首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diagenesis was studied in DNA obtained from Siberian permafrost (permanently frozen soil) ranging from 10,000 to 400,000 years in age. Despite optimal preservation conditions, we found the sedimentary DNA to be severely modified by interstrand crosslinks; single- and double-stranded breaks; and freely exposed sugar, phosphate, and hydroxyl groups. Intriguingly, interstrand crosslinks were found to accumulate approximately 100 times faster than single-stranded breaks, suggesting that crosslinking rather than depurination is the primary limiting factor for ancient DNA amplification under frozen conditions. The results question the reliability of the commonly used models relying on depurination kinetics for predicting the long-term survival of DNA under permafrost conditions and suggest that new strategies for repair of ancient DNA must be considered if the yield of amplifiable DNA from permafrost sediments is to be significantly increased. Using the obtained rate constant for interstrand crosslinks the maximal survival time of amplifiable 120-bp fragments of bacterial 16S ribosomal DNA was estimated to be approximately 400,000 years. Additionally, a clear relationship was found between DNA damage and sample age, contradicting previously raised concerns about the possible leaching of free DNA molecules between permafrost layers.  相似文献   

2.
3.
4.
Zhu C  Mills KD  Ferguson DO  Lee C  Manis J  Fleming J  Gao Y  Morton CC  Alt FW 《Cell》2002,109(7):811-821
Amplification of large genomic regions associated with complex translocations (complicons) is a basis for tumor progression and drug resistance. We show that pro-B lymphomas in mice deficient for both p53 and nonhomologous end-joining (NHEJ) contain complicons that coamplify c-myc (chromosome 15) and IgH (chromosome 12) sequences. While all carry a translocated (12;15) chromosome, coamplified sequences are located within a separate complicon that often involves a third chromosome. Complicon formation is initiated by recombination of RAG1/2-catalyzed IgH locus double-strand breaks with sequences downstream of c-myc, generating a dicentric (15;12) chromosome as an amplification intermediate. This recombination event employs a microhomology-based end-joining repair pathway, as opposed to classic NHEJ or homologous recombination. These findings suggest a general model for oncogenic complicon formation.  相似文献   

5.
p53 mutations and binding of p53 to hepatitis B virus (HBV) x protein (HBx) have been suggested as alternative mechanisms of development of hepatocellular carcinomas (HCCs) in man, both processes resulting in intracellular accumulation of the protein which is detectable by immunohistochemical approaches. We have examined p53 expression in 149 explanted human livers, including 39 cases infected with HBV and 35 bearing HCC. p53 was demonstrated immunohistochemically in 51% of HCC samples (18/35), localized mainly in fast growing poorly differentiated areas. Accumulation of mutant p53 was verified by immunoprecipitation in most of the positive HCC samples (14/15), implying occurrence of p53 mutations. No cells positive for p53 were found in 354 preneoplastic hepatocellular lesions examined. This indicates that p53 mutation is associated with progression, rather than early development, of HCC in the low-aflatoxin B(1)-exposed region. The intracellular distribution patterns of p53 and HBx were different, with the former within nuclei and the latter confined to cytoplasmic compartment. HBx did not coimmunoprecipitate with p53. These data indicate that p53-HBx binding is infrequent, if it really occurs, in HBV-infected human liver, and that it cannot be a common mechanism of HBV-associated hepatocarcinogenesis. In addition, p53 accumulation was also observed in some parenchymal and ductular (oval) cells in cirrhotic livers and, more frequently, in fulminant hepatitis, being independent of HBx expression, and seemingly associated with the damage and/or regeneration of liver parenchyma, perhaps merely reflecting a cellular stress response.  相似文献   

6.
7.
To assess the role of soluble intracellular compounds and DNA-bound proteins in the intrinsic protection against radiation-induced DNA strand breaks, the alkaline unwinding technique was applied to cellular, nuclear, and nucleoid monolayers. It was found that, when the soluble intracellular compounds were removed from human fibroblasts by permeabilization (nuclear monolayers) and irradiated in a phosphate buffer containing 150 mM monovalent cations (Na+ and K+) and 0.8 mM MgCl2, the frequency of radiation-induced DNA strand breaks increased twofold. Removal of both soluble intracellular compounds and DNA-bound proteins from the cells by a pretreatment with 2 M NaCl (nucleoid monolayers) resulted in a 100-fold increase in the frequency of strand-break induction by gamma radiation. Expressed as percentage of total intrinsic protection against radiation-induced DNA strand breaks, DNA-bound protein contributed 99% compared to 1% by soluble intracellular compounds. Using a different experimental approach it was found that the radioprotective capacity of soluble intracellular compounds was equivalent to about 5 mM dimethyl sulfoxide (DMSO) and DNA-bound proteins to about 70 mM DMSO. It is concluded that DNA-bound proteins play a much greater role than soluble intracellular compounds in the intrinsic protection against radiation-induced DNA strand breaks in cultured human cells.  相似文献   

