. tepidum show a broad peak at g = 2.12 and a prominent high-field trough at g = 1.76 (measured at 126 mW of microwave power). The complete g-tensor of F(X)(-), extracted by numerical simulation, yields principal values of 2.17, 1.92, and 1. 77 and is similar to F(X) in PS I. An important difference from PS I is that because the bound cytochrome is available as a fast electron donor in Chlorobium, it is not necessary to prereduce F(A) and F(B) to photoaccumulate F(X)(-).  相似文献   

8.
The purpose of this work was to investigate the electromyographic (EMG) fatigue representations in muscles of subjects after stroke at the level of motor unit, based on the analysis of mean power frequency (MPF) in the power density spectrum (PDS) for intramuscular EMG and our previous modeling and experiment studies on the neuromuscular transmission failure (NTF). NTF due to the local muscular fatigue had been captured in motor unit signals from healthy subjects during a submaximal fatigue contraction previously. In this study, the EMG signals for the biceps brachii muscles were collected by needle electrodes from the affected and unaffected arms of six hemiplegic subjects after stroke, and from the dominated arm of six healthy subjects during a full maximum voluntary contraction (MVC) and a subsequent 20% MVC. The MPF of EMG trials detected intramuscularly during the full and 20% MVCs, and the parameters of motor unit action potential trains (MUAPTs) during 20% MVC were analyzed in three groups: the normal (from healthy subjects), unaffected (from subjects after stroke), and affected (from subjects after stroke). It was found that during the full MVC the MPFs of the normal and unaffected groups decreased more than the affected when monitored by a moving time window of 2 s. The comparison on the overall MPF during the full MVC for these three groups over the whole time course of the EMG signal (18 s) were: the affected overall MPF was higher than the unaffected (P < 0.05); and the unaffected overall MPF was larger than the normal (P < 0.05). However, no significant decrease in MPF was found for these three groups during 20% MVC. The NTF was captured in most MUAPTs in the groups of the normal and unaffected rather than in the affected group, symbolized by the lowered rates of change (RCs) of firing rate (FR) (P < 0.05), more MUAPTs with positive RCs of maximum oscillation (MO) in MUAPT power density spectra (P < 0.05), and the significant higher RCs of minimum inter-pulse interval (MINI) (P < 0.05) in the normal and unaffected compared to the affected group. Enhanced neural drives to the motor units of the unaffected and affected groups were observed during 20% MVC, which possibly came from the bilateral neural inputs due to the disinhibition of the ipsilateral projections in subjects after stroke. For identifying the fatigue associated with NTF, the motor unit firing parameters, FR, MINI, and MO, were more sensitive than the MPF. The results obtained in this work provided a further understanding on the EMG of the fatigue processes in paretic and non-paretic muscles during voluntary contractions.  相似文献   

9.
The aim of this study was to compare mechanomyogram (MMG) recorded by a condenser microphone (MIC) and an accelerometer (ACC) during submaximal isometric, concentric and eccentric contractions in 14 males. The maximal voluntary force (MVC) of the biceps brachii was measured. The subjects were asked to do short duration isometric, concentric and eccentric contraction at 10%, 30%, 50%, 70% MVC twice. For the concentric and eccentric contraction, the subject bent his arm for 3s (concentric) then held it for 3s and extended (eccentric) during 3s. The normalized root mean square (RMS) and mean power frequency (MPF) increased linearly with increased force for both transducers. There was a correlation between MIC MPF and ACC MPF at 10%, 30%, 50% MVC, and between MIC RMS and ACC RMS at 30% MVC during isometric contractions. There was significantly higher MPF for the ACC than for the MIC in concentric and eccentric modes, while the RMS did not differ among transducers in the three contraction modes. The RMS and MPF values coefficient of variations were significantly larger during anisometric contractions compared with isometric contractions and were lower for the accelerometer than for the microphone. The present results obtained during isometric, concentric and eccentric contractions of increased intensity showed that the information contained in microphone- and accelerometer-based MMG signals is different despite similar trends. It can be concluded that at low-moderate movement velocity, concentric contractions can be investigated by means of accelerometer and microphone.  相似文献   

