首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The fermentation by Candida shehatae and Pichia stipitis of xylitol and the various sugars which are liberated upon hydrolysis of lignocellulosic biomass was investigated. Both yeasts produced ethanol from d-glucose, d-mannose, d-galactose and d-xylose. Only P. stipitis fermented d-cellobiose, producing 6.5 g·l-1 ethanol from 20 g·l-1 cellobiose within 48 h. No ethanol was produced from l-arabinose, l-rhamnose or xylitol. Diauxie was evident during the fermentation of a sugar mixture. Following the depletion of glucose, P. stipitis fermented galactose, mannose, xylose and cellobiose simultaneously with no noticeable preceding lag period. A similar fermentation pattern was observed with C. shehatae, except that it failed to utilize cellobiose even though it grew on cellobiose when supplied as the sole sugar. P. stipitis produced considerably more ethanol from the sugar mixture than C. shehatae, primarily due to its ability to ferment cellobiose. In general P. stipitis exhibited a higher volumetric rate and yield of ethanol production. This yeast fermented glucose 30–50% more rapidly than xylose, whereas the rates of ethanol production from these two sugars by C. shehatae were similar. P. stipitis had no absolute vitamin requirement for xylose fermentation, but biotin and thiamine enhanced the rate and yield of ethanol production significantly.Nomenclature max Maximum specific growth rate, h-1 - Q p Maximum volumetric rate of ethanol production, calculated from the slope of the ethanol vs. time curve, g·(l·h)-1 - q p Maximum specific rate of ethanol production, g·(g cells·h) - Y p/s Ethanol yield coefficient, g ethanol·(g substrate utilized)-1 - Y x/s Cell yield coefficient, g biomass·(g substrate utilized)-1 - E Efficiency of substrate utilization, g substrate consumed·(g initial substrate)-1·100  相似文献   

2.
Summary As components of combined fermentation of both glucose and xylose to ethanol by separated or coculture processes, the effects of initial sugar concentrations on the fermentative performances ofPichia stipitis Y7124,Candida shehatae ATCC 22984,Saccharomyces cerevisiae CBS1200 andZymomonas mobilis ATCC10988 were investigated. From the characteristics of sugar and produced ethanol tolerances the most suitable microorganisms for the achievement of glucose and xylose fermentations have been selected with respect to different fermentation schemes.Nomenclature Tf fermentation time (hours) - Ef ethanol concentration (g/l) - YP/S ethanol yield (g of ethanol produced/g of sugar used) - qp average specific productivity of ethanol (g ethanol/g of cells per hour) - max maximum specific growth rate (h–1)  相似文献   

3.
This research was designed to maximize ethanol production from a glucose-xylose sugar mixture (simulating a sugar cane bagasse hydrolysate) by co-fermentation with Zymomonas mobilis and Pachysolen tannophilus. The volumetric ethanol productivity of Z. mobilis with 50 g glucose/l was 2.87 g/l/h, giving an ethanol yield of 0.50 g/g glucose, which is 98% of the theoretical. P. tannophilus when cultured on 50 g xylose/l gave a volumetric ethanol productivity of 0.10 g/l/h with an ethanol yield of 0.15 g/g xylose, which is 29% of the theoretical. On optimization of the co-fermentation with the sugar mixture (60 g glucose/l and 40 g xylose/l) a total ethanol yield of 0.33 g/g sugar mixture, which is 65% of the theoretical yield, was obtained. The co-fermentation increased the ethanol yield from xylose to 0.17 g/g. Glucose and xylose were completely utilized and no residual sugar was detected in the medium at the end of the fermentation. The pH of the medium was found to be a good indicator of the fermentation status. The optimum conditions were a temperature of 30°C, initial inoculation with Z. mobilis and incubation with no aeration, inactivation of bacterium after the utilization of glucose, followed by inoculation with P. tannophilus and incubation with limited aeration.  相似文献   

