首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6–5.8 bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

2.
Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10− 3 s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage.  相似文献   

3.
Signal transduction via G-protein-coupled receptors (GPCRs) is a fundamental pathway through which the functions of an individual cell can be integrated within the demands of a multicellular organism. Since this family of receptors first discovered, the proteins that constitute this signaling cascade and their interactions with one another have been studied intensely. In parallel, the pivotal role of lipids in the correct and efficient propagation of extracellular signals has attracted ever increasing attention. This is not surprising given that most of the signal transduction machinery is membrane-associated and therefore lipid-related. Hence, lipid-protein interactions exert a considerable influence on the activity of these proteins. This review focuses on the post-translational lipid modifications of GPCRs and G proteins (palmitoylation, myristoylation, and isoprenylation) and their significance for membrane binding, trafficking and signaling. Moreover, we address how the particular biophysical properties of different membrane structures may regulate the localization of these proteins and the potential functional consequences of this phenomenon in signal transduction. Finally, the interactions that occur between membrane lipids and GPCR effector enzymes such as PLC and PKC are also considered.  相似文献   

4.
Signal transduction via G-protein-coupled receptors (GPCRs) is a fundamental pathway through which the functions of an individual cell can be integrated within the demands of a multicellular organism. Since this family of receptors first discovered, the proteins that constitute this signaling cascade and their interactions with one another have been studied intensely. In parallel, the pivotal role of lipids in the correct and efficient propagation of extracellular signals has attracted ever increasing attention. This is not surprising given that most of the signal transduction machinery is membrane-associated and therefore lipid-related. Hence, lipid-protein interactions exert a considerable influence on the activity of these proteins. This review focuses on the post-translational lipid modifications of GPCRs and G proteins (palmitoylation, myristoylation, and isoprenylation) and their significance for membrane binding, trafficking and signaling. Moreover, we address how the particular biophysical properties of different membrane structures may regulate the localization of these proteins and the potential functional consequences of this phenomenon in signal transduction. Finally, the interactions that occur between membrane lipids and GPCR effector enzymes such as PLC and PKC are also considered.  相似文献   

5.
Binding of specific lipids to large, polytopic membrane proteins is well described, and it is clear that such lipids are crucial for protein stability and activity. In contrast, binding of defined lipid species to individual transmembrane helices and regulation of transmembrane helix monomer–oligomer equilibria by binding of distinct lipids is a concept, which has emerged only lately. Lipids bind to single-span membrane proteins, both in the juxta-membrane region as well as in the hydrophobic membrane core. While some interactions counteract transmembrane helix oligomerization, in other cases lipid binding appears to enhance oligomerization. As reversible oligomerization is involved in activation of many membrane proteins, binding of defined lipids to single-span transmembrane proteins might be a mechanism to regulate and/or fine-tune the protein activity. But how could lipid binding trigger the activity of a protein? How can binding of a single lipid molecule to a transmembrane helix affect the structure of a transmembrane helix oligomer, and consequently its signaling state? These questions are discussed in the present article based on recent results obtained with simple, single-span transmembrane proteins. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

6.
Chlamydia pneumoniae, an intracellular prokaryote, is known to have requirement for some lipids which it is incapable of synthesizing, and these lipids have important fluidizing roles in plasma membrane. We decided to examine if the trafficking of these lipids to C. pneumoniae alters the physicochemical properties of macrophage plasma membrane, affects the expression of genes and proteins of enzymes associated with metabolism of some of these lipids and assess if Ca2+ signaling usually induced in macrophages infected with C. pneumoniae modulates the genes of these selected enzymes. Chlamydia pneumoniae induced the depletion of macrophage membrane cholesterol, phosphatidylinositol and cardiolipin but caused an increase in phosphotidylcholine resulting in a relative increase in total phospholipids. There was increased membrane fluidity, enhanced macrophage fragility and heightened adherence of macrophages to endothelial cells despite the application of inhibitor of adhesion molecules. Also, there was impairment of macrophage 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase gene and protein expression independent of Ca2+ signaling, while phospholipase C gene and protein were up-regulated in a manner minimally dependent on Ca2+ signaling. The implications of these findings are that macrophages infected with C. pneumoniae have altered membrane physicochemical characteristics which may render them atherogenic.  相似文献   

