首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors other than adrenocorticotropic hormone (ACTH) are thought to influence fetal adrenal steroidogenesis during primate pregnancy. Therefore, we determined the effects of prolactin (Prl), growth hormone (GH), and human chorionic gonadotropin (hCG) as well as ACTH on steroid secretion by collagenase-dispersed baboon fetal adrenal cells. Adrenal glands were obtained from seven baboon (Papio anubis) fetuses following cesarean section at Day 100-107 of gestation (term = Day 184). Tissue was minced with a fine scissors and cells were dispersed with 0.2% collagenase, then washed with Medium 199 containing penicillin/streptomycin. Cells (0.5 X 10(4)) were placed in 4 ml Medium 199 with or without 10 nmol ovine Prl, ovine GH, or ACTH, or 50 nmol hCG. After 18 h incubation (37 degrees C), cells were separated by centrifugation and the quantities of cortisol (F), dehydroepiandrosterone (DHA), and DHA-sulfate (DHAS) secreted into the medium were determined. In controls, DHA secretion [224 +/- 96 ng/(24 h X 10(5) cells] was greater (P less than 0.05) than that of DHAS (20 +/- 12) and F (14 +/- 12). Adrenocorticotropic hormone, Prl, and GH stimulated (P less than 0.05) DHA secretion by 370% +/- 71%, 215% +/- 61%, and 292% +/- 73%, respectively; hCG was not effective. Due primarily to the relatively low secretion rates, DHAS and F secretion were not altered by hormonal treatment. Moreover, addition of 20 nmol progesterone to the medium in the presence or absence of ACTH did not influence F production. These findings indicate that the baboon fetal adrenal at midgestation does not utilize placental progesterone for F synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We investigated whether human fetal adrenal cells pretreated with or continuously exposed to adrenocorticotropic hormone (ACTH) would develop refractoriness of the steroidogenic response. Fetal adrenal glands from fetuses of 18-24 wk gestation, were studied. Fetal zone cells were pretreated with increasing doses of ACTH (0-10(-6) M) for 24 h and then restimulated with a single dose of ACTH (10(-6) M) for an additional 24 h. Regardless of the dose of ACTH in the first incubation, the cells responded to the second stimulation with a 2- to 6-fold increase in dehydroepiandrosterone sulfate (DHAS) production. When human fetal adrenal cells were incubated in the continuous presence of 10(-8) M ACTH for 72 h, DHAS production was increased compared to that of the untreated cultures (5-fold at 24 h and 50-fold at 72 h), and the cells remained responsive during the entire experimental period. In contrast, human adult adrenal cells showed a significant decrease of the steroidogenic response after 48 h of ACTH treatment. Twenty-four hours of incubation with increasing doses of ACTH also increased the basal steroidogenic capacity of the fetal adrenal cells. One of the steroidogenic enzymatic steps stimulated by ACTH pretreatment was that of 17 alpha-hydroxylase/17, 20-lyase, since conversion of pregnenolone and 17 alpha-hydroxypregnenolone to DHAS was increased in a dose-dependent manner. These results demonstrate that human fetal adrenal cells, in contrast to those of the adult, do not become desensitized to ACTH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The fetal pituitary-adrenal axis plays a key role in the fetal response to intrauterine stress and in the timing of parturition. The fetal sheep adrenal gland is relatively refractory to stimulation in midgestation (90-120 days) before the prepartum activation, which occurs around 135 days gestation (term=147+/-3 days). The mechanisms underlying the switch from adrenal quiescence to activation are unclear. Therefore, we have investigated the expression of suppressor of cytokine signaling-3 (SOCS-3), a putative inhibitor of tissue growth in the fetal sheep adrenal between 50 and 145 days gestation and in the adrenal of the growth-restricted fetal sheep in late gestation. SOCS-3 is activated by a range of cytokines, including prolactin (PRL), and we have, therefore, determined whether PRL administered in vivo or in vitro stimulates SOCS-3 mRNA expression in the fetal adrenal in late gestation. There was a decrease (P<0.005) in SOCS-3 expression in the fetal adrenal between 54 and 133 days and between 141 and 144 days gestation. Infusion of the dopaminergic agonist, bromocriptine, which suppressed fetal PRL concentrations but did not decrease adrenal SOCS-3 mRNA expression. PRL administration, however, significantly increased adrenal SOCS-3 mRNA expression (P<0.05). Similarly, there was an increase (P<0.05) in SOCS-3 mRNA expression in adrenocortical cells in vitro after exposure to PRL (50 ng/ml). Placental and fetal growth restriction had no effect on SOCS-3 expression in the adrenal during late gestation. In summary, the decrease in the expression of the inhibitor SOCS-3 after 133 days gestation may be permissive for a subsequent increase in fetal adrenal growth before birth. We conclude that factors other than PRL act to maintain adrenal SOCS-3 mRNA expression before 133 days gestation but that acute elevations of PRL can act to upregulate adrenal SOCS-3 expression in the sheep fetus during late gestation.  相似文献   