8.
9.
10.
Xrcc3 is recruited to DNA double strand breaks early and independent of Rad51   总被引:11,自引:0,他引:11  
Rad51-mediated homologous recombination (HR) is essential for maintenance of genome integrity. The Xrcc3 protein functions in HR DNA repair, and studies suggest it has multiple roles at different stages in this pathway. Defects in vertebrate XRCC3 result in elevated levels of spontaneous and DNA damage-induced chromosomal abnormalities, as well as increased sensitivity to DNA damaging agents. Formation of DNA damaged-induced nuclear Rad51 foci requires Xrcc3 and the other Rad51 paralog proteins (Rad51B, Rad51C, Rad51D, Xrcc2), thus supporting a model in which an early function of Xrcc3 involves promoting assembly of active Rad51 repair complexes. However, it is not known whether Xrcc3 or other Rad51 paralog proteins accumulate at DNA breaks, and if they do whether their stable association with breaks requires Rad51. Here we report for the first time that Xrcc3 forms distinct foci in human cells and that nuclear Xrcc3 begins to localize at sites of DNA damage within 10 min after radiation treatment. RNAi-mediated knock down of Rad51 has no effect on the DNA damage-induced localization of Xrcc3 to DNA breaks. Our data are consistent with a model in which Xrcc3 associates directly with DNA breaks independent of Rad51, and subsequently facilitates formation of the Rad51 nucleoprotein filament.  相似文献   

11.
Genome stability in eukaryotic cells is maintained through efficient DNA damage repair pathways, which have to access and utilize chromatin as their natural template. Here we investigate the role of chromatin assembly factor 1 (CAF-1) and its interacting protein, PCNA, in the response of quiescent human cells to DNA double-strand breaks (DSBs). The expression of CAF-1 and PCNA is dramatically induced in quiescent cells upon the generation of DSBs by the radiomimetic drug bleocin (a bleomycin compound) or by ionizing radiation. This induction depends on DNA-PK. CAF-1 and PCNA are recruited to damaged chromatin undergoing DNA repair of single- and double-strand DNA breaks by the base excision repair and nonhomologous end-joining pathways, respectively, in the absence of extensive DNA synthesis. CAF-1 prepared from repair-proficient quiescent cells after induction by bleocin mediates nucleosome assembly in vitro. Depletion of CAF-1 by RNA interference in bleocin-treated quiescent cells in vivo results in a significant loss of cell viability and an accumulation of DSBs. These results support a novel and essential role for CAF-1 in the response of quiescent human cells to DSBs, possibly by reassembling chromatin following repair of DNA strand breaks.  相似文献   

12.
DNA polymerase lambda (polλ) is a recently identified DNA polymerase whose cellular function remains elusive. Here we show, that polλ participates at the molecular level in a chromosomal context, in the repair of DNA double strand breaks (DSB) via non-homologous end joining (NHEJ) in mammalian cells. The expression of a catalytically inactive form of polλ (polλDN) decreases the frequency of NHEJ events in response to I-Sce-I-induced DSB whereas inactivated forms of its homologues polβ and polμ do not. Only events requiring DNA end processing before ligation are affected; this defect is associated with large deletions arising in the vicinity of the induced DSB. Furthermore, polλDN-expressing cells exhibit increased sensitization and genomic instability in response to ionizing radiation similar to that of NHEJ-defective cells. Our data support a requirement for polλ in repairing a subset of DSB in genomic DNA, thereby contributing to the maintenance of genetic stability mediated by the NHEJ pathway.  相似文献   

13.
The mechanisms of injury‐induced apoptosis of neurons within the spinal cord are not understood. We used a model of peripheral nerve‐spinal cord injury in the rat and mouse to induce motor neuron degeneration. In this animal model, unilateral avulsion of the sciatic nerve causes apoptosis of motor neurons. We tested the hypothesis that p53 and Bax regulate this neuronal apoptosis, and that DNA damage is an early upstream signal. Adult mice and rats received unilateral avulsions causing lumbar motor neurons to achieve endstage apoptosis at 7–14 days postlesion. This motor neuron apoptosis is blocked in bax?/? and p53?/? mice. Single‐cell gel electrophoresis (comet assay), immunocytochemistry, and quantitative immunogold electron microscopy were used to measure molecular changes in motor neurons during the progression of apoptosis. Injured motor neurons accumulate single‐strand breaks in DNA by 5 days. p53 accumulates in nuclei of motor neurons destined to undergo apoptosis. p53 is functionally activated by 4–5 days postlesion, as revealed by immunodetection of phosphorylated p53. Preapoptotically, Bax translocates to mitochondria, cytochrome c accumulates in the cytoplasm, and caspase‐3 is activated. These results demonstrate that motor neuron apoptosis in the adult spinal cord is controlled by upstream mechanisms involving DNA damage and activation of p53 and downstream mechanisms involving upregulated Bax and cytochrome c and their translocation, accumulation of mitochondria, and activation of caspase‐3. We conclude that adult motor neuron death after nerve avulsion is DNA damage‐induced, p53‐ and Bax‐dependent apoptosis. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 181–197, 2002; DOI 10.1002/neu.10026  相似文献   

