首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding sites for opiates (agonist and antagonist) and opioid peptides can be solubilized from rat brain membranes with digitonin in the presence of Mg2+ (10 mM). High affinity and high capacity binding to the soluble delta, mu, and kappa receptors is obtainable when the membranes are treated in Mg2+ (30 degrees C, 60 min) prior to solubilization. The yields of solubilized binding sites extracted with digitonin, 40-90%, are higher than those obtained from Mg2+-pretreated membranes with other detergents commonly used for receptor solubilization. The stability of the digitonin-soluble opioid receptor at room temperature makes it useful for purification and characterization.  相似文献   

2.
A Pfeiffer  A Herz 《Life sciences》1982,31(12-13):1355-1358
The present studies were undertaken to evaluate whether different types of opiate agonists interact in a distinguishable manner with mu, delta and kappa opiate binding sites. Two approaches were employed: (a) the well known effects of metal ions on opiate agonist binding affinities of subsite selective ligands were studied at mu, delta and kappa sites in rat brain homogenates. Binding parameters were obtained by simultaneous computeranalysis of displacement curves using the prototypic ligands dihydromorphine (DHM), (D-Ala2, D-Leu5) enkephalin (DADL) and ethylketocyclazocine (EKC) of the mu, delta and kappa binding sites respectively. The results show that the effects of metal ions depend not only on the binding site, but also on the ligand under investigation. (b) The interaction of the delta agonist DADL with the mu agonist DHM was investigated at mu binding sites by characterizing the type of competition occurring between the two ligands. The interaction was of the noncompetitive type. It therefore appears that the various opiate agonists either interact preferentially with different parts of a larger receptor site area or bind to topographically distinct sites on a single receptor molecule which are coupled allosterically.  相似文献   

3.
The equilibrium dissociation constants and maximal binding capacities of 3H-dihydromorphine (DHM), 3H-D-Ala2-D-leu3-enkephalin (DADL), and 3H-dynorphin A(1-8) for their respective mu, delta, and kappa opiate binding sites were studied in brain membrane preparations from lean and genetically obese-hyperglycaemic (Aston ob/ob) mice. The concentration of kappa binding sites was 2.7 fold higher in obese compared with lean mouse brain (231 +/- 44.6 versus 83.8 +/- 10.3 fmoles 3H-dynorphin/mg protein respectively, mean +/- SEM). The concentration of delta binding sites in obese was 1.6 fold that in lean mouse brain (94.5 +/- 8.6 versus 59.5 +/- 6.5 fmoles 3H-DADL/mg protein). In contrast, the concentration of brain mu receptors was 40% lower in obese compared with lean mice (20.8 +/- 2.19 and 34.8 +/- 3.1 fmoles 3H-DHM/mg protein respectively). Binding affinities of delta and kappa sites for their respective ligands were not significantly different in lean v. obese mice. However, for mu sites, lean mouse binding data showed two affinities, one was not significantly different from obese (0.35 nM) the second was lower (1.18 nM) for DHM. Increases of approximately 5 fold and 3 fold in the brain content of beta-endorphin and met-enkephalin respectively, and no differences in brain dynorphin levels, were demonstrated in obese mice compared with lean controls. In obese mice, pituitary beta-endorphin content was 9 fold higher, met-enkephalin 4 fold higher and dynorphin 12 fold higher than in lean mice. The striking differences in opioid binding-site characteristics and in endogenous opioid peptide levels in obese compared with lean mice may contribute to the hyperphagia and, directly or indirectly, to the development of hyperglycaemia and hyperinsulinaemia in obese mice.  相似文献   

4.
J G Pfaus  B B Gorzalka 《Peptides》1987,8(2):309-317
The effects of opioid peptides that are highly selective ligands for mu receptors (morphiceptin). delta receptors (delta-receptor peptide), kappa receptors (dynorphin 1-9), and the mu/delta complex (beta-endorphin), were tested on lordosis behavior in ovariectomized rats primed with estrogen and progesterone. Intracerebroventricular infusions of beta-endorphin or morphiceptin both inhibited and facilitated lordosis in a dose-dependent fashion whereas all doses of delta-receptor peptide facilitated lordosis. Dynorphin 1-9 had no significant effect at any dose, although a trend toward increased lordosis quotients was observed 30 min after infusion. The effects of beta-endorphin, morphiceptin, and delta-receptor peptide were reversed with naloxone, although naloxone alone had no effect on lordosis behavior. These results indicate that the specific activation of opioid receptor subtypes differentially affects lordosis behavior. It appears that binding to high-affinity mu 1 receptors exerts an inhibitory influence on lordosis, whereas binding to low-affinity mu 2 receptors or delta receptors exerts a facilitatory influence. Binding to kappa receptors does not appear to affect lordosis behavior.  相似文献   