4.
Although it has been recognized for over a decade that hypothalamic-pituitary disconnection (HPD) in fetal sheep prevents the late gestation rise in plasma cortisol concentrations, the underlying mechanisms remain unclear. We hypothesized that reductions in adrenal responsiveness and ACTH receptor (ACTH-R) expression may be mediating factors. HPD or sham surgery was performed at 120 days of gestation, and catheters were placed for blood sampling. At approximately 138 days of gestation, fetuses were killed, and adrenals were removed for cell culture and analyses of ACTH-R mRNA and protein. After 48 h, adrenocortical cells were stimulated with ACTH for 2 h, and the medium was collected for cortisol measurement. The same cells were incubated overnight with medium or medium containing ACTH or forskolin (FSK), followed by ACTH stimulation (as above) and cortisol and cellular ACTH-R mRNA analyses. HPD prevented the late gestation increase in plasma cortisol and bioactive ACTH and reduced adrenal ACTH-R mRNA and protein levels by over 35%. HPD cells secreted significantly less cortisol than sham cells (3.2 +/- 1.2 vs. 47.3 +/- 11.1 ng.ml(-1).2 h(-1)) after the initial ACTH stimulation. Overnight incubation of HPD cells with ACTH or FSK restored cortisol responses to acute stimulation to levels seen in sham cells initially. ACTH-R mRNA levels in cells isolated from HPD fetuses were decreased by over 60%, whereas overnight incubation with ACTH or FSK increased levels by approximately twofold. Our findings indicate that the absence of the cortisol surge in HPD fetuses is a consequence, at least in part, of decreased ACTH-R expression and adrenal responsiveness.  相似文献   

5.
We recently demonstrated that the number of primordial follicles was significantly reduced in the ovaries of near-term baboon fetuses deprived of estrogen in utero and restored to normal in animals administered estradiol. Although the baboon fetal ovary expressed estrogen receptors alpha and beta, the mechanism(s) of estrogen action remains to be determined. It is well established that inhibin and activins function as autocrine/paracrine factors that impact adult ovarian function. However, our understanding of the expression of these factors in the primate fetal ovary is incomplete. Therefore, we determined the expression of alpha-inhibin, activin beta(A), activin beta(B), and activin receptors in fetal ovaries obtained at mid and late gestation from untreated baboons and at late gestation from animals in which fetal estrogen levels were reduced by >95% by maternal administration of the aromatase inhibitor CGS 20267 or restored to 30% of normal by treatment with CGS 20267 and estradiol benzoate. Immunocytochemical expression of alpha-inhibin was minimal to nondetectable in fetal ovaries from untreated baboons. In contrast, in baboons depleted of estrogen, alpha-inhibin was abundantly expressed in pregranulosa cells of interfollicular nests and granulosa cells of primordial follicles. Thus, the number (mean +/- SEM) per 0.08 mm2 of fetal ovarian cells expressing alpha-inhibin, determined by image analysis, was similar at mid and late gestation and increased approximately 8-fold (P < 0.01) near term in baboons treated with CGS 20267 and was restored (P < 0.01) to normal in baboons treated with CGS 20267 plus estradiol. Activin beta(A) was detected in oocytes and pregranulosa cells at midgestation and in oocytes and granulosa cells of primordial follicles at late gestation. Activin beta(B) was also expressed in pregranulosa cells and granulosa cells at mid and late gestation, respectively, but was not detected in oocytes. Neither the pattern nor the apparent level of expression of activin beta(A) or beta(B) were altered in fetal ovaries of baboons treated with CGS 20267 or CGS 20267 and estrogen. Activin receptors IA, IB, IIA, and IIB were detected by Western blot analysis in fetal ovaries at mid and late gestation, and expression was not altered by treatment with CGS 20267 or CGS 20267 and estrogen. Activin receptors IB and IIA were localized to oocytes and pregranulosa cells at midgestation and to granulosa cells and oocytes of primordial follicles at late gestation. Thus, the decrease in the number of follicles in the primate fetal ovary of baboons deprived of estrogen in utero was associated with increased expression of alpha-inhibin. Therefore, we propose that estrogen regulates fetal ovarian follicular development by controlling alpha-inhibin expression and, thus, the intraovarian inhibin:activin ratio.  相似文献   

