首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphorylation of phosphatidylinositol (PI), phosphatidylinositol monophosphate (PIP) and diacylglycerol (DAG) was studied in rat brain cortex myelin, synaptosomal and mitochondrial fractions, with ATP as phosphate donor and endogenous phospholipids as substrate. All fractions had PI, PIP and DAG phosphorylating activity with their own characteristic subcellular distribution. However, in the mitochondrial fraction an unidentified lipid was phosphorylated, which had a slower Rf value than PIP2 on TLC. After hydrolysis of the polar head group of the lipid and separation on anion exchange columns, it appeared to be a phosphoinositide. The elution profile showed that it was not phosphatidylinositol trisphosphate, or a lyso-compound. The available evidence suggests that the unknown inositol phospholipid in rat brain mitochondria is a phosphatidylinositol 4,5-bisphosphate isomer, although the possibility of it being a glycosyl-phosphoinositide cannot be excluded.  相似文献   

2.
Incorporation of 32P from [gamma-32P]ATP into phosphatidylinositol 4,5-bisphosphate (PIP2) in membranes isolated from rat brain was enhanced in a concentration-dependent manner by the GTP analogue guanosine 5'-O-(thio)triphosphate (GTP gamma S). In contrast, neither the labeling of phosphatidylinositol 4-phosphate in the same membranes nor PIP kinase activity in the soluble fraction were stimulated by GTP gamma S. Synthesis of [32P]PIP2 was not stimulated by GTP, GDP, GMP, or ATP; however, the stimulatory effects of GTP gamma S were antagonized by GTP, GDP, and guanosine 5'-O-thiodiphosphate (GDP beta S). The nucleotide-stimulated labeling of PIP2 was not due to protection of [gamma-32P] ATP from hydrolysis, activation of PIP2 hydrolysis by phospholipase C, or inhibition of PIP2 hydrolysis by its phosphomonoesterase. Therefore, phosphatidylinositol 4-phosphate kinase activity in brain membranes may be regulated by a guanine nucleotide regulatory protein. This system may enhance the resynthesis of PIP2 following receptor-mediated activation of phospholipase C.  相似文献   

3.
Incubation of purified bovine photoreceptor rod outer segments with [gamma-32P]ATP resulted in the labeling of phosphatidylinositol 4-phosphate (PIP) and phosphatidic acid (PA) with little labeling of phosphatidylinositol 4,5-bisphosphate (PIP2). Propranolol inhibited in a dose-dependent manner the labeling of PA and enhanced that of PIP. Various cationic amphiphilic drugs also were tested for these effects. Propranolol had the same effects on high-speed rat brain particulate material. While this particular preparation displayed more labeling of PIP2, propranolol was ineffective, as it was on retinal PIP-kinase. Ca2+-activated polyphosphoinositide phosphodiesterase activity in nerve-ending membranes also was inhibited by propranolol. It is concluded that cationic amphiphilic drugs can inhibit diacylglycerol kinase and the polyphosphoinositide phosphodiesterase and stimulate the phosphatidylinositol-kinase (but not PIP-kinase).  相似文献   

4.
Triton X-100 extracts of purified rat brain synaptosomes exhibited marked phosphorylation of an endogenous Mr 87,000 polypeptide following chromatography on DEAE-cellulose. The protein kinase catalyzing this reaction was insensitive to cyclic AMP, Ca2+, calmodulin, and phorbol esters. However, phosphatidylinositol 4-phosphate (PIP) proved to be a potent inhibitor of the Mr 87,000 polypeptide phosphorylation at submicromolar concentrations, whereas phosphatidylinositol, phosphatidylserine, and phosphatidylglycerol were less potent inhibitors. Unsaturated fatty acids could also mimic the effects of PIP at levels above 4 micrograms/ml. The inhibitory effect of PIP largely reflected a profound increase in the apparent Km for Mg2+ such that increasing Mg2+ levels could partially offset the action of PIP. The PIP-sensitive protein kinase was enriched in hypotonic lysates of synaptosomes from which it was partially purified by DEAE-cellulose, hydroxylapatite, and gel permeation chromatography. This purification separated the enzyme from its Mr 87,000 substrate; however, the presence of this polypeptide in heat-inactivated alkali extracts of rat brain provided an exogenous source of substrate which could be used to assay enzyme activity. The relevance of these data to a possible role for PIP and Mg2+ in cellular signaling is discussed.  相似文献   