14.
15.
Human replication protein A (RP-A) (also known as human single-stranded DNA binding protein, or HSSB) is a multisubunit complex involved in both DNA replication and repair. Potentially important to both these functions, it is also capable of complex formation with the tumor suppressor protein p53. Here we show that although p53 is unable to prevent RP-A from associating with a range of single-stranded DNAs in solution, RP-A is able to strongly inhibit p53 from functioning as a sequence-specific DNA binding protein when the two proteins are complexed. This inhibition, in turn, can be regulated by the presence of various lengths of single-stranded DNAs, as RP-A, when bound to these single-stranded DNAs, is unable to interact with p53. Interestingly, the lengths of single-stranded DNA capable of relieving complex formation between the two proteins represent forms that might be introduced through repair and replicative events. Increasing p53 concentrations can also overcome the inhibition by steady-state levels of RP-A, potentially mimicking cellular points of balance. Finally, it has been shown previously that p53 can itself be stimulated for site-specific DNA binding when complexed through the C terminus with short single strands of DNA, and here we show that p53 stays bound to these short strands even after binding a physiologically relevant site. These results identify a potential dual role for single-stranded DNA in the regulation of DNA binding by p53 and give insights into the p53 response to DNA damage.  相似文献   

16.
The p53 tumor suppressor gene and members of the transforming growth factor-beta (TGF-beta) superfamily play central roles in signaling cell cycle arrest and apoptosis (programmed cell death) in normal development and differentiation, as well as in carcinogenesis. Here we describe a distantly related member of the TGF-beta superfamily, designated placental TGF-beta (PTGF-beta), that is up-regulated in response to both p53-dependent and -independent apoptotic signaling events arising from DNA damage in human breast cancer cells. PTGF-beta is normally expressed in placenta and at lower levels in kidney, lung, pancreas, and muscle but could not be detected in any tumor cell line studied. The PTGF-beta promoter is activated by p53 and contains two p53 binding site motifs. Functional studies demonstrated that one of these p53 binding sites is essential for p53-mediated PTGF-beta promoter induction and specifically binds recombinant p53 in gel mobility shift assays. PTGF-beta overexpression from a recombinant adenoviral vector (AdPTGF-beta) led to an 80% reduction in MDA-MB-468 breast cancer cell viability and a 50-60% reduction in other human breast cancer cell lines studied, including MCF-7 cells, which are resistant to growth inhibition by recombinant wild-type p53. Like p53, PTGF-beta overexpression was seen to induce both G(1) cell cycle arrest and apoptosis in breast tumor cells. These results provide the first evidence for a direct functional link between p53 and the TGF-beta superfamily and implicate PTGF-beta as an important intercellular mediator of p53 function and the cytostatic effects of radiation and chemotherapeutic cancer agents.  相似文献   

17.
The amino acid histidine was found to increase the toxicity of H2O2 in cultured mammalian cells. Histidine also augmented the level of DNA single strand breaks (SSB) detectable in cells exposed to the oxidant and, in addition, resulted in the appearance of DNA double strand breaks (DSB), a lesion which is not produced by H2O2 alone.  相似文献   

18.
To determine the effects of the space environment on gene instability from the point of view of human health for long-term stays in space, we have studied the formation of DNA strand breaks and the induction of gene expression in mammalian cells. We previously measured DNA damage in human cultured cells and the accumulation of a tumor suppressor gene product, p53, in muscle and skin of rats after space flight, and the relative importance of microgravity and space radiation in causing these effects remains to be clarified. Our results suggest that the p53 pathway may play a role in safeguarding genomic stability against the stressful space environment. We review here the present knowledge on cellular stress signaling and present our space experimental data. The importance of the stress response to the space environment is also discussed.  相似文献   

19.
During apoptosis, the nuclear enzyme Poly(ADP-Ribose) Polymerase-1 (PARP-1) catalyzes the rapid and transient synthesis of poly(ADP-ribose) from NAD+ and becomes inactive when cleaved by caspases. The regulation of these two opposite roles of PARP-1 is still unknown. We have recently investigated PARP-1 activation/degradation in Hep-2 cells driven to apoptosis by actinomycin D. In the present work, we have extended our analysis to the effect of the DNA damaging agent etoposide, and paid attention to the relationship between PARP-1 cleavage and DNA fragmentation. An original fluorescent procedure was developed to simultaneously identify in situ the p89 proteolytic fragment of PARP-1 (by immunolabeling) and DNA degradation (by the TUNEL assay). The presence of p89 was observed both in cells with advanced signs of apoptosis (where the PARP-1 fragment is extruded from the nucleus into the cytoplasm) and in TUNEL-negative cells, with only incipient signs of chromatin condensation; this evidence indicates that PARP-1 degradation in etoposide-treated apoptotic cells may precede DNA cleavage.  相似文献   

20.
Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by gammaH2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU-induced DSB in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号