5.
The mono- and diiodinated derivatives of the kappa-selective ligand [D-Pro10]dynorphin(1-11), DPDYN, were prepared. Their binding properties at the three opioid receptor types (mu, delta and kappa) were examined and compared to those of the parent peptide. The monoiodo derivative shows a general although moderate decrease in affinity and retains high kappa selectivity (KI mu/KI kappa = 48 and KI delta/KI kappa = 140). The binding properties of the diiodo derivative are found to be dramatically decreased. Radioiodination of DPDYN leads to the monoiodinated peptide with high specific activity (700-800 Ci/mmol). In guinea-pig cerebellum membranes, a kappa-specific tissue, [125I]-labelled monoiodo[D-Pro10]dynorphin(1-11), 125I-DPDYN, interacts specifically and reversibly with a single class of binding sites (Bmax = 118 fmol/mg protein) with a high affinity (KD = 0.12 nM from equilibrium experiments, 0.18 nM from kinetics studies). Therefore, because of its high specific radioactivity, high affinity and reasonably good selectivity, 125I-DPDYN designates itself as the probe of the k-opioid receptor type.  相似文献   

6.
Benyhe S  Farkas J  Tóth G  Wollemann M 《Life sciences》1999,64(14):1189-1196
[3H]Met-enkephalin-Arg6-Phe7 (MERF) has been shown to label opioid (kappa2 and delta) and sigma2 sites in rat and frog brain membrane preparations, and no specific binding to kappa1 opioid receptors could be established (refs. 6 and 8). In this study the binding was examined in rat cerebellar membranes which are relatively rich in kappa2-sites, and in guinea pig cerebellar preparations where kappa1 opioid receptors are almost exclusively present. In accordance with our previous results, [3H]MERF binding could not be displaced in guinea pig cerebellar membranes neither with U-69,593 nor with naloxone or levorphanol suggesting no interaction with opioid sites, nevertheless a Kd of 2.8 nM was calculated in cold saturation experiments. In rat cerebellar membrane fractions about the half of the specific [3H]MERF binding sites was inhibited by opiate alkaloids such as naloxone, ethylketocyclazocine, or bremazocine. This portion of the heptapeptide binding sites was stereoselective as demonstrated by the difference in the affinities of the enantiomeric compounds levorphanol and dextrorphan, therefore it would represent an opioid site. In both tissues (-)N-allyl-normetazocine (SKF-10,047), which is also considered as sigma2 ligand, displayed the highest affinities. Among opioid peptides beta-endorphin and dynorphin(1-13) showed the highest potencies, displacing [3H]MERF also from its non-opioid sites. It was concluded therefore that [3H]MERF does not bind to kappa1 sites, and besides kappa2-opioid sites substantial binding to peptide preferring non-opioid sites, and/or sigma2 receptors also occurs.  相似文献   