4.
Summary The effect of oxygen availability on d-xylose and D-glucose metabolism by Pichia stipitis, Candida shehatae and Pachysolen tannophilus was investigated. Oxygen was not required for fermentation of d-xylose or d-glucose, but stimulated the ethanol production rate from both sugars. Under oxygen-limited conditions, the highest ethanol yield coefficient (Ye/s) of 0.47 was obtained on d-xylose with. P. stipitis, while under similar conditions C. shehatae fermented d-xylose most rapidly with a specific productivity (qpmax) of 0.32 h-1. Both of these yeasts fermented d-xylose better and produced less xylitol than. P. tannophilus. Synthesis of polyols such as xylitol, arabitol, glycerol and ribitol reduced the ethanol yield in some instances and was related to the yeast strain, carbon source and oxygen availability. In general, these yeasts fermented d-glucose more rapidly than d-xylose. By contrast Saccharomyces cerevisiae fermented d-glucose at least three-fold faster under similar conditions.Nomenclature qpmax maximum specific rate of ethanol production (g ethanol per g dry biomass per hour) - Ye/s ethanol yield (g ethanol per g substrate utilized) - Yp/s polyol yield (g polyol per g substrate utilized) - Yx/s biomass yield (g dry biomass per g substrate utilized) - max maximum specific growth rate (per hour)  相似文献   

5.
The activities of xylitol dehydrogenase and xylose reductase in the yeasts Candida shehatae, C. didensiae, C. intermediae, C. tropicalis, Kluyveromyces marxianus, Pichia stipitis, P. guillermondii, Pachysolen tannophilus, and Torulopsis molishiama were studied at different oxygen transfer rates (OTRs) to the fermentation medium (0, 5, and 140 mmol O2/(l h)). The activities of these enzymes were maximum in the yeasts P. stipitis and C. shehatae. The xylitol dehydrogenase of all the yeasts was NAD+-dependent, irrespective of the intensity of aeration. The xylose reductase of the yeasts C. didensiae, C. intermediae, C. tropicalis, Kl. marxianus, P. guillermondii, and T. molishiama was NADPH-dependent, whereas the xylose reductase of P. stipitis, C. shehatae, and Pa. tannophilus was specific for both NADPH and NADH. The effect of OTR on the activities of the different forms of xylitol dehydrogenase and xylose reductase in xylose-assimilating yeasts is discussed.  相似文献   

6.
Summary To investigate simultaneous alcoholic fermentation of glucose and xylose derived from lignocellulosic material by separate or co-culture processes, the effect of oxygen transfer rate (OTR) on the fermentation of 50 g/l xylose by Pichia stipitis NRRL Y 7124 and Candida shehatae ATCC 22984, and the fermentation of 50 g/l glucose by Saccharomyces cerevisiae CBS 1200 and Zymomonas mobilis ATCC 10988 was carried out in batch cultures. The kinetic parameters of the xylose-fermenting yeasts were greatly dependent on the OTR. The optimum OTR values were found to be 3.9 and 1.75 mmol·1–1·h–1 for C. shehatae and P. stipitis, respectively. By contrast the fermentative parameters of S. cerevisiae were poorly affected by the OTR range tested (0.0–3.5 mmol·l–1·h–1) Under these conditions the ethanol yields ranged from 0.41 g·g–1 to 0.45 g·g–1 and the specific ethanol productivity was around 0.70 g·g–1·h–1. Z. mobilis gave the highest fermentative performance under strictly anaerobic conditions (medium continually flushed with nitrogen): under these conditions, the ethanol yield was 0.43 g·g–1 and the average specific ethanol productivity was 2.3 g·g–1·h–1. Process considerations in relation to the effect of OTR on the fermentative performance of the tested strains are discussed. Offprint requests to: J. P. Delgenes  相似文献   