6.
We have shown that ACTH receptor mRNA expression and steroidogenesis were increased in the transitional zone and decreased in the fetal zone of the baboon fetal adrenal in the second half of gestation. Thus, we proposed that there is a divergence in ACTH receptor-mediated zone-specific steroidogenesis within the fetal adrenal during mid to late gestation. We have also demonstrated that fetal serum alpha-inhibin levels decline with advancing development. It is possible, therefore, that the alpha subunit of inhibin provides a good marker of fetal zone cellular function and that the changes in circulating fetal alpha-inhibin with advancing pregnancy reflect ontogenetic changes in fetal adrenal cortical zone-specific cell function. However, it remains to be determined whether the fetal adrenal is a major source of circulating alpha-inhibin in the fetus and whether alpha-inhibin is expressed in the fetal, definitive, and/or transitional zones. Therefore, the current study compared fetal serum alpha-inhibin levels with immunocytochemical localization of alpha-inhibin in baboon fetal adrenals obtained on Days 60 (early), 100 (mid), and 165 or 182 (late) of gestation (term averages Day 184) from animals untreated or treated with betamethasone, which we previously demonstrated suppressed fetal pituitary ACTH and adrenal weight. Fetal serum alpha-inhibin levels (mean +/- SE) were greater (p < 0.05) at mid (5863 +/- 730 microliter eq/ml) than at late (3246 +/- 379) gestation and were reduced (p < 0. 05) by betamethasone. The inhibin alpha subunit was expressed in abundant quantities in the fetal adrenal cortex, but not in medulla, throughout gestation. At mid and late gestation, alpha-inhibin was expressed throughout the fetal adrenal cortex but most intensely in the innermost area of fetal zone cells. By late gestation, the fetal adrenal exhibited a gradient of alpha-inhibin expression. Thus, the outermost definitive zone cells were devoid of alpha-inhibin, the transitional zone exhibited a relatively low alpha-inhibin content, and fetal zone cells continued to exhibit extensive expression of alpha-inhibin. Betamethasone diminished the intensity of alpha-inhibin expression throughout the fetal adrenal cortex. These results indicate that the fetal adrenal fetal zone is a significant source of circulating alpha-inhibin in the baboon fetus and that alpha-inhibin provides a good marker to study the developmental regulation of fetal zone-specific adrenocortical function.  相似文献   

7.
The present study determined the source and regulation of 17 alpha-hydroxyprogesterone (17-OHP4) during mid-late baboon pregnancy. Serum 17-OHP4 (ng/ml) in 5 untreated baboons increased from low values at mid-late gestation to a mean (+/- SEM) of 0.49 +/- 0.02 during the final 20 days of gestation. Fetectomy of 5 baboons resulted in serum 17-OHP4 concentrations which declined to and remained at baseline. Serum 17-OHP4 concentrations were 5- to 10-fold greater (P less than 0.001) in the uterine, utero-ovarian, and umbilical veins than peripherally. Apparently the fetal adrenal provides precursors for placental 17-OHP4 formation because the fetal adrenal gland develops delta 5-3 beta-hydroxysteroid dehydrogenase only late in gestation, and because the fetal adrenal and not the placenta has the capacity for 17-hydroxylation. Thus, at mid-late gestation the placenta appears to supply a major, and at term the corpus luteum a minor portion of the total 17-OHP4. Administration of the estrogen antagonist ethamoxytriphetol (MER-25, 15 mg/kg BW) to 4 baboons did not affect 17-OHP4 during mid-late gestation, when the placenta was the only source of 17-OHP4. However, MER-25 resulted in serum 17-OHP4 concentrations (ng/ml) at term which were greater (1.08 +/- 0.10, P less than 0.001) than in untreated baboons (0.49 +/- 0.02). Prior removal of the corpus luteum of pregnancy in 4 animals subsequently given MER-25 prevented this rise in 17-OHP4. This suggests that the marked elevation in 17-OHP4 observed near term after MER-25 administration was of luteal origin and that antiestrogen enhanced 17-OHP4 secretion by the corpus luteum.  相似文献   