10.
Type I reaction centers (RCs) are multisubunit chlorophyll-protein complexes that function in photosynthetic organisms to convert photons to Gibbs free energy. The unique feature of Type I RCs is the presence of iron-sulfur clusters as electron transfer cofactors. Photosystem I (PS I) of oxygenic phototrophs is the best-studied Type I RC. It is comprised of an interpolypeptide [4Fe-4S] cluster, F(X), that bridges the PsaA and PsaB subunits, and two terminal [4Fe-4S] clusters, F(A) and F(B), that are bound to the PsaC subunit. In this review, we provide an update on the structure and function of the bound iron-sulfur clusters in Type I RCs. The first new development in this area is the identification of F(A) as the cluster proximal to F(X) and the resolution of the electron transfer sequence as F(X)-->F(A)-->F(B)-->soluble ferredoxin. The second new development is the determination of the three-dimensional NMR solution structure of unbound PsaC and localization of the equal- and mixed-valence pairs in F(A)(-) and F(B)(-). We provide a survey of the EPR properties and spectra of the iron-sulfur clusters in Type I RCs of cyanobacteria, green sulfur bacteria, and heliobacteria, and we summarize new information about the kinetics of back-reactions involving the iron-sulfur clusters.  相似文献   

11.
The present study was designed to evaluate time-of-day effects on electromyographic (EMG) activity changes during a short-term intense cycling exercise. In a randomized order, 22 male subjects were asked to perform a 30-s Wingate test against a constant braking load of 0.087?kg·kg(-1) body mass during two experimental sessions, which were set up either at 07:00 or 17:00?h. During the test, peak power (P(peak)), mean power (P(mean)), fatigue index (FI; % of decrease in power output throughout the 30 s), and evolution of power output (5-s span) throughout the exercise were analyzed. Surface EMG activity was recorded in both the vastus lateralis and vastus medialis muscles throughout the test and analyzed over a 5-s span. The root mean square (RMS) and mean power frequency (MPF) of EMG were calculated. Neuromuscular efficiency (NME) was estimated from the ratio of power to RMS. Resting core temperature, P(peak), P(mean), and FI were significantly higher (p?相似文献   

12.
The goal of the present study was to compare electromyogram (EMG) power spectra obtained from step (constant force level) and ramp (progressive increase in the force level) isometric contractions. Data windows of different durations were also analysed for the step contractions, in order to evaluate the stability of EMG power spectrum statistics. Fourteen normal subjects performed (1) five ramp elbow extensions ranging from 0 to 100% of the maximum voluntary contraction (MVC) and (2) three stepwise elbow extensions maintained at five different levels of MVC. Spectral analysis of surface EMG signals obtained from triceps brachii and anconeus was performed. The mean power frequency (MPF) and the median frequency (MF) of each power spectrum were obtained from 256-ms windows taken at 10, 20, 40, 60 and 80% MVC for each type of contraction and in addition on 512-, 1024- and 2048-ms windows for the step contractions. No significant differences (P greater than 0.05) were found in the values of both spectral statistics between the different window lengths. Even though no significant differences (P greater than 0.05) were found between the ramp and the step contractions, significant interactions (P less than 0.05) between these two types of contraction and the force level were found for both the MPF and the MF data. These interactions point out the existence of different behaviours for both the MPF and the MF across force levels between the two types of contraction.  相似文献   

13.
Postural control is commonly investigated by observing responses to perturbations. We developed a perturbation paradigm mimicking self-generated errors in weight shifting, which are a common cause of falling among older adults. Our aim was to determine the effects of this small, but complex, perturbation on postural sway of healthy young adults and evaluate the role of vision and cognition during movement dependent perturbations. Fifteen participants stood hip-width apart with their eyes open, closed and while performing two different cognitive tasks. Participants were continuously perturbed by medial-lateral (ML) support surface translations corresponding to, and hence doubling, their own center of mass sway. We analyzed the standard deviation (SD), root mean square (RMS), range, and mean power frequency (MPF) of center of pressure displacements. ML postural sway increased due to the perturbation (SD p ≤ .001, range p < .001, RMS p ≤ .001, MPF p < .001). Cognitive load increased the ML sway range (p = .048). Lack of vision increased ML MPF (p = .001) and anterior-posterior (AP) range (p < .001), SD (p < .001), and RMS (p = .001). Significant interaction of vision with the perturbation was found for the ML range (p = .045) and AP SD (p = .018). The perturbation specifically affected ML postural sway. Increased MPF is indicative of a postural control strategy change, which was insufficient for fully controlling the increased sway. Despite being small, this type of perturbation appears to be challenging for young adults.  相似文献   

14.
Drosophila melanogaster embryos are a source for homogeneous and stable 26S proteasomes suitable for structural studies. For biochemical characterization, purified 26S proteasomes were resolved by two-dimensional (2D) gel electrophoresis and subunits composing the regulatory complex (RC) were identified by amino acid sequencing and immunoblotting, before corresponding cDNAs were sequenced. 17 subunits from Drosophila RCs were found to have homologues in the yeast and human RCs. An additional subunit, p37A, not yet described in RCs of other organisms, is a member of the ubiquitin COOH-terminal hydrolase family (UCH). Analysis of EM images of 26S proteasomes-UCH-inhibitor complexes allowed for the first time to localize one of the RC's specific functions, deubiquitylating activity.The masses of 26S proteasomes with either one or two attached RCs were determined by scanning transmission EM (STEM), yielding a mass of 894 kD for a single RC. This value is in good agreement with the summed masses of the 18 identified RC subunits (932 kD), indicating that the number of subunits is complete.  相似文献   