7.
Summary Fed-batch cultivations of Pichia stipitis and strains of Candida shehatae with d-xylose or d-glucose were conducted at controlled low dissolved oxygen tension (DOT) levels. There were some marked differences between the strains. In general growth was inhibited at lower ethanol concentrations than fermentation, and ethanol levels of up to 47 g·l-1 were produced at 30°C. Ethanol production was mainly growth associated. The yeast strains formed small amounts of monocarboxylic acids and higher alcohols, which apparently did not enhance the ethanol toxicity. The maximum ethanol concentration obtained on d-xylose could not be increased by using a high cell density culture, nor by using d-glucose as substrate. The latter observation suggested that the low ethanol tolerance of these xylose-fermenting yeast strains was not a consequence of the metabolic pathway used during pentose fermentation. In contrast with the C. shehatae strains, it was apparent with P. stipitis CSIR-Y633 that when the ethanol concentration reached about 28 g·l-1, ethanol assimilation exceeded ethanol production, despite cultivation at a low DOT of 0.2% of air saturation. Discontinuing the aeration enabled ethanol accumulation to proceed, but with concomitant xylitol production and cessation of growth.  相似文献   

8.
Summary The fermentation of D-xylose byPachysolen tannophilus Y2460,Pichia stipitis Y7124,Kluyveromyces marxianus Y2415 andCandida shehatae Y12878 was investigated in aerobic, anaerobic and microaerophilic batch cultures. The aeration rate greatly influenced the fermentations; growth, rate of ethanol production and oxidation of ethanol are affected. Of the strains tested,Pichia stipitis appears superior; under anaerobic conditions it converts D-xylose (20 g/l) to ethanol with a yield of 0.40 g/l and it exhibits the highest ethanol specific productivity (3.5 g of ethanol per g dry cell per day) under microaerophilic conditions.  相似文献   

9.
Summary During xylose fermentation byCandida shehatae ATCC 22984 with batch cell recycling, the volumetric ethanol fermentation rate increased two-fold, and the xylitol production rate increased three-fold as the cell density increased to ten-fold. In continuous fermentation with membrane-assisted cell recycle, the fermentation rates increased almost linearly with increasing agitation rates up to 300 rpm. The maximum continuous ethanol production rates obtained with 90 and 200 g L–1 xylose were respectively 2.4 and 4.4 g L–1h–1. The cell density was 65–70 g (dry wt) L–1. Ethanol yields ranged from 0.26 to 0.41 g g–1.  相似文献   

10.
Carbon distribution and kinetics of Candida shehatae were studied in fed-batch fermentation with xylose or glucose (separately) as the carbon source in mineral medium. The fermentations were carried out in two phases, an aerobic phase dedicated to growth followed by an oxygen limitation phase dedicated to ethanol production. Oxygen limitation was quantified with an average specific oxygen uptake rate (OUR) varying between 0.30 and 2.48 mmolO2 g dry cell weight (DCW)?1 h?1, the maximum value before the aerobic shift. The relations among respiration, growth, ethanol production and polyol production were investigated. It appeared that ethanol was produced to provide energy, and polyols (arabitol, ribitol, glycerol and xylitol) were produced to reoxidize NADH from assimilatory reactions and from the co-factor imbalance of the two-first enzymatic steps of xylose uptake. Hence, to manage carbon flux to ethanol production, oxygen limitation was a major controlled parameter; an oxygen limitation corresponding to an average specific OUR of 1.19 mmolO2 g DCW?1 h?1 allowed maximization of the ethanol yield over xylose (0.327 g g?1), the average productivity (2.2 g l?1 h?1) and the ethanol final titer (48.81 g l?1). For glucose fermentation, the ethanol yield over glucose was the highest (0.411 g g?1) when the specific OUR was low, corresponding to an average specific OUR of 0.30 mmolO2 g DCW?1 h?1, whereas the average ethanol productivity and ethanol final titer reached the maximum values of 1.81 g l?1 h?1 and 54.19 g l?1 when the specific OUR was the highest.  相似文献   