8.
M. G. Forest 《Andrologie》1997,7(2):165-186
The androgens produced by the adrenal glands are mainly Δ5 steroids, first dehydroepiandrosterone (DHA) and its sulfate (DHAS). Adrenal androgens, very high at birth, decrease rapidly the first few months of life, remaining very low from 1 to 6 years of life. Adrenarche is defined as the changes in the pattern of adrenal secretions which occur several years before the onset of gonadal puberty (gonadarche). Developmental patterns of adrenal androgens differ markedly among species and only the chimpanzee exhibits an adrenarche comparable to that of man. Adrenarche starts in both sexes around age 7. The increase in DHA/DHAS has a rather abrupt onset and is thereafter progressive. Before the onset of gonadarche mean levels of DHA and DHAS have increased by about 10 and 20 fold respectively. The prepubertal rise in plasma Δ5-androgens is accompanied by that of Δ4-androstenedione and 11β-hydroxy-Δ4-androstenedione occurring likely at about the same time but being very progressive and more modest are only significant after age 8 in both sexes. Adrenal androgens continue to rise during puberty. Plasma levels of DHA and DHAS continue to rise from pubertal stages 1 to 5 and remain similar in both sexes until age 15. At pubertal stage P5, plasma DHA levels are similar to that seen in young adults with no sex difference while that of DHAS continue to rise in boys and become significantly higher than in girls. Developmental changes in adrenal androgen secretions are also observed in the response to ACTH stimulation. Whether estimated as absolute levels or Δ of response, the rise in all unconjugated adrenal androgens to a short or prolonged ACTH stimulation, is greater with increasing age, with no sex difference, and is somewhat correlated to basal levels. Plasma levels of DHAS do not vary significantly the 2 hours following a bolus injection of ACTH (21, 34) but its response to longterm (3-days) ACTH stimulation is also increasing with age. Morphological and functional changes in the adrenal cortex also occur during development. Focal development of aZona reticularis starts at 5 years of age, and progressively becomes continuous. The development of the zona reticularis is parallel to the increase in adrenal androgen secretions, and is completed only by age 15. This is accompanied by a rise in 17-hydroxylase and 17,20-desmolase activity in the adrenals. In a normal timing of physiological events, the onset of adrenarche occurs several years before the onset of gonadarche, 2–3 years in girls and 3–4 years in boys. This relation does not preclude that the processes are independent events. Indeed, the onset of adrenarche and gonadarche are dissociated in a variety of disorders of sexual maturation Adrenal androgen secretions are under the control of ACTH, as shown by a series of observations. However, the specific increase of adrenal androgen secretions during development without any detectable change in ACTH stimulation, the dissociation between adrenarche and gonadarche in several conditions, have led to postulate that the biochemical differentiation of the zona reticularis may require the action of an «adrenal factor» in addition to ACTH. Among the proposed «trophic» factors of adrenal androgen secretion, LH/FSH and estrogens are no longer believed to be involved. The evidences for the existence of a separate and specific pituitary cortical androgen-stimulating hormone (CASH) are not yet convincing. Prolactin, linked to nutritional status, may stimulate the activity of the adrenal hydroxysteroid sulfotransferase. The functional zonal theory» is attractive, but it does not explain why changes in adrenal androgens occur at a given age. Finally, the occurrence of familial cases of premature pubarche, the study of the changes in adrenal androgens in monozygotic or dizygotic twins and the observation that in idiopathic delayed puberty the delay in adrenarche is only one part of a generalized growth and developmental delay, strongly suggests that maturation of the adrenal cortex is regulated, at least in part, by genetic factors. The physiological importance of adrenal androgens remains a matter of controversy. Classical “dogma” dictates that adrenal androgens are responsible for pubic hair development. It has also been suggested that they contribute to somatic growth or epiphyseal advancement in childhood. This is mainly based on the observation that premature adrenarche is accompanied by premature pubarche, tall stature and advanced bone age. However, adequate androgen secretion alone does not ensure normal sexual hair development in many patients with gonadal dysgenesis. Moreover, in children with a lack or delayed adrenarche long-term treatment with DHAS at dosages such as to restore normal levels for age, failed to induce growth of sexual hair or any change in growth rate, bone maturation velocity, or to advance puberty. Although new hypotheses favour the view that Δ5-androgens, particularly Δ5-androstenediol, have some characteristic properties of estrogens, the physiological role of adrenal androgens, if any, remains to be established. DHAS may well be only a prohormone. There are ample evidences that all tissues possess active sulfatases which transform it into DHA, a steroid with high turn-over. Administration of DHA to experimental animals has shown beneficial effects on various endocrine-metabolic parameters, enhanced immunoprotective functions and reduced carcinogenesis. DHA prevents diabetes in genetically diabetic and obese mice. The importance ofin vivo andin vitro experimental findings is underscored by epidemiological data showing that low DHA levels are correlated with increased cardiovascular morbidity in men, breast cancer in women and a decline in immune competence. Human studies are at the moment controversial. It remains possible that DHAS influence breast cancer risk earlier in life, and/or that there are more complex interactions with other hormones or the intracellular metabolism of DHA/DHAS. Indeed, the tissue concentrations of DHAS may be important since it may act indirectly via its metabolism into estradiol or other steroids. Further long-term studies are needed to conclude whether DHA/DHAS are a youth fountain.  相似文献   