7.
Structure determination of membrane proteins has highlighted the many roles played by lipids in influencing overall protein architecture. It is now widely accepted that lipids surrounding membrane proteins play crucial roles by modulating their conformational, structural, and functional properties. Capturing often transient lipid interactions and defining their chemical identity, however, remains challenging. Recent advances in mass spectrometry have resolved questions concerning lipid interactions by providing the molecular composition of intact complexes in association with lipids. Together with other biophysical tools, a picture is emerging of the dynamic nature of lipid-mediated interactions and their effects on conformation, interactions, and signaling.  相似文献   

8.
Heterotrimeric G proteins are peripheral membrane proteins that propagate signals from membrane receptors to regulatory proteins localized in distinct cellular compartments. To facilitate signal amplification, G proteins are in molar excess with respect to G protein-coupled receptors. Because G proteins are capable of translocating from membrane to cytosol, protein-lipid interactions play a crucial role in signal transduction. Here, we studied the binding of heterotrimeric G proteins (Galphabetagamma) to model membranes (liposomes) and that of the entities formed upon receptor-mediated activation (Galpha and Gbetagamma). The model membranes used were composed of defined membrane lipids capable of organizing into either lamellar or nonlamellar (hexagonal H(II)) membrane structures. We demonstrated that although heterotrimeric G(i) proteins and Gbetagamma dimers can bind to lipid bilayers of phosphatidylcholine, their binding to membranes was markedly and significantly enhanced by the presence of nonlamellar phases of phosphatidylethanolamine. Conversely, activated G protein alpha subunits showed an opposite membrane binding behavior with a marked preference for lamellar membranes. These results have important consequences in cell signaling. First, the binding characteristics of the Gbetagamma dimer account for the lipid binding behavior and the cellular localization of heterotrimeric G proteins. Second, the distinct protein-lipid interactions of heterotrimeric G proteins, Gbetagamma dimers, and Galpha subunits with membrane lipids explain, in part, their different cellular mobilizations during signaling upon receptor activation. Finally, their differential interactions with lipids suggest an active role of the membrane lipid secondary structure in the propagation of signals through G protein-coupled receptors.  相似文献   

9.
Specific localization of membrane proteins based on the interactions with membrane lipids at various microdomains (MDs) is under active investigation, since the elucidation of the molecular mechanism of the interactions could reveal a novel concept of cell organization. Due to the strong interactions not only between lipids but also between lipids and proteins, these MDs are considered to be recovered in a detergent-resistant low-density membrane fraction (DRM) after detergent extraction and density-gradient centrifugation. Neurons take well-developed membrane systems during maturation and specific localization of various membrane components, not only proteins but also lipids, is essential for the establishment of the nervous system. In previous studies, we showed that NAP-22 is a major protein of neuronal DRM and binds liposomes in a cholesterol-dependent manner. In this study, we analyzed the localization of membrane lipids during neuronal maturation in vitro and compared their distribution with that of NAP-22. In an attempt to detect DRM-associated lipids, we observed the staining patterns of neurons treated with Triton-X-100 at 4 degrees C before fixation. Our results showed the less staining patterns of cholesterol and sphingomyelin at the axonal tips and a different staining pattern of two gangliosides, GM(1) and GD(3). The enrichment of cholesterol at the NAP-22 localizing spots was observed after the treatment of the detergent. Since the application of maitotoxin, a calcium ion channel, caused the diminution of NAP-22 and cholesterol positive spots, the distribution of these molecules are considered under the calcium regulation.  相似文献   