11.
Viable Saccharomyces cerevisiae and Candida shehatae cells were co-immobilized in a composite agar layer/microporous membrane structure. This immobilized-cell structure was placed in a vertical position between the two halves of a double-chambered, stainless-steel bioreactor of original design and applied to the continuous alcoholic fermentation of a mixture of glucose (35 g dm−3) and xylose (15 g dm−3). Various dilution rates and initial cell loadings of the gel layer were tested. Simultaneous consumption of the two sugars was always observed. The best fermentation performance was obtained at low dilution rate (0.02 h−1) with an excess of C. shehatae over S. cerevisiae in the initial cell loading of the gel (5.0 mg dry weight and 0.65 mg dry weight cm−3 gel respectively): 100% of glucose and 73% of xylose were consumed with an ethanol yield coefficient of 0.48 g g total sugars−1. In these conditions, however, the ethanol production rate per unit volume of gel remained low (0.37 g h−1 dm−3). Viable cell counts in gel samples after incubation highlighted significant heterogeneities in the spatial distribution of the two yeast species in both the vertical and the transverse directions. In particular, the overall cell number decreased from the bottom to the top of the agar sheet, which may explain the low ethanol productivity relative to the total gel volume. Received: 26 February 1998 / Received revision: 15 April 1998 / Accepted: 19 April 1998  相似文献   

12.
Summary The effect of different ethanol concentrations on the growth of Candida shehatae and Pichia stipitis with xylose as substrate was evaluated in a temperature gradient incubator. The upper limit of the temperature profiles of ethanol tolerance of both yeast strains were similar, although P. stipitis appeared to have a slightly higher ethanol tolerance in the higher temperature range. An increase in the ethanol concentration severely depressed the maximum growth temperature, and also increased the minimum growth temperature slightly. The ethanol tolerance limit of 46–48 g·l-1 occurred within a narrow temperature plateau of 11 to 22° C. The low ethanol tolerance of these pentose fermenting yeasts is detrimental for commercial ethanol production from hemicellulose hydrolysates.  相似文献   

13.

Background

Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose.

Results

The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively.

Conclusion

The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme.  相似文献   

14.
Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8?g/L in xylose and 52.6?g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4?g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40?g/L of ethanol and ethanol production capacity of the yeast was 52?g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170?g/L sugar concentrations.  相似文献   

15.
Summary With slow feeding of xylose to a batch fermentation byPachysolen tannophilus, the yield of ethanol from xylose was improved to 0.41 g/g (80% of theoretical) with a maximum ethanol concentration of 26.5 g/L at 120 h. This is a 41% improvement on the ethanol yield observed for batch fermentations without slow feeding. The optimum level of xylose in the medium was determined to be between 5 and 8g/L; xylose at greater than 10 g/L leads to xylitol accumulation, whereas xylose below 3 g/L permits ethanol to be oxidized to acetate. This latter effect is exacerbated by increased aeration.  相似文献   

16.
Summary The kinetics and enzymology of d-xylose utilization were studied in aerobic and anaerobic batch cultures of the facultatively fermentative yeasts Candida utilis, Pachysolen tannophilus, and Pichia stipitis. These yeasts did not produce ethanol under aerobic conditions. When shifted to anaerobiosis cultures of C. utilis did not show fermentation of xylose; in Pa. tannophilus a very low rate of ethanol formation was apparent, whereas with Pi. stipitis rapid fermentation of xylose occurred. The different behaviour of these yeasts ist most probably explained by differences in the nature of the initial steps of xylose metabolism: in C. utilis xylose is metabolized via an NADPH-dependent xylose reductase and an NAD+-linked xylitol dehydrogenase. As a consequence, conversion of xylose to ethanol by C. utilis leads to an overproduction of NADH which blocks metabolic activity in the absence of oxygen. In Pa. tannophilus and Pi. stipitis, however, apart from an NADPH-linked xylose reductase also an NADH-linked xylose reductase was present. Apparently xylose metabolism via the NADH-dependent reductase circumvents the imbalance of the NAD+/NADH redox system, thus allowing fermentation of xylose to ethanol under anaerobic conditions. The finding that the rate of xylose fermentation in Pa. tannophilus and Pi. stipitis corresponds with the activity of the NADH-linked xylose reductase activity is in line with this hypothesis. Furthermore, a comparative study with various xylose-assimilating yeasts showed that significant alcoholic fermentation of xylose only occurred in those organisms which possessed NADH-linked aldose reductase.  相似文献   