5.
Synthesis and degradation of polyphosphoinositides in a rat brain synaptosome preparation were depressed by phenobarbital. Phosphatidylinositol-4-phosphate kinase (PIP-kinase), the enzyme which synthesizes phosphatidylinositol-4,5-bisphosphate (PIP2) was most strongly affected (50% inhibition at 3 mM phenobarbital); phosphatidylinositol (PI-kinase) followed (50% at 15 mM). The phosphoesterases were less sensitive: PIP-monoesterase (50% at 39 mM), PIP2-monoesterase (at 47 mM), and, least inhibited, PIP-diesterase (50% at 65 mM) and PIP2-diesterase (at 68 mM). Phenobarbital by inhibiting PIP-kinase may reduce the membrane concentration of PIP2 and thus dampen the stimulus-response which leads to the hydrolysis of PIP2 and the formation of the second messenger, inositol-1,4,5-trisphosphate (IP3), involved in mobilization of intracellular Ca2+.  相似文献   

6.
B L Roth 《Life sciences》1987,41(5):629-634
Rat aortic smooth muscle homogenates and membrane preparations contain a phospholipase C which hydrolyzes phosphatidylinositol 4,5-biphosphate (PIP2). We discovered that guanyl-5'yl-imidodiphosphate (Gpp(NH)p) activated the hydrolysis of exogenous PIP2 but not of phosphatidylinositol (PI) in rat aortic membranes. Further, maximal Gpp(NH)p-dependent hydrolysis was dependent on physiological levels of calcium. Also, magnesium inhibited PIP2 hydrolysis and catalyzed the dephosphorylation of PIP2 to phosphatidylinositol-4-phosphate (PIP). The results imply that PIP2 is the primary substrate of the nucleotide-regulated phospholipase C in rat aorta and that calcium and magnesium are physiological regulators of this activity.  相似文献   

7.
The lipid dependence of phosphatidylinositol-4-phosphate (PIP) kinase purified from bovine brain membranes was investigated. In the assay used, PIP-Triton X-100 micelles containing the lipid to be tested were presented to the enzyme. Under these conditions, phosphatidic acid (PA) stimulated the enzyme activity in a concentration-dependent manner up to 20-fold when an equal molar ratio of PA to PIP was attained. Stimulation by PA was highly specific; other lipids including lyso-PA and dicetylphosphate had a relatively small effect. The activation by PA was completely suppressed by phosphatidylinositol 4,5-bisphosphate (PIP2). To investigate the effect of PA on PIP kinase activity in natural membranes, endogenous PA was generated in rat brain synaptosomal plasma membranes by incubation with phospholipase D. Subsequent phosphorylation with [gamma-32P]ATP yielded an enhanced labeling of PIP2 but not of PIP in these membranes. These results suggest that PIP kinase activity may be under control of PA levels in membranes. This may have important implications for the regulation of cellular responses by agonist-induced phosphoinositide turnover.  相似文献   

8.
The dynamic of the phosphatidylinositol (PI), the phosphatidylinositol 4-phosphate (PIP) and the phosphatidylinositol-4,5-diphosphate (PIP2) contents were studied in the correlation with the neuronal spike activity in cat brain cortex under acute oxygen deficiency caused by cessation of artificial ventilation for 1, 2.5 and 5 min. It was shown that the 1-min anoxia produced the depression of both PIP and PIP2 contents. The depression was followed by the development of the 'asphyxia neuronal activation'. During 2.5 and 5 min of anoxia the decrease of PIP2 content and increase of PIP one were detected against a background of neuronal bioelectrical activity depression. The PI content was constant during all the anoxic period.  相似文献   