10.
《Biophysical journal》2022,121(20):3826-3836
The dynamic behavior of plasma membrane proteins mediates various cellular processes such as cellular motility, communication, and signaling. It is widely accepted that the dynamics of the membrane proteins is determined either by the interactions of the transmembrane domain with the surrounding lipids or by the interactions of the intracellular domain with cytosolic components such as cortical actin. Although initiation of different cellular signaling events at the plasma membrane has been attributed to the extracellular domain (ECD) properties recently, the impact of ECDs on the dynamic behavior of membrane proteins is rather unexplored. Here, we investigate how ECD properties influence protein dynamics in the lipid bilayer by reconstituting ECDs of different sizes or glycosylation in model membrane systems and analyzing ECD-driven protein sorting in lipid domains as well as protein mobility. Our data show that increasing the ECD mass or glycosylation leads to a decrease in ordered domain partitioning and diffusivity. Our data reconcile different mechanisms proposed for the initiation of cellular signaling by linking the ECD size of membrane proteins with their localization and diffusion dynamics in the plasma membrane.  相似文献   

11.
Chlamydia pneumoniae, an intracellular prokaryote, is known to have requirement for some lipids which it is incapable of synthesizing, and these lipids have important fluidizing roles in plasma membrane. We decided to examine if the trafficking of these lipids to C. pneumoniae alters the physicochemical properties of macrophage plasma membrane, affects the expression of genes and proteins of enzymes associated with metabolism of some of these lipids and assess if Ca2+ signaling usually induced in macrophages infected with C. pneumoniae modulates the genes of these selected enzymes. Chlamydia pneumoniae induced the depletion of macrophage membrane cholesterol, phosphatidylinositol and cardiolipin but caused an increase in phosphotidylcholine resulting in a relative increase in total phospholipids. There was increased membrane fluidity, enhanced macrophage fragility and heightened adherence of macrophages to endothelial cells despite the application of inhibitor of adhesion molecules. Also, there was impairment of macrophage 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase gene and protein expression independent of Ca2+ signaling, while phospholipase C gene and protein were up-regulated in a manner minimally dependent on Ca2+ signaling. The implications of these findings are that macrophages infected with C. pneumoniae have altered membrane physicochemical characteristics which may render them atherogenic. (Mol Cell Biochem 269: 69–84, 2005)  相似文献   

12.
Caveolae are abundant plasma membrane pits formed by the coordinated action of peripheral and integral membrane proteins and membrane lipids. Here, we discuss recent studies that are starting to provide a glimpse of how filamentous cavin proteins, membrane-embedded caveolin proteins, and specific plasma membrane lipids are brought together to make the unique caveola surface domain. Protein assembly involves multiple low-affinity interactions that are dependent on ‘fuzzy’ charge-dependent interactions mediated in part by disordered cavin and caveolin domains. We propose that cavins help generate a lipid domain conducive to full insertion of caveolin into the bilayer to promote caveola formation. The synergistic assembly of these dynamic protein complexes supports the formation of a metastable membrane domain that can be readily disassembled both in response to cellular stress and during endocytic trafficking. We present a mechanistic model for generation of caveolae based on these new insights.  相似文献   

13.
Heme-hemopexin coordinately regulates genes encoding protective proteins including metallothionein-I (MT-I) and heme oxygenase 1 (HO-1). Hexamethylene-bisacetamide (HMBA), which induces differentiation and activates protein kinase C (PKC), synergistically augments the induction of both MT-I and MT-II mRNAs in response to heme-hemopexin, but attenuates the induction of HO-1. HMBA also augments the increase in MT mRNA in response to cobalt protoporphyrin-hemopexin, a hemopexin (HPX) receptor ligand that activates signaling cascades without tetrapyrrole uptake. Unlike the PKC-activating phorbol esters that induce MT-I and HO-1, HMBA has minimal effects on MT-I or HO-1. HMBA is an amphipathic molecule, and is shown here to interact physically with lipids in model membranes using differential scanning calorimetry (DSC). The data are consistent with a stabilization of the lipid bilayer and an HMBA-induced segregation of lipids into separate domains each relatively enriched in one of the lipids. HMBA also perturbs membrane-protein interactions, and causes a loss of PKC and G-protein subunits from plasma membranes in vitro. Taken together, these observations reveal an additional level of complexity in the regulation of protective proteins induced by HPX, and which may take place in vivo in response to natural compounds that reorganize membrane phospholipids. A model is proposed whereby a reorganization of lipids by HMBA alters signaling pathways and fusion events considered to be the etiology of the differential response of the MT-1 (and MT-II) and the HO-1 genes to HMBA and heme-HPX.  相似文献   