9.
Twenty-one chimpanzees ranging in age from 2.9 to 9.2 years at the midpoint of a study consisting of five 4-week blocks were studied behaviorally in four groups of five or six animals per group, balanced for age and sex. Blood samples for radioimmunoassay of follicle-stimulating hormone (FSH), luteinizing hormone, 17 beta-estradiol, testosterone, dehydroepiandrosterone (DHA), DHA sulfate (DHAS), and cortisol were obtained once each 4-week block. Sex differences were found only in the categories of play duration and initiative and genital inspection, all of which were greater for the males. Several categories (6) of play and other affiliative behaviors were negatively correlated with age and/or body weight for the males, whereas fewer of those categories (2) were so correlated in the females. Hierarchical behavior, genital inspection, solitary behavior other than play, and autogrooming were all positively correlated with age and/or body weight for the males, and only autogrooming for the females. FSH and testosterone levels and testicular volume were positively correlated with age and body weight in the males, whereas for the females cortisol was negatively correlated with body weight and only FSH and the ratios of DHA and DHAS to cortisol were positively correlated with age and/or body weight. Most of the behaviors that were significantly correlated with age and body weight for the males were also correlated in the same direction with FSH and testosterone levels and testicular volume, but not with DHA or DHAS levels. The data are consistent with the view that testosterone, but not the adrenal androgens DHA and DHAS, contributed to the behavioral development of the males. There were few significant correlations between hormones and behavior for the females and interpretation is not clear. The absence of age-related increases in DHA and DHAS of both the males and females, in contrast to the pattern of FSH (and testosterone for the males), supports the growing consensus that adrenarche and puberty are independent developmental processes. The absence of any strong correlations between behavior and levels of the adrenal androgens in either the males or females suggests that adrenarche per se is not a significant event in the behavioral development of chimpanzees.  相似文献   

10.
We recently demonstrated that the reduction in the number of primordial follicles in ovaries of near-term baboon fetuses deprived of estrogen in utero was associated with increased expression of alpha-inhibin, but not activin betaA and betaB or the activin receptors. Therefore, we proposed that estrogen regulates fetal ovarian follicular development by controlling the intraovarian inhibin:activin ratio. As a prelude to conducting experiments to test this hypothesis, in the current study we determined whether the primate fetal ovary expressed Smads 2/3 and 4 and whether expression of these activin-signaling proteins was altered in fetal ovaries of baboons in which estrogen production was suppressed. Western blot analyses demonstrated that the 59 kDa Smad 2, 54 kDa Smad 3, and 64 kDa Smad 4 proteins were expressed in fetal ovaries of untreated baboons at both mid and late gestation and that the level of expression was not significantly altered in late gestation by in vivo treatment with CGS 20267 or CGS 20267 and estrogen. Immunocytochemistry localized Smads 2/3 and 4 to cytoplasm of oocytes and pregranulosa cells at midgestation and oocytes and granulosa cells of primordial follicles in late gestation. Smad 4 was also detected in granulosa cell nuclei in late gestation, and nuclear expression appeared to be decreased in fetal ovaries of baboons deprived of estrogen. The site of localization of Smads correlated with localization of the activin receptors IA and IIB, which we previously showed were abundantly expressed in oocytes and (pre)granulosa cells at both mid and late gestation and unaltered by estrogen deprivation. In summary, the results of the current study are the first to show that the intracellular signaling molecules required to transduce an activin signal are expressed in the baboon fetal ovary and that expression was not altered by estrogen deprivation in utero. These findings, coupled with our previous observations showing that estrogen deprivation reduced follicle numbers and upregulated/induced expression of inhibin but not activin or the activin receptors, lend further support to the hypothesis that estrogen regulates fetal ovarian folliculogenesis by controlling the intraovarian activin:inhibin ratio.  相似文献   