7.
Metorphamide is a [Met]-enkephalin-containing opioid octapeptide with a C-terminal alpha-amide group. It is derived from proenkephalin and is, so far, the only endogenous opioid peptide with a particularly high affinity for mu opioid (morphine) receptors, a somewhat lesser affinity for kappa opioid receptors, and a relatively low affinity for delta opioid receptors. The concentrations of metorphamide in the bovine caudate nucleus, the hypothalamus, the spinal cord, and the neurointermediate pituitary were determined by radioimmunoassay and chromatography separation procedures. Metorphamide concentrations were compared with the concentrations of eight other opioid peptides from proenkephalin and prodynorphin in identical extracts. The other opioid peptides were [Met]-enkephalyl-Arg6-Phe7 and [Met]-enkephalyl-Arg6-Gly7-Leu8 from proenkephalin; alpha-neoendorphin, beta-neoendorphin, dynorphin A(1-8), dynorphin A(1-17), and dynorphin B from prodynorphin; and [Leu]-enkephalin, which can be derived from either precursor. All opioid peptides were present in all four bovine neural tissues investigated. Metorphamide concentrations were lower than the concentrations of the other proenkephalin-derived opioid peptides. They were, however, similar to the concentrations of the prodynorphin-derived opioid peptides in the same tissues. Marked differences in the relative ratios of the opioids derived from prodynorphin across brain regions were observed, a finding suggesting differential posttranslational processing. Differences in the ratios of the proenkephalin-derived opioids across brain regions were less pronounced. The results from this study together with previous findings on metorphamide's mu opioid receptor binding and bioactivities suggest that the amounts of metorphamide in the bovine brain are sufficient to make this peptide a candidate for a physiologically significant endogenous mu opioid receptor ligand.  相似文献   

8.
A ligand containing an SNpys group, i.e. 3-nitro-2-pyridinesulfenyl linked to a mercapto (or thiol) group, can bind covalently to a free mercapto group to form a disulfide bond via the thiol-disulfide exchange reaction. This SNpys chemistry has been successfully applied to the discriminative affinity labeling of mu and delta opioid receptors with SNpys-containing enkephalins [Yasunaga, T. et al. (1996) J. Biochem. 120, 459-465]. In order to explore the mercapto groups conserved at or near the ligand binding sites of three opioid receptor subtypes, we synthesized two Cys(Npys)-containing analogs of dynorphin A, namely, [D-Ala2, Cys(Npys)8]dynorphin A-(1-9) amide (1) and [D-Ala2, Cys(Npys)12]dynorphin A-(1-13) amide (2). When rat (mu and delta) or guinea pig (kappa) brain membranes were incubated with these Cys(Npys)-containing dynorphin A analogs and then assayed for inhibition of the binding of DAGO (mu), deltorphin II (delta), and U-69593 (kappa), the number of receptors decreased sharply, depending upon the concentrations of these Cys(Npys)-containing dynorphin A analogs. It was found that dynorphin A analogs 1 and 2 effectively label mu receptors (EC50 = 27-33 nM), but also label delta receptors fairly well (160-180 nM). However, for kappa receptors they showed drastically different potencies as to affinity labeling; i.e., EC50 = 210 nM for analog 1, but 10,000 nM for analog 2. Analog 2 labeled kappa receptors about 50 times more weakly than analog 1. These results suggested that dynorphin A analog 1 labels the Cys residues conserved in mu, delta, and kappa receptors, whereas analog 2 only labels the Cys residues conserved in mu and delta receptors.  相似文献   

9.
Aldrich JV  Zheng QI  Murray TF 《Chirality》2001,13(3):125-129
Analogs of the opioid peptide [D-Ala8]dynorphin A-(1-11)NH2 containing optically pure (R)- and (S)-2-aminotetralin-2-carboxylic acid (Atc) in position 4 were synthesized and evaluated for opioid receptor affinity. These peptides are the first reported dynorphin A analogs containing a conformationally constrained amino acid in place of the important aromatic residue Phe4. By incorporating resolved Atc isomers, the opioid receptor affinity and the stereochemistry of the constrained residue could be unambiguously correlated. Both Dyn A analogs containing Atc in position 4 retained nanomolar affinity for kappa and mu opioid receptors. Unexpectedly the peptide containing (R)-Atc, corresponding to a conformationally constrained D-Phe analog, displaying higher affinity for both kappa and mu receptors than the peptide containing (S)-Atc. In contrast [D-Phe4,D-Ala8]Dyn A-(1-11)NH2 exhibited significantly lower affinity for kappa and mu receptors than the parent peptide, as expected. Conformational restriction of the Phe4 sidechain or incorporation of D-Phe in position 4 had the largest effect on delta receptor affinity, yielding compounds with negligible affinity for these receptors. Thus, there appear to be distinctly different structural requirements for this residue for kappa vs. delta receptors, and it is possible to completely distinguish between these two receptors by changing a single residue in Dyn A.  相似文献   