17.
Summary The ability ofCandida guillermondii to produce xylitol from xylose and to ferment individual non xylose hemicellulosic derived sugars was investigated in microaerobic conditions. Xylose was converted into xylitol with a yield of 0,63 g/g and ethanol was produced in negligible amounts. The strain did not convert glucose, mannose and galactose into their corresponding polyols but only into ethanol and cell mass. By contrast, fermentation of arabinose lead to the formation of arabitol. On D-xylose medium,Candida guillermondii exhibited high yield and rate of xylitol production when the initial sugar concentration exceeded 110 g/l. A final xylitol concentration of 221 g/l was obtained from 300 g/l D-xylose with a yield of 82,6% of theoretical and an average specific rate of 0,19 g/g.h.Nomenclature Qp average volumetric productivity of xylitol (g xylitol/l per hour) - qp average specific productivity of xylitol (g xylitol/g of cells per hour) - So initial xylose concentration (g/l) - tf incubation time (hours) - YP/S xylitol yield (g of xylitol produced/g of xylose utilized) - YE/S ethanol yield (g of ethanol produced/g of substrate utilized) - YX/S cells yield (g of cells/g of substrate utilized) - specific growth rate coefficient (h–1) - max maximum specific growth rate coefficient (h–1)  相似文献   

18.
Summary D-Xylose was fermented to ethanol by a strain ofPachysolen tannophilus in yields greater than 0.3g ethanol per g xylose consumed. Ethanol production was influenced by xylose concentration and was at a maximum at 10%, w/v. Ethanol formation occurred at pH 2.75-2.50 but the yeast would not grow at this pH when the initial pH of the medium was less than 3.0. Ethanol was consumed by the yeast when the xylose concentration became limiting. L-Arabinose, D-glucose, D-fructose, cellobiose, D-glucuronic acid, but not sucrose,were also fermented to ethanol byPachysolen tannophilus. Kinetic studies on xylose fermentation established various parameters involved in growth, substrate utilization and ethanol formation when the yeast was fermenter grown.  相似文献   

19.
Summary Hardwood hemicellulose hydrolysate has been utilized as a substrate for ethanol production. Among the three different yeasts tested, the best performances have been obtained, in decreasing order, usingPachysolen tannophilus, Candida shehatae andPichia stipitis. Several pretreatments of this raw material have been studied to improve ethanol yields; in one such pretreatment a strain ofP. tannophilus produced ethanol with a yield of 0.29 gethanol/gsugars (gP/gS); which is only 15% less than the values observed with synthetic media. Neither aeration nor acetone addition improved the fermentation of this substrate; in fact, only a marked stimulation of biomass growth has been observed at the expense of both ethanol and xylitol production.  相似文献   

20.
Previously, a Saccharomyces cerevisiae strain was engineered for xylose assimilation by the constitutive overexpression of the Orpinomyces xylose isomerase, the S. cerevisiae xylulokinase, and the Pichia stipitis SUT1 sugar transporter genes. The recombinant strain exhibited growth on xylose, under aerobic conditions, with a specific growth rate of 0.025 h−1, while ethanol production from xylose was achieved anaerobically. In the present study, the developed recombinant yeast was adapted for enhanced growth on xylose by serial transfer in xylose-containing minimal medium under aerobic conditions. After repeated batch cultivations, a strain was isolated which grew with a specific growth rate of 0.133 h−1. The adapted strain could ferment 20 g l−1 of xylose to ethanol with a yield of 0.37 g g−1 and production rate of 0.026 g l−1 h−1. Raising the fermentation temperature from 30°C to 35°C resulted in a substantial increase in the ethanol yield (0.43 g g−1) and production rate (0.07 g l−1 h−1) as well as a significant reduction in the xylitol yield. By the addition of a sugar complexing agent, such as sodium tetraborate, significant improvement in ethanol production and reduction in xylitol accumulation was achieved. Furthermore, ethanol production from xylose and a mixture of glucose and xylose was also demonstrated in complex medium containing yeast extract, peptone, and borate with a considerably high yield of 0.48 g g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号