11.
The present study examined the activity of the cholesterol side-chain cleavage system, and the amount of cytochrome P450scc in adrenal glands of sheep fetuses and newborn lambs as well as the in vitro regulation of these parameters. Freshly isolated fetal adrenal cells incubated in the presence of 1 mM 8Br-cAMP or 25 microM 22R-OH cholesterol, produced 4- to 5-fold less pregnenolone than neonatal cells under similar conditions. Likewise, pregnenolone production by isolated fetal adrenal mitochondria was lower than that of neonatal mitochondria when endogenous cholesterol was used as a substrate or when 22R-OH cholesterol was added to the incubation medium. Also, the amount of P450scc, determined by immunoblot, was lower in fetal mitochondria than in neonatal mitochondria. In culture, ACTH, despite enhancing both the production of pregnenolone and the incorporation of [14C]acetate in cholesterol and its end-products by fetal adrenal cells, neither increased the amount of pregnenolone formed from 22R-OH cholesterol nor the amount of immunoreactive P450scc. By contrast, during the first 48 h of culture under standard conditions, there was a "spontaneous" increase in the activity of P450scc which reached values observed in neonatal adrenal cells. Such a development was inhibited when 5% ovine fetal serum was added to the culture medium. These results reinforce the view that in the ovine fetal adrenal gland, the development of P450scc is not ACTH-dependent but involves most probably a decrease in inhibitory factors present in fetal blood.  相似文献   

12.
C Y Cheung 《Peptides》1988,9(1):107-111
The present study was designed to investigate the presence of VIP in fetal adrenals, to determine the changes in adrenal VIP content associated with maturation, and to explore the factors which regulate fetal adrenal VIP release. Adrenal glands from ovine fetuses at 70 to 140 days gestation were used. Adrenal VIP content, as measured by radioimmunoassay, were low at 70 and 80 days of gestation. This was followed by a rapid increase in VIP content from 80 to 110 days reaching a plateau between 110 and 130 days at levels comparable to that in the adult. A significant fall in adrenal VIP content occurred at 140 days, immediately prior to term. Release of VIP from fetal adrenocortical cells in vitro was significantly elevated by angiotensin II at 10(-5) M, while ACTH had no effect. Acetylcholine at 50 microM and high potassium stimulated fetal adrenal VIP release while norepinephrine did not. These results suggest that the VIP neuronal system in the ovine fetal adrenal matures between 80 and 110 days of gestation. Furthermore, the release of VIP from the fetal adrenocortical cells may be regulated by angiotensin II and cholinergic neurotransmitters.  相似文献   

13.
To examine whether or not dehydroepiandrosterone sulfate (DHAS) is a substrate for steroidogenesis in the corpus luteum, we studied 17 women in the luteal phase, the follicular phase, and after castration. Following suppression of adrenal function with dexamethasone, DHAS was administered intravenously and the serum levels of DHAS, dehydroepiandrosterone (DHA), androstenedione (ADS), testosterone (T), 17 beta-estradiol (E2) and progesterone (P) were measured serially for 24 h. An obvious increase in the serum levels of all steroids except for E2 and P was observed in each subject for at least 8 h after DHAS administration. To evaluate the effect of DHAS on the serum levels of the steroid hormones, the integrated response area (IRA) was calculated for each hormone in all the subjects. The IRA values for ADS, T and E2 (at 2 and 4 h) in the luteal phase group were significantly higher than in the other DHAS treated groups, and the IRA values for DHA and P tended to be higher than in the other groups. These results suggest that the corpus luteum utilizes serum DHAS as a substrate for steroidogenesis.  相似文献   

14.
In sheep, placental size is maximal by midgestation, but blood flow continues to increase until term. No nerves are present and ANG II is thought to be a major regulator of vascular tone. We hypothesized that angiotensin type 2 receptors (AT(2)) would predominate over type 1 (AT(1)) until late in gestation and be primarily expressed in the vasculature. Real-time PCR, hybridization histochemistry, and ligand-binding studies were performed on placentae and fetal membranes at 27, 45, 66 +/- 1, 100 +/- 4, 130, and 140 days of gestation (term approximately 150 days) to determine quantitative changes and localization. The maximum level of AT(1) expression occurred in the 45-day placenta and was located predominantly in the maternal stromal cells. AT(1) receptors were expressed in the endothelial cells of the chorion in the first half of pregnancy, where later in gestation, both AT(1) and AT(2) receptors were predominant in blood vessels. These results suggest that ANG II, via the AT(1) receptor, may have hitherto unsuspected important roles in the growth/function on the ovine placenta during the maximal growth phase.  相似文献   