14.
Most phospholipids constituting biological membranes are chiral molecules with a hydrophilic head group and hydrophobic alkyl chains, rendering biphasic property characteristic of membrane lipids. Some lipids assemble into small domains via chirality-dependent homophilic and heterophilic interactions, the latter of which sometimes include cholesterol to form lipid rafts and other microdomains. On the other hand, lipid mediators and hormones derived from chiral lipids are recognized by specific membrane or nuclear receptors to induce downstream signaling. It is crucial to clarify the physicochemical properties of the lipid self-assembly for the study of the functions and behavior of biological membranes, which often become elusive due to effects of membrane proteins and other biological events. Three major lipids with different skeletal structures were discussed: sphingolipids including ceramides, phosphoglycerolipids, and cholesterol. The physicochemical properties of membranes and physiological functions of lipid enantiomers and diastereomers were described in comparison to natural lipids. When each enantiomer formed a self-assembly or interacted with achiral lipids, both lipid enantiomers exhibited identical membrane physicochemical properties, while when the enantiomer interacted with chiral lipids or with the opposite enantiomer, mixed membranes exhibited different properties. For example, racemic membranes comprising native sphingomyelin and its antipode exhibited phase segregation due to their strong homophilic interactions. Therefore, lipid enantiomers and diastereomers can be good probes to investigate stereospecific lipid-lipid and lipid-protein interactions occurring in biological membranes.  相似文献   

15.
MOTIVATION: Protein-lipid interactions play a central role in cellular signaling and membrane trafficking and at the core of these interactions are domains specialized in lipid binding and membrane targeting. Considering the importance of these domains, we have created MeTaDoR, a comprehensive resource dedicated to membrane targeting domains (MTDs). RESULT: MeTaDoR begins with a brief introduction about all the important MTDs including their subcellular localization and structural features. Sequences of all known MTDs are then provided in two formats: standard Prosite format and a parsed tab-delimited format that provides a manually curated classification into binding or non-binding. Structures of all MTDs and host proteins known so far are provided with links to PDB and Pfam databases. Membrane-binding orientation of these proteins, whether experimentally determined or proposed, is also provided with links to the appropriate literature. To facilitate molecular dynamics studies of these proteins, the force-field parameters for many non-standard lipids that commonly interact with these proteins are also provided. Finally, an online server for predicting membrane-binding proteins and a search function with various search fields are included. The resource is publicly available and will be updated on a regular basis.  相似文献   

16.
The mitogen-activated protein kinase (MAPK) signaling pathway is activated in response to a variety of extracellular stimuli such as growth factor stimulation. The best-characterized MAPK pathway involves the sequential activation of Raf, MEK and ERK proteins, capable of regulating the gene expression required for cell proliferation. Binding to specific lipids can regulate both the subcellular localization of these MAPK signaling proteins as well as their kinase activities. More recently it has become increasingly clear that the majority of MAPK signaling takes place intracellularly on endosomes and that the perturbation of endocytic pathways has dramatic effects on the MAPK pathway. This review highlights the direct effects of lipids on the localization and regulation of MAPK pathway proteins. In addition, the indirect effects lipids have on MAPK signaling via their regulation of endocytosis and the biophysical properties of different membrane lipids as a result of growth factor stimulation are discussed. The ability of a protein to bind to both lipids and proteins at the same time may act like a "ZIP code" to target that protein to a highly specific microlocation and could also allow a protein to be "handed off" to maintain tight control over its binding partners and location.  相似文献   