9.
Phosphatidylserine/calcium-dependent protein kinase C (PKC) from rat brain is activated fifty times more efficiently by phosphatidylinositol-4,5-bisphosphate (PIP2) (Kapp = 0.04 mole% in Triton-lipid micelles) than by diacylglycerol (DG) (Kapp = 2 mole%). Both effector lipids appear to bind to the same site but PIP2 may confer a narrower substrate specificity on the kinase. DG, which together with inositol trisphosphate (IP3) is generated by hydrolysis from PIP2 after cell stimulation, has been considered the natural activator of the kinase but it is likely to be anteceded in this function by PIP2; DG may perhaps retain the function of a back-up activator. The lack of PKC-activation by phosphatidylinositol (PI) or phosphatidylinositol-4-phosphate (PIP) opens the possibility that the Inositide Shuttle, PI reversible PIP reversible PIP2, has a role in controlling the activity of the kinase.  相似文献   

10.
Phosphoinositides such as phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate promote cell survival and protect against apoptosis by activating Akt/PKB, which phosphorylates components of the apoptotic machinery. We now report that another phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2) is a direct inhibitor of initiator caspases 8 and 9, and their common effector caspase 3. PIP2 inhibited procaspase 9 processing in cell extracts and in a reconstituted procaspase 9/Apaf1 apoptosome system. It inhibited purified caspase 3 and 8 activity, at physiologically attainable PIP2 levels in mixed lipid vesicles. Caspase 3 binding to PIP2 was confirmed by cosedimentation with mixed lipid vesicles. Overexpression of phosphatidylinositol phosphate 5-kinase alpha (PIP5KIalpha), which synthesizes PIP2, suppressed apoptosis, whereas a kinase-deficient mutant did not. Protection by the wild-type PIP5KIalpha was accompanied by decreases in the generation of activated caspases and of caspase 3-cleaved PARP. Protection was not mediated through PIP3 or Akt activation. An anti-apoptotic role for PIP(2) is further substantiated by our finding that PIP5KIalpha was cleaved by caspase 3 during apoptosis, and cleavage inactivated PIP5KIalpha in vitro. Mutation of the P(4) position (D279A) of the PIP5KIalpha caspase 3 cleavage consensus prevented cleavage in vitro, and during apoptosis in vivo. Significantly, the caspase 3-resistant PIP5KIalpha mutant was more effective in suppressing apoptosis than the wild-type kinase. These results show that PIP2 is a direct regulator of apical and effector caspases in the death receptor and mitochondrial pathways, and that PIP5KIalpha inactivation contributes to the progression of apoptosis. This novel feedforward amplification mechanism for maintaining the balance between life and death of a cell works through phosphoinositide regulation of caspases and caspase regulation of phosphoinositide synthesis.  相似文献   

11.
The effect of age on phosphate incorporation into phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid (PA) was studied. Lysed crude synaptosomal fractions of different brain regions of 3-month-old and 32-month-old Brown Norway rats were used. The brain regions tested were the hippocampus, frontal cortex, occipital/parietal cortex, entorhinal/pyriformal cortex, striatum/septum, thalamus and hypothalamus. The individual specific phosphorylating activities were unevenly distributed within the brain of Brown Norway rats. Strikingly, the distribution of phosphate incorporation into PIP2 was opposite from that of phosphate incorporation into PA. Phosphate incorporation into PA decreased (-15%) with age in almost all brain regions tested, whereas phosphate incorporation into PIP2 decreased with age only in the frontal cortex (-20%) and in the hypothalamus (-8%). The effects of age may reflect a deterioration of phosphoinositide metabolism, with its function in signal transduction coupled to receptors via G-proteins, in the brain regions involved. In addition, there was an age related decrease in protein content and total phospholipid phosphorus content of lysed crude synaptosomal preparations of all brain regions. The high correlation between the changes in these parameters may be indicative of a decrease in the number or size of synaptosomes with age in the brain regions involved.  相似文献   