15.
We determined whether dehydroepiandrosterone (DHA) and androstenedione (A) were converted to testosterone (T) by the midgestation primate fetal testis in the absence of gonadotropins. Testes from six baboon (Papio anubis) fetuses, obtained by cesarean section at Day 100-107 of gestation (term = Day 184) were dispersed with 0.2% collagenase. Cells (1.1 X 10(6)) were suspended in 4 ml Eagle's Minimum Essential Medium containing penicillin/streptomycin (MEM) and incubated for 20 h (37 degrees C) with or without DHA, A, pregnenolone (P5), 17 alpha-hydroxypregnenolone (17OH-P5), progesterone (P4) or 17 alpha-hydroxyprogesterone (17OH-P4). Concentrations of T, A, P4, and 17OH-P4 in the medium and cells were measured by radioimmunoassay. Mean secretions of T and A, in the absence of exogenous substrates, were 0.5 +/- 0.2 and 0.8 +/- 0.3 ng/mg testis, respectively, and were not elevated by human chorionic gonadotropin (hCG). Addition of DHA at 100, 500, or 1000 ng/4 ml increased (p less than 0.05) the production of T to 6 +/- 0.6, 33 +/- 10, and 64 +/- 26 ng/mg testis and the production of A to 13 +/- 5.5, 54 +/- 10, and 67 +/- 22 ng/mg testis, respectively. Similarly, addition of A at 100, 500, or 1000 ng/4 ml increased (p less than 0.05) production of T to 27 +/- 5.3, 155 +/- 29, and 254 +/- 79 ng/mg testis, respectively. In contrast, production of T and A remained near baseline concentrations when cells were incubated with 1000 ng/4 ml of P5, P4, 17OH-P5, or 17OH-P4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Biologically active peptides have been identified in the adrenal glands of several adult mammalian species. Some of these peptides appear to modulate the nicotine-induced catecholamine release from the adrenal medulla. The present study was carried out to investigate the presence and ontogeny of the peptides substance P, met-enkephalin and leu-enkephalin in the ovine fetal adrenal gland from 70 to 140 days gestation (term = 145-150 days). Concurrently, the growth of the fetal adrenal as well as the gestational changes in catecholamine content were determined. The maternal adrenal glands were also studied for comparison. The ovine fetal adrenal gland increased in weight with advancing gestation at a single exponential rate. Total adrenal substance P content correlated with gestational age, while met-enkephalin, leu-enkephalin and total catecholamine contents correlated with adrenal weight. The adrenal content (normalized as per unit protein) of substance P was highest in the young fetuses at 70 days gestation, decreased progressively towards term and, in the adult levels were significantly lower than those measured in the fetuses. The contents of met-enkephalin and leu-enkephalin were low in the young fetuses at 70 days gestation, but reached high levels at 130 to 140 days gestation. Maternal adrenal contents of the two enkephalins were significantly lower than those measured in the near-term fetal adrenal. Total catecholamine content in the fetal adrenal medulla increased as the fetus matured. Norpinephrine was the primary catecholamine present in the medulla of fetuses at 70 and 80 days gestation, while epinephrine was the major one in the adult.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The influence of aging upon serum concentrations of testicular steroids, sex hormone binding globulin (SHBG) and pituitary hormones and on adrenal steroid levels and adrenal steroid response to ACTH was studied in 81 healthy men aged 20-87 years. These endocrine variables were also compared in 43 patients with benign prostatic hyperplasia (BPH), aged 58-89 years and in a subgroup of 41 men, aged 58-87 years, from the above mentioned reference population. The normal endocrine aging was characterized by a rise in SHBG levels, decreasing levels of testicular steroids and non-SHBG-bound testosterone (NST) and increasing gonadotropin levels and decreasing concentrations of total estrone. Adrenal androgen levels decreased in the presence of unchanged levels of cortisol and the adrenal steroid response to ACTH changed by decreasing increments in dehydroepiandrosterone (DHA) and increasing increments in 17 alpha-hydroxyprogesterone (17OHP). With the exception of the alterations in SHBG and adrenal androgens, all these changes were finished before the seventh decade of life. BPH patients had elevated levels of testosterone and NST in the presence of normal SHBG and gonadotropin levels, elevated levels of DHA and DHA sulfate (DHAS) in the presence of normal cortisol levels, a "younger" pattern of adrenal steroid response to ACTH as judged from the increments in DHA and 17OHP, elevated ratios between estrone and 4-androstene-3,17-dione suggesting an increased peripheral aromatization and subnormal prolactin levels. BPH patients may be considered as "endocrinologically younger" than healthy subjects. DHA and especially its proximate metabolite 5-androstene-3 beta, 17 beta-diol exert powerful estrogenic effects on the receptor level. Thus the elevated levels of DHA and DHAS in the BPH patients may create an hyperestrogenic condition in addition to the slight hyperandrogenicity caused by the elevated NST levels. Both endocrine aberrations may play a role in the etiology of BPH, in accordance with the dual sex steroid sensitivity of the periurethral glands.  相似文献   