17.
Many approaches have been developed to characterize the heterogeneity of membranes in living cells. In this study, the elastic properties of specific membrane domains in living cells are characterized by atomic force microscopy. Our data reveal the existence of heterogeneous nanometric scale domains with specific biophysical properties. We focused on glycosylphosphatidylinositol (GPI)-anchored proteins, which play an important role in membrane trafficking and cell signaling under both physiological and pathological conditions and which are known to partition preferentially into cholesterol-rich microdomains. We demonstrate that these GPI-anchored proteins reside within domains that are stiffer than the surrounding membrane. In contrast, membrane domains containing the transferrin receptor, which does not associate with cholesterol-rich regions, manifest no such feature. The heightened stiffness of GPI domains is consistent with existing data relating to the specific condensation of lipids and the slow diffusion rates of lipids and proteins therein. Our quantitative data may forge the way to unveiling the links that exist between membrane stiffness, molecular diffusion, and signaling activation.  相似文献   

18.
The diversity in structures and physical properties of lipids provides a wide variety of possible interactions with proteins that affect their assembly, organization, and function either at the surface of or within membranes. Because lipids have no catalytic activity, it has been challenging to define many of their precise functions in vivo in molecular terms. Those processes responsive to lipids are attuned to the native lipid environment for optimal function, but evidence that lipids with similar properties or even detergents can sometimes partially replace the natural lipid environment has led to uncertainty as to the requirement for specific lipids. The development of strains of microorganisms in which membrane lipid composition can be genetically manipulated in viable cells has provided a set of reagents to probe lipid functions. These mutants have uncovered previously unrecognized roles for lipids and provided in vivo verification for putative functions described in vitro. In this review, we summarize how these reagent strains have provided new insight into the function of lipids. The role of specific lipids in membrane protein folding and topological organization is reviewed. The evidence is summarized for the involvement of anionic lipid-enriched domains in the organization of amphitropic proteins on the membrane surface into molecular machines involved in DNA replication and cell division.  相似文献   

19.
When acquiring internal membranes and vesicular transport, eukaryotic cells started to synthesize sphingolipids and sterols. The physical differences between these and the glycerophospholipids must have enabled the cells to segregate lipids in the membrane plane. Localizing this event to the Golgi then allowed them to create membranes of different lipid composition, notably a thin, flexible ER membrane, consisting of glycerolipids, and a sturdy plasma membrane containing at least 50% sphingolipids and sterols. Besides sorting membrane proteins, in the course of evolution the simple sphingolipids obtained key positions in cellular physiology by developing specific interactions with (membrane) proteins involved in the execution and control of signaling. The few signaling sphingolipids in mammals must provide basic transmission principles that evolution has built upon for organizing the specific regulatory pathways tuned to the needs of the different cell types in the body.  相似文献   

20.
The human immunodeficiency virus type 1 (HIV-1) is an enveloped virus with a lipid bilayer that contains several glycoproteins that are anchored in, or closely associated with, the membrane surface. The envelope proteins have complex interactions with the lipids both on the host cells and on the target cells. The processes of budding from host cells and entry into target cells occur at sites on the plasma membrane, known as lipid rafts, that represent specialized regions that are rich in cholesterol and sphingolipids. Although the envelope glycoproteins are antigenic molecules that potentially might be used for development of broadly neutralizing antibodies in a vaccine to HIV-1, the development of such antibodies that have broad specificities against primary field isolates of virus has been largely thwarted to date by the ability of the envelope proteins to evade the immune system through various mechanisms. In this review, the interactions of HIV-1 with membrane lipids are summarized. Liposomes are commonly used as models for understanding interactions of proteins with membrane lipids; and liposomes have also been used both as carriers for vaccines, and as antigens for induction of antibodies to liposomal lipids. The possibility is proposed that liposomal lipids, or liposome-protein combinations, could be useful as antigens for inducing broadly neutralizing antibodies to HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号