12.
Talin is an essential component of focal adhesions that couples beta-integrin cytodomains to F-actin and provides a scaffold for signaling proteins. Recently, the integrin beta3 cytodomain and phosphatidylinositol phosphate (PIP) kinase type 1gamma (a phosphatidylinositol 4,5-bisphosphate-synthesizing enzyme) were shown to bind to the talin FERM domain (subdomain F3). We have characterized the PIP kinase-binding site by NMR using a 15N-labeled talin F2F3 polypeptide. A PIP kinase peptide containing the minimal talin-binding site formed a 1:1 complex with F2F3, causing a substantial number of chemical shift changes. In particular, two of the three Arg residues (Arg339 and Arg358), four of eight Ile residues, and one of seven Val residues in F3 were affected. Although a R339A mutation did not affect the exchange kinetics, R358A or R358K mutations markedly weakened binding. The Kd for the interaction determined by Trp fluorescence was 6 microm, and the R358A mutation increased the Kd to 35 microm. Comparison of these results with those of the crystal structure of a beta3-integrin cytodomain talin F2F3 chimera shows that both PIP kinase and integrins bind to the same surface of the talin F3 subdomain. Indeed, binding of talin present in rat brain extracts to a glutathione S-transferase integrin beta1-cytodomain polypeptide was inhibited by the PIP kinase peptide. The results suggest that ternary complex formation with a single talin FERM domain is unlikely, although both integrins and PIP kinase may bind simultaneously to the talin anti-parallel dimer.  相似文献   

13.
Levels of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol (PI), phosphatidic acid, diacylglycerol (DAG), triacylglycerol (TAG), and free fatty acids (FFAs), as well as their fatty acid composition, were determined in rat forebrain during ischemia and postischemic recirculation. Cerebral energy state and electroencephalograms (EEGs) were also studied. Fifteen minutes of ischemia resulted in a decrease in PIP2 and PIP contents but not in PI content, concurrent with an enlargement of the FFA and DAG pools. The latter were enriched in stearate and arachidonate. Prolongation of ischemia did not produce further changes in content of any of the inositol phospholipids, but the increase in levels of FFAs and DAG continued. At the end of 45 min of ischemia, levels of both PIP2 and PIP decreased by 45-50%, and the total phosphoinositide content (PIP2 + PIP + PI) decreased by 21%, whereas levels of FFAs and DAG increased to 14- and 3.6-fold of control levels, respectively. During ischemia, the TAG-palmitate level decreased, but the TAG-arachidonate level increased; the tissue energy state deteriorated severely; and the EEG was suppressed. A 30-min recirculation period after 15 or 45 min of ischemia led to increases in PIP2, PIP, and total phosphoinositide contents, whereas levels of FFAs and DAG promptly decreased toward control values. The TAG-arachidonate level peaked and the TAG-palmitate level returned to a low control value during early recirculation. The ischemic changes in tissue lipids were completely reversed within 3 h of recirculation after both periods of ischemia. Adenylates were fully phosphorylated with as little as 30 min of reflow. The EEG activity partially recovered during reflow after 15 min of ischemia, whereas it remained depressed after prolonged ischemia. Thus, phosphodiesteric cleavage of PIP2 and PIP followed by deacylation of DAG is likely to contribute to the production of FFAs in early ischemia. Deacylation of undetermined lipids plays a role for the increment in levels of FFAs in the later period of ischemia. The rapid postischemic increase in levels of PIP2 and PIP indicates active synthesis not only from existing PI, but probably also by means of accumulated FFAs and DAG. These results indicate that the impaired resynthesis of inositol phospholipids cannot be a cause of the poor EEG activity after prolonged ischemia. Degradation and resynthesis of polyphosphoinositides and formation of TAG-arachidonate may be important for modulation of free arachidonic acid levels in the brain during temporary ischemia.  相似文献   

14.
N J Philp  E F Grollman 《FEBS letters》1986,202(2):193-196
Hormone-induced changes in phospholipid metabolism were examined in a functioning rat thyroid cell line (FRTL-5). Stimulation of FRTL-5 cells, prelabeled with 32P, with TSH or NE resulted in a rapid decrease in the radioactivity of both phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-monophosphate (PIP). The effects of TSH on phospholipid metabolism and calcium mobilization are independent of those on adenylate cyclase. This suggests that the TSH receptor may be unique in that it activates enzyme cascades involved in cAMP production and Ca2+ mobilization.  相似文献   