10.
This note reports the interaction of three currently used tricyclic antidepressant drugs (clomipramine, imipramine and amitriptyline) with delta, mu and kappa opioid binding sites in the bovine adrenal medulla. Clomipramine was the only drug interacting with delta and mu sites. On the contrary, all three drugs showed a significant interactions with subtypes of the kappa binding site. Clomipramine was the most active on the kappa 2 and kappa 3 subtypes while amitriptyline showed the highest interaction with the kappa 1 subtype. On the contrary the tricyclic cyproheptadine did not present any interaction with opioid binding sites in our system. This interaction between tricyclic antidepressants and opioid binding sites might be the origin of their analgesic action.  相似文献   

11.
Fab fragments from a monoclonal antibody, OR-689.2.4, directed against the opioid receptor, selectively inhibited opioid binding to rat and guinea pig neural membranes. In a titratable manner, the Fab fragments noncompetitively inhibited the binding of the mu selective peptide [D-Ala2,(Me)Phe4,Gly(OH)5][3H] enkephalin and the delta selective peptide [D-Pen2,D-Pen5] [3H]enkephalin (where Pen represents penicillamine) to neural membranes. In contrast, kappa opioid binding, as measured by the binding of [3H]bremazocine to rat neural membranes and guinea pig cerebellum in the presence of mu and delta blockers, was not significantly altered by the Fab fragments. In addition to blocking the binding of mu and delta ligands, the Fab fragments displaced bound opioids from the membranes. When mu sites were blocked with [D-Ala2,(Me)Phe4,Gly(OH)5]enkephalin, the Fab fragments suppressed the binding of [D-Pen2,D-Pen5][3H]enkephalin to the same degree as when the mu binding site was not blocked. The Fab fragments also inhibited binding to the mu site regardless of whether or not the delta site was blocked with [D-Pen2,D-Pen5]enkephalin. This monoclonal antibody is directed against a 35,000-dalton protein. Since the antibody is able to inhibit mu and delta binding but not kappa opioid binding, it appears that this 35,000-dalton protein is an integral component of mu and delta opioid receptors but not kappa receptors.  相似文献   

12.
The sigma opiates differ from other opiates in their stimulatory and psychotomimetic actions. The sigma opiate [3H](-)-SKF-10,047 has been used to characterize sigma receptors in rat nervous tissue. Binding of [3H](-)-SKF-10,047 to rat brain membranes was of high affinity, saturable, and reversible. Scatchard analysis revealed the apparent interaction of this drug with two distinct binding sites characterized by affinities of 0.03 and 75 nM (5 mM Tris-HCl buffer, pH 7.4, at 4 degrees C). Competition analyses involving rank order determinations for a series of opiates and other drugs indicate that the high-affinity binding site is the mu opiate receptor. The lower-affinity site (revealed after suppression of mu and delta receptor binding) has been identified as the sigma opiate/phencyclidine receptor. In vitro autoradiography has been used to visualize neuroanatomical patterns of receptors labeled using [3H](-)-SKF-10,047 in the presence of normorphine and [D-Ala2,D-Leu5]enkephalin to block mu and delta interactions, respectively. Labeling patterns differ markedly from those for mu, delta, or kappa receptors. The highest densities (determined by quantitative autoradiography) are found in the medial portion of the nucleus accumbens, amygdaloid nucleus, hippocampal formation, central gray, locus coeruleus, and the parabrachial nuclei. Receptors in these structures could account for the stimulatory, mood-altering, and analgesic properties of the sigma opiates. Although not the most selective sigma opiate ligand, [3H](-)-SKF-10,047 binds to sigma opiate receptors in brain, and this interaction can be readily distinguished from its interactions with other classes of brain opiate receptors.  相似文献   