18.
Radioimmunoassay methods for measuring dehydroepiandrosterone (DHA) and its sulphate (DHAS) in human plasma and tissues were developed and validated. Plasma levels were measured in men, pre- and postmenopausal women, and patients with endometrial or breast cancer. In the patients, tissue concentrations were also measured. Plasma DHA levels fluctuated synchronously with cortisol, but DHAS levels were less labile, and reached maximum levels during the day and were lowest at night. No obvious pattern was seen in relation to the menstrual cycle. Both DHA and DHAS levels fell with age, but DHA levels reached a plateau at about 60 years. No significant effect of weight on plasma levels was found. Plasma levels in the cancer patients were not significantly different from age-matched controls either when single samples were compared, or when mean 24 h levels were used. Endometrial tissue levels of DHA fell with age, unlike DHAS. In breast tumour tissue, DHA, but not DHAS concentrations were higher than in normal breast tissue. A good correlation between plasma and tissue DHAS levels was found, and DHA levels were also correlated in plasma and tissue. The correlations between plasma and tissue were not observed in tumour tissue, which may be due to altered tissue metabolism.  相似文献   

19.
Vasoactive intestinal peptide (VIP) was found in the adrenal gland of ovine fetuses at 130-135 days gestation and was shown to stimulate catecholamine secretion. VIP was demonstrated by immunocytochemistry using the indirect antibody-enzyme method. VIP-immunoreactive nerve fibers were observed in the capsule, zona glomerulosa and inner layer of the cortex as well as in the medulla; furthermore small clusters of VIP-containing cell bodies were found at the corticomedullary border. To study the direct effect of VIP on catecholamine release, fetal adrenal medulla was dispersed into single cells and incubated in vitro with VIP for 6 hours. Catecholamine release into the medium was measured at 1, 3 and 6 hours. At 6 hours of incubation, VIP stimulated total catecholamine release from fetal adrenomedullary cells in a dose-dependent manner at concentrations ranging from 10(-8) to 10(-4) M. The release of norepinephrine and epinephrine, but not dopamine, was significantly enhanced. The presence of VIP in the fetal adrenal cortex and medulla, and the ability of VIP to stimulate catecholamine release from fetal adrenomedullary cells in vitro suggest that VIP may be an important modulator of medullary catecholamine secretion during fetal life.  相似文献   

20.
This study examined the effects of dexamethasone treatment on basal hypothalamo-pituitary-adrenal (HPA) axis function and HPA responses to subsequent acute hypoxemia in the ovine fetus during late gestation. Between 117 and 120 days (term: approximately 145 days), 12 fetal sheep and their mothers were catheterized under halothane anesthesia. From 124 days, 6 fetuses were continuously infused intravenously with dexamethasone (1.80 +/- 0.15 microg.kg(-1).h(-1) in 0.9% saline at 0.5 ml/h) for 48 h, while the remaining 6 fetuses received saline at the same rate. Two days after infusion, when dexamethasone had cleared from the fetal circulation, acute hypoxemia was induced in both groups for 1 h by reducing the maternal fraction of inspired O2. Fetal dexamethasone treatment transiently lowered fetal basal plasma cortisol, but not ACTH, concentrations. However, 2 days after treatment, fetal basal plasma cortisol concentration was elevated without changes in basal ACTH concentration. Despite elevated basal plasma cortisol concentration, the ACTH response to acute hypoxemia was enhanced, and the increment in plasma cortisol levels was maintained, in dexamethasone-treated fetuses. Correlation of fetal plasma ACTH and cortisol concentrations indicated enhanced cortisol output without a change in adrenocortical sensitivity. The enhancements in basal cortisol concentration and the HPA axis responses to acute hypoxemia after dexamethasone treatment were associated with reductions in pituitary and adrenal glucocorticoid receptor mRNA contents, which persisted at 3-4 days after the end of treatment. These data show that prenatal glucocorticoids alter the basal set point of the HPA axis and enhance HPA axis responses to acute stress in the ovine fetus during late gestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号