15.
The quantitative relationship between phosphoinositides and free fatty acids (FFAs) in brain ischemia was studied by measuring contents of individual fatty acids in phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol (PI), phosphatidic acid (PA), diacylglycerol (DAG), and the FFA pool. Various periods of complete ischemia (1, 3, 10, and 30 min) were produced by decapitation. Ischemia of 1-3 min caused rapid decreases in PIP2 and PIP content together with preferential production of stearic and arachidonic acids in the DAG and FFA pools. The decrement in levels of these fatty acid residues in polyphosphoinositides was sufficient to account for their increment in levels in the enlarged DAG and FFA pools. After 10 min of ischemia, levels of PIP2, PIP, and DAG approached plateau values, but levels of all FFAs continued to increase. The increases in content of DAG and FFAs at later ischemic periods could not be accounted for by the decreases in content of PIP2 and PIP, PI and PA levels showed only transient and subtle changes. These results indicate that, at the onset of ischemia, phosphodiesteric cleavage of PIP2 and PIP and subsequent deacylation by lipases are primarily responsible for the preferential increase in levels of free stearic and arachidonic acids and that, later, hydrolysis of other phospholipids plays a major role in the continuous accumulation of FFAs.  相似文献   

16.
A soluble phospholipase C from rat liver was purified to homogeneity using phosphatidylinositol 4,5-bisphosphate (PIP2) as substrate. After ammonium sulfate fractionation, the purification involved chromatography on phosphocellulose, DEAE-Sepharose CL-6B, hydroxylapatite, Reactive Blue 2 dye-linked agarose, and Mono S cation exchanger. Under the conditions of the assay, the pure enzyme had a specific activity of 407 mumol/mg protein/min. It migrated as a single band with a molecular mass of 87 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The water-soluble product formed during the hydrolysis of PIP2 by the purified enzyme was inositol 1,4,5-trisphosphate. The enzyme shows one-half of maximum velocity at 2 microM Ca2+ with PIP2 as substrate. Between 0 and 100 microM Ca2+, the enzyme shows approximately the same activity with phosphatidylinositol 4-phosphate (PIP) as it does with PIP2, and very low activity with phosphatidylinositol. The enzyme is activated by low concentrations of basic proteins; for example, with PIP2 as substrate, 1 microgram/ml histone activates the enzyme 3.6-fold. The enzyme shows an almost absolute requirement for monovalent salts which can be met by different alkali metal halides. A second, minor peak of PIP2-hydrolyzing phospholipase C activity was resolved during chromatography of the enzyme on hydroxylapatite. The substrate specificity suggests that PIP and PIP2 are normal substrates of this enzyme. Under physiological conditions of activation, the enzyme may therefore generate inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate in amounts determined by the ratio of PIP and PIP2 present in the cellular membranes.  相似文献   

17.
The wasp venom peptide, mastoparan (Ile-Asn-Leu-Lys-Ala-Leu-Ala-Ala-Leu-Ala-Lys-Lys-Ile-LeuNH2), activated phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis as catalyzed by a phosphoinositide-specific phospholipase C (PLC-Im) purified from rabbit brain membranes. This activation was found when the molar ratio of mastoparan to PIP2 was less than 1 and when the concentration of PIP2 exceeded 10 microM. PIP2 breakdown was inhibited at both high and low substrate concentrations if the molar ratio of mastoparan to PIP2 was greater than 1. The stimulatory effect of mastoparan correlated with its ability to restrict aggregation of PIP2 into higher order structures (liposomes or mixed deoxycholate/phospholipid micelles) as the concentration of PIP2 was increased to 10 microM or greater. Mastoparan stimulation of PIP2 breakdown required the presence of a higher calcium concentration than was necessary for detection of enzyme activity. Both the stimulatory and inhibitory effects of mastoparan on PIP2 hydrolysis were lost if 2.5 mM deoxycholate was present in the assays. Hydrolysis of phosphatidylinositol (PI) by PLC-Im was inhibited at all concentrations of mastoparan tested. These results show that both PIP2 and PI are suitable substrates for PLC-Im, depending on the physical characteristics of their aggregates in aqueous suspension. An amphiphilic alpha-helix-forming peptide such as mastoparan may modulate phospholipase C activity due to the peptide's interaction with phospholipid substrates.  相似文献   