13.
We previously reported that the novel dynorphin A (Dyn A, Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln) analog arodyn (Ac[Phe(1,2,3),Arg(4),d-Ala(8)]Dyn A-(1-11)NH(2), Bennett, M.A., Murray, T.F. & Aldrich, J.V. (2002) J. Med. Chem. vol. 45, pp. 5617-5619) is a kappa opioid receptor-selective peptide [K(i)(kappa) = 10 nm, K(i) ratio (kappa/mu/delta) = 1/174/583] which exhibits antagonist activity at kappa opioid receptors. In this study, a series of arodyn analogs was prepared and evaluated to explore the structure-activity relationships (SAR) of this peptide; this included an alanine scan of the entire arodyn sequence, sequential isomeric d-amino acid substitution in the N-terminal 'message' sequence, NMePhe substitution individually in positions 1-3, and modifications in position 1. The results for the Ala-substituted derivatives indicated that Arg(6) and Arg(7) are the most important residues for arodyn's nanomolar binding affinity for kappa opioid receptors. Ala substitution of the other basic residues (Arg(4), Arg(9) and Lys(11)) resulted in lower decreases in affinity for kappa opioid receptors (three- to fivefold compared with arodyn). Of particular interest, while [Ala(10)]arodyn exhibits similar kappa opioid receptor binding as arodyn, it displays higher kappa vs. mu opioid receptor selectivity [K(i) ratio (kappa/mu) = 1/350] than arodyn because of a twofold loss in affinity at mu opioid receptors. Surprisingly, the Tyr(1) analog exhibits a sevenfold decrease in kappa opioid receptor affinity, indicating that arodyn displays significantly different SAR than Dyn A; [Tyr(1)]arodyn also unexpectedly exhibits inverse agonist activity in the adenylyl cyclase assay using Chinese hamster ovary cells stably expressing kappa opioid receptors. Substitution of NMePhe in position 1 gave [NMePhe(1)]arodyn which exhibits high affinity [K(i)(kappa) = 4.56 nm] and exceptional selectivity for kappa opioid receptors [K(i) ratio (kappa/mu/delta) = 1/1100/>2170]. This peptide exhibits antagonistic activity in the adenylyl cyclase assay, reversing the agonism of 10 nm Dyn A-(1-13)NH(2). Thus [NMePhe(1)]arodyn is a highly kappa opioid receptor-selective antagonist that could be a useful pharmacological tool to study kappa opioid receptor-mediated activities.  相似文献   

14.
Three-dimensional structures of the transmembrane, seven alpha-helical domains and extracellular loops of delta, mu, and kappa opioid receptors, were calculated using the distance geometry algorithm, with hydrogen bonding constraints based on the previously developed general model of the transmembrane alpha-bundle for rhodopsin-like G-protein coupled receptors (Biophys. J. 1997. 70:1963). Each calculated opioid receptor structure has an extensive network of interhelical hydrogen bonds and a ligand-binding crevice that is partially covered by a beta-hairpin formed by the second extracellular loop. The binding cavities consist of an inner "conserved region" composed of 18 residues that are identical in delta, mu, and kappa opioid receptors, and a peripheral "variable region," composed of 19 residues that are different in delta, mu, and kappa subtypes and are responsible for the subtype specificity of various ligands. Sixteen delta-, mu-, or kappa-selective, conformationally constrained peptide and nonpeptide opioid agonists and antagonists and affinity labels were fit into the binding pockets of the opioid receptors. All ligands considered have a similar spatial arrangement in the receptors, with the tyramine moiety of alkaloids or Tyr1 of opioid peptides interacting with conserved residues in the bottom of the pocket and the tyramine N+ and OH groups forming ionic interactions or H-bonds with a conserved aspartate from helix III and a conserved histidine from helix VI, respectively. The central, conformationally constrained fragments of the opioids (the disulfide-bridged cycles of the peptides and various ring structures in the nonpeptide ligands) are oriented approximately perpendicular to the tyramine and directed toward the extracellular surface. The results obtained are qualitatively consistent with ligand affinities, cross-linking studies, and mutagenesis data.  相似文献   

15.
G W Pasternak 《Life sciences》1982,31(12-13):1303-1306
Binding and pharmacological studies suggest a common opiate and enkephalin binding site in addition to their previously reported selective sites. This common high affinity site has tentatively been named mu1, distinguishing it from the morphine-selective site (mu2) and enkephalin-selective site (delta). The existence of this additional common high affinity site and its association with opiate and opioid peptide analgesia may help explain some pharmacological observations, such as the cross tolerance between morphine and enkephalin analgesia and the lack of cross tolerance between them in the guinea pig ileum and mouse vas deferens bioassays.  相似文献   