15.
The objective of this work was to assess the repeatability of two surface electromyographic (sEMG) recording techniques, the classical bipolar configuration and a Laplacian configuration to document their ability to provide reliable information during follow-up studies. The signals were recorded on 10 healthy subjects during voluntary isometric contractions of the biceps brachii muscle at different constant contraction levels. Slopes, area ratios (at 60% of the maximal voluntary contraction (MVC)) and initial values (at 20%, 40%, 60%, 80% and 100% MVC) of the root mean square (RMS), the mean power frequency (MPF) and the muscle fibre conduction velocity (CV) were estimated. Experimental sessions were repeated on three different days with both electrode sets to evaluate the repeatability of sEMG parameter estimates. Classical results were observed, such as an increase in the RMS and the CV with the contraction level. Only initial values of RMS and MPF were shown to be dependent on electrode type. These two parameters presented intra-class correlation coefficient values higher than .80 for high contraction levels. On the whole, the repeatability of the measures was good; however it was better for all sEMG parameter estimates with bipolar electrodes than Laplacian electrodes. Because a bipolar configuration is less selective than a Laplacian one, it provides a global view of muscular activity, which is more repeatable, hence more suitable for follow-up studies.  相似文献   

16.
The aim of this study was to assess the relationship between power output, lactate, skin temperature, and quadriceps muscle activity during brief repeated exercise with increasing intensity. Eighteen regional level soccer players (age 24.5 ± 3.8 years) were selected after a test of maximal exercise capacity to participate in 2 force velocity (Fv) exercise tests separated by 3 days. The tests were done to examine the reliability of variables measured in the selected subjects during this type of task. During each Fv exercise test, data on power output, heart rate (HR), skin temperature, blood lactate accumulation, the root mean square (RMS), and the mean power frequency (MPF) of the surface electromyography of the superficial quadriceps muscle were collected. Results showed a significant correlation between power output and HR, skin temperature, blood lactate accumulation, and RMS. However, no association was observed with MPF that informs on the level of fatigue and power output. Thus, the result of this study may suggest that the Fv exercise test is not a fatigability test.  相似文献   

17.
The purpose of this study was to evaluate muscle fatigue using electromyogram (EMG) and acoustic myogram (AMG) signals of the shoulder and arm muscles during sustained holding tasks, with the elbow at different angles and at different levels of maximum voluntary contraction (MVC). The EMG and AMG of four muscles, including the upper trapezius (TP), anterior deltoid (DL), biceps brachii (BB), and brachioradialis (BR), were recorded during experiments using 10 healthy young males. The experiments were conducted under 9 pairs of conditions: 3 elbow angles (120 degrees, 90 degrees, and 60 degrees) and *3 levels of %MVC (20%, 40%, and 60%). Subjects were instructed to hold a weight equal to the designated %MVC at designated joint angles and asked to maintain that condition for as long as possible until exhaustion. Joint angles were also recorded by the electrogoniometers. The analysis of variance revealed that there was no significant effect of elbow angle on the mean MVC or on the endurance time. Elbow angle showed a significant effect on mean power frequency (MPF) of EMG in DL, BB, and BR, and a significant effect on root mean square (RMS) of EMG in four muscles. In BB and BR, MPF of EMG at 120 degrees was found to be significantly lower than 90 degrees and 60 degrees, respectively. There was a significant main effect of elbow angle on MPF of AMG for TP at 20% MVC; for DL at 20% and 40% MVC; for BB at 40% and 60% MVC; and for BR at the three levels of %MVC. The results showed that the range MPF of AMG for DL, BB, and BR was between 32 to 46 Hz, whereas that for TP was from 49 to 83 Hz. There was a significant effect of elbow angle on RMS of AMG in all four muscles in all experiments. At 20% MVC, a progressive increase in RMS of AMG was observed with time. In contrast, at 40% and 60% MVC, RMS showed very different behavior; specifically, it was found that RMS of AMG at 20% MVC significantly increased with increase of elbow angle. We conclude that RMS of AMG has a good and clear correlation with elbow angle at a low level of contraction.  相似文献   