18.
Two different forms of inositol phospholipid-specific phospholipase C (PLC) have been purified 2810- and 4010-fold, respectively, from a crude extract of rat brain. The purification procedures consisted of chromatography of both enzymes on Affi-Gel blue and cellulose phosphate, followed by three sequential high performance liquid chromatography steps, which were different for the two enzymes. The resultant preparations each contained homogeneous enzyme with a Mr of 85,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One of these enzymes (PLC-II) was found to hydrolyze phosphatidyl-inositol 4,5-bisphosphate (PIP2) at a rate of 15.3 mumol/min/mg of protein and also phosphatidylinositol 4-monophosphate and phosphatidylinositol (PI) at slower rates. For hydrolysis of PI, this enzyme was activated by an acidic pH and a high concentration of Ca2+ and showed a Vmax value of 19.2 mumol/min/mg of protein. The other enzyme (PLC-III) catalyzed hydrolysis of PIP2 preferentially at a Vmax rate of 12.9 mumol/min/mg of protein and catalyzed that of phosphatidylinositol 4-monophosphate slightly. The rate of PIP2 hydrolysis by this enzyme exceeded that of PI under all conditions tested. Neither of these enzymes had any activity on phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, or phosphatidic acid. These two enzymes showed not only biochemical but also structural differences. Western blotting showed that antibodies directed against PLC-II did not react with PLC-III. Furthermore, the two enzymes gave different peptide maps after digestion with alpha-chymotrypsin or Staphylococcus aureus V8 protease. These results suggest that these two forms of PLC belong to different families of PLC.  相似文献   

19.
Cross-linking of the immunoglobulin E receptor on rat basophilic leukemia (RBL)1 cells by multivalent antigen activates phosphatidylinositol (PI) kinase and phosphatidylinositol 4-phosphate (PIP) kinase leading to the increased production of PIP and phosphatidylinositol 4,5-bisphosphate (PIP2). Activators of protein kinase C (PKC), such as phorbol myristate acetate (PMA) and the synthetic diacylglycerol, 1,2-dioctanoyl-sn-glycerol (diC8), were found to have the same effect even though PMA and diC8 do not cause the activation of phospholipase C. Although the kinetics are different depending on the stimulant, activation of PKC using multivalent antigen, PMA or diC8 also causes the polymerization of actin and an increase in the F-actin content of the cells. In all cases, a good correlation was observed between F-actin levels, activation of PI and PIP kinases, and the increased production of PIP and PIP2. However, in the case of antigen, there is no correlation between actin polymerization and the total amount of PIP and PIP2. Staurosporine, an inhibitor of protein kinases, blocks the F-actin response and the increased synthesis of PIP and PIP2 with similar dose dependencies. Furthermore, depletion of PKC activity through long-term exposure to PMA, inhibited both the F-actin response and the increased synthesis of PIP and PIP2 induced by either DNP-BSA or diC8. These results suggest that activation of PKC precedes the activation of PI and PIP kinases and that under certain circumstances activation of the kinases and the increased synthesis of PIP and PIP2 may be involved in the polymerization of actin in RBL cells, possibly through the interaction of the polyphosphoinositides with actin-binding proteins such as gelsolin and profilin.  相似文献   

20.
The incorporation of phosphatidyl[2-3H]inositol ([3H]PI) from vesicles or microsomal membranes into rat liver nuclei is greatly stimulated by phosphatidylinositol transfer protein (PI-TP). The nuclei are able to phosphorylate [3H]PI, with the production of phosphatidylinositol 4-phosphate (PIP). Recovery of tritiated inositol trisphosphate, inositol phosphate, glycerophosphoinositol and inositol, suggests that in isolated nuclei a large set of enzymes of the PI cycle is present, similar to the enzymes involved in the plasma membrane PI cycle. Incubation with [gamma-32P]ATP shows that isolated nuclei are able to phosphorylate endogenous PI to PIP and phosphatidylinositol 4,5-bisphosphate (PIP2). In the presence of exogenous PI and detergent the synthesis of PIP is increased, indicating that in nuclei the PI pool is suboptimal for the PI-kinase activity. The present study suggests that PI-TP may be involved in providing substrates for PI metabolism at the nuclear level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号