16.
We reported recently that the ubiquitin-proteasome pathway is involved in agonist-induced down regulation of mu and delta opioid receptors [J. Biol. Chem. 276 (2001) 12345]. While evaluating the effects of various protease inhibitors on agonist-induced opioid receptor down regulation, we observed that while the peptide aldehyde, leupeptin (acetyl-L-Leucyl-L-Leucyl-L-Arginal), did not affect agonist-induced down regulation, leupeptin at submillimolar concentrations directly inhibited radioligand binding to opioid receptors. In this study, the inhibitory activity of leupeptin on radioligand binding was characterized utilizing human embryonic kidney (HEK) 293 cell lines expressing transfected mu, delta, or kappa opioid receptors. The rank order of potency for leupeptin inhibition of [3H]bremazocine binding to opioid receptors was mu > delta > kappa. In contrast to the effect of leupeptin, the peptide aldehyde proteasome inhibitor, MG 132 (carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal), had significantly less effect on bremazocine binding to mu, delta, or kappa opioid receptors. We propose that leupeptin inhibits ligand binding by reacting reversibly with essential sulfhydryl groups that are necessary for high-affinity ligand/receptor interactions.  相似文献   

17.
To examine the possible involvement of multiple opioid receptors in animal hibernation, we infused opioids selective for mu, kappa, and delta opioid receptors into summer-active ground squirrels (Citellus tridecemlineatus). The effects of those opioid treatments on the hibernation induced by HIT (Hibernation Induction Trigger) were also examined. Mu opioids morphine (1.50 mg/kg/day) and morphiceptin (0.82 mg/kg/day) and kappa opioid peptide dynorphin A (0.82 mg/kg/day) did not induce hibernation. On the contrary, morphine, morphiceptin and dynorphin A antagonized HIT-induced hibernation in summer-active ground squirrels. Infusion of delta opioid DADLE (D-Ala2-D-Leu5 enkephalin; 1.50 mg/kg/day), however, induced summer hibernation in a manner comparable to that induced by HIT. It is concluded therefore that delta opioid receptor and its ligand may be intimately involved in animal hibernation. In view of the fact that HIT was obtained from winter hibernating animals and might therefore be responsible for natural hibernation, our results also suggest that naturally occurring mu and kappa opioids may play an important role in the arousal state of hibernation.  相似文献   

18.
R Quirion  A S Weiss 《Peptides》1983,4(4):445-449
Various proenkephalin-derived peptides such as peptide E and the bovine adrenal medulla peptides BAM-12P and BAM-22P are potent competitors on mu and kappa binding sites in guinea pig brain sections. Moreover, they are all potent agonists in the rabbit vas deferens, a specific kappa opiate receptor bioassay. As described before, dynorphin and some of its fragments are also potent kappa agonists. Our results suggest that not only prodynorphin-derived peptides could act as endogenous kappa ligands but also some proenkephalin-derived peptides such as peptide E.  相似文献   

19.
The misuse of anabolic androgenic steroids (AAS) seems to produce profound effects on the central nervous system, leading to aggressive behavior and increased sensitivity to other drugs of abuse. The present study addresses the effect on the enzymatic transformation, here called dynorphin converting enzyme-like activity. The formation of the mu/delta opioid peptide receptor-preferring Leu-enkephalin-Arg(6) from the kappa opioid peptide receptor-preferring dynorphin A was measured in rats treated with nandrolone decanoate. Significant variations in enzymatic transformation were observed in several brain regions. An altered receptor activation profile in these regions may be one contributory factor behind AAS-induced personality changes.  相似文献   

20.
Target size analysis of opioid receptor is complicated by the presence of multi-exponential inactivation curves. Irradiation of intact frozen tissue proved essential to eliminate such artifacts, due to indirect irradiation effects. Upon irradiation condition, opioid binding activity was inactivated in a single mono-exponential manner. Identical inactivation curves were obtained for mu, delta and kappa binding activities in brain membranes from rat, guinea-pig and frog and in NG 108-15 cells: the molecular mass obtained was 98 +/- 2 kDa. However, when opioid binding was assayed in the presence of Na+, Mg2+ and GTP, the molecular mass was found to be only 56 +/- 4.4 kDa. We suggest that the opioid recognition site comprises a unit of 56 kDa and that in the absence of Na+, Mg2+ and GTP an additional membrane component of 40-44 kDa is necessary for high-affinity opioid binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号