18.
This study was to investigate the properties of mechanomyography (MMG), or muscle sound, of the paretic muscle in the affected side of hemiplegic subjects after stroke during isometric voluntary contractions, in comparison with those from the muscle in the unaffected side of the hemiplegic subjects and from the healthy muscle of unimpaired subjects. MMG and electromyography (EMG) signals were recorded simultaneously from the biceps brachii muscles of the dominant arm of unimpaired subjects (n=5) and the unaffected and affected arms of subjects after stroke (n=8), when performing a fatiguing maximal voluntary contraction (MVC) associated with the decrease in elbow flexion torque, and then submaximal elbow flexions at 20%, 40%, 60% and 80% MVCs. The root mean squared (RMS) values, the mean power frequencies (MPF, in the power density spectrum, PDS) of the EMG and MMG, and the high frequency rate (HF-rate, the ratio of the power above 15Hz in the MMG PDS) were used for the analysis. The MMG RMS decreased more slowly during the MVC in the affected muscle compared to the healthy and unaffected muscles. A transient increase could be observed in the MMG MPFs from the unaffected and healthy muscles during the MVC, associated with the decrease in their simultaneous EMG MPFs due to the muscular fatigue. No significant variation could be seen in the EMG and MMG MPFs in the affected muscles during the MVC. The values in the MPF and HF-rate of MMG from the affected muscles were significantly lower than those from the healthy and unaffected muscles (P<0.05) at the high contraction level (80% MVC). Both the MMG and EMG RMS values in the healthy and unaffected groups were found to be significantly higher than the affected group (P<0.05) at 60% and 80% MVCs. These observations were related to an atrophy of the fast-twitch fibers and a reduction of the neural input in the affected muscles of the hemiplegic subjects. The results in this study suggested MMG could be used as a complementary to EMG for the analysis on muscular characteristics in subjects after stroke.  相似文献   

19.
The present study was designed to evaluate time-of-day effects on electromyographic (EMG) activity changes during a short-term intense cycling exercise. In a randomized order, 22 male subjects were asked to perform a 30-s Wingate test against a constant braking load of 0.087?kg·kg?1 body mass during two experimental sessions, which were set up either at 07:00 or 17:00?h. During the test, peak power (Ppeak), mean power (Pmean), fatigue index (FI; % of decrease in power output throughout the 30 s), and evolution of power output (5-s span) throughout the exercise were analyzed. Surface EMG activity was recorded in both the vastus lateralis and vastus medialis muscles throughout the test and analyzed over a 5-s span. The root mean square (RMS) and mean power frequency (MPF) of EMG were calculated. Neuromuscular efficiency (NME) was estimated from the ratio of power to RMS. Resting core temperature, Ppeak, Pmean, and FI were significantly higher (p?<?.05) in the evening than morning test (e.g., Ppeak: 11.6?±?0.8 vs. 11.9?±?1 W·kg?1). The results showed that power output decreased following two phases. During the first phase (first 20s), power output decreased rapidly and values were higher (p?<?.05) in the evening than in the morning. During the second phase (last 10s), power decreased slightly and appeared independent of the time of day of testing. This power output decrease was paralleled by evolution of the MPF and NME. During the first phase, NME and MPF were higher (p <?.05) in the evening. During the second phase, NME and MPF were independent of time of day. In addition, no significant differences were noticed between 7:00 and 17:00?h for EMG RMS during the whole 30 s. Taken together, these results suggest that peripheral mechanisms (i.e., muscle power and fatigue) are more likely the cause of the diurnal variation of the Wingate-test performance rather than central mechanisms. (Author correspondence: )  相似文献   

20.
Intramuscular and surface electromyogram changes during muscle fatigue   总被引:9,自引:0,他引:9  
Twelve male subjects were tested to determine the effects of motor unit (MU) recruitment and firing frequency on the surface electromyogram (EMG) frequency power spectra during sustained maximal voluntary contraction (MVC) and 50% MVC of the biceps brachii muscle. Both the intramuscular MU spikes and surface EMG were recorded simultaneously and analyzed by means of a computer-aided intramuscular spike amplitude-frequency histogram and frequency power spectral analysis, respectively. Results indicated that both mean power frequency (MPF) and amplitude (rmsEMG) of the surface EMG fell significantly (P less than 0.001) together with a progressive reduction in MU spike amplitude and firing frequency during sustained MVC. During 50% MVC there was a significant decline in MPF (P less than 0.001), but this decline was accompanied by a significant increase in rmsEMG (P less than 0.001) and a progressive MU recruitment as evidenced by an increased number of MUs with relatively large spike amplitude. Our data suggest that the surface EMG amplitude could better represent the underlying MU activity during muscle fatigue and the frequency powers spectral shift may or may not reflect changes in MU recruitment and rate-coding patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号