首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Antigenic variation during the developmental cycle of Trypanosoma brucei   总被引:1,自引:0,他引:1  
During the complex life cycle of Trypanosoma brucei, changes in the exposed surface antigens occur in both the mammalian host and the insect vector (Glossina spp.). These antigenic changes are associated with alterations of the variant surface glycoprotein (VSG) composition or with the loss of the VSG. In the bloodstream of the mammalian host, trypanosomes successfully evade destruction by the host's immune response by continuously expressing alternative VSGs, at low frequency, which are not destroyed by host antibodies. When ingested by the tsetse fly, the bloodstream trypanosomes rapidly lose their surface coat and surface membrane antigens are exposed which are normally covered in the bloodstream. In the salivary glands of the tsetse fly, the trypanosomes differentiate to the metacyclic stage, which reacquires a surface coat. The antigenic composition of the metacyclics is heterogeneous. The same metacyclic types are expressed regardless of the bloodstream antigenic type ingested by the tsetse fly. In the mammal the metacyclics differentiate to long-slender bloodstream forms but continue to express the metacyclic VSG for at least three days. The next VSGs expressed in the mammalian host appear to be influenced by the antigenic type ingested by the tsetse. The ingested antigenic type is often expressed in the first parasitemia following expression of the metacyclic antigenic types.  相似文献   

2.
Trypanosoma cruzi exhibits remarkable genetic heterogeneity. This is evident at the nucleotide level but also structurally, in the form of karyotypic variation and DNA content differences between strains. Although natural populations of T. cruzi are predominantly clonal, hybrid lineages (TcIId and TcIIe) have been identified and hybridisation has been demonstrated in vitro, raising the possibility that genetic exchange may continue to shape the evolution of this pathogen. The mechanism of genetic exchange identified in the laboratory is unusual, apparently involving fusion of diploid parents followed by genome erosion. We investigated DNA content diversity in natural populations of T. cruzi in the context of its genetic subdivisions by using flow cytometric analysis and multilocus microsatellite genotyping to determine the relative DNA content and estimate the ploidy of 54 cloned isolates. The maximum difference observed was 47.5% between strain Tu18 cl2 (TcIIb) and strain C8 cl1 (TcI), which we estimated to be equivalent to 73 Mb of DNA. Large DNA content differences were identified within and between discrete typing units (DTUs). In particular, the mean DNA content of TcI strains was significantly less than that for TcII strains (P < 0.001). Comparisons of hybrid DTUs TcIId/IIe with corresponding parental DTUs TcIIb/IIc indicated that natural hybrids are predominantly diploid. We also measured the relative DNA content of six in vitro-generated TcI hybrid clones and their parents. In contrast to TcIId/IIe hybrid strains these experimental hybrids comprised populations of sub-tetraploid organisms with mean DNA contents 1.65–1.72 times higher than the parental organisms. The DNA contents of both parents and hybrids were shown to be relatively stable after passage through a mammalian host, heat shock or nutritional stress. The results are discussed in the context of hybridisation mechanisms in both natural and in vitro settings.  相似文献   

3.
4.
In the mammalian bloodstream, African trypanosomes express variant surface glycoprotein (VSG) genes from a family of long and complex telomeric expression sites. VSG switching generally occurs by the duplication of different VSG genes into these sites by gene conversion involving a series of 70 base pair (70bp) repeats in the 5' flank. In contrast, when VSG is first synthesised by trypanosomes in the tsetse fly at the metacyclic stage, a separate set of telomeric expression sites is activated. These latter telomeres appear not to act as recipients in gene conversion. We have found that the structure of two such expression sites is simple, with very short 70bp repeat regions and very little other sequence in common with bloodstream expression sites. However, the two telomeres readily act as donors in VSG gene conversion in the bloodstream and we show for one a consistent association of the conversion 5' end point with the short 70bp repeat region. These findings help explain why a very predictable set of VSGs is expressed in the tsetse fly and have implications for VSG gene conversion mechanisms.  相似文献   

5.
Immune evasion in African trypanosomes is principally mediated by antigenic variation, but rapid internalization of surface-bound immune factors may contribute to survival. Endocytosis is upregulated approximately 10-fold in bloodstream compared to procyclic forms, and surface coat remodeling accompanies transition between these life stages. Here we examined expression of endocytosis markers in tsetse fly stages in vivo and monitored modulation during transition from bloodstream to procyclic forms in vitro. Among bloodstream stages nonproliferative stumpy forms have endocytic activity similar to that seen with rapidly dividing slender forms, while differentiation of stumpy forms to procyclic forms is accompanied by rapid down-regulation of Rab11 and clathrin, suggesting that modulation of endocytic and recycling systems accompanies this differentiation event. Significantly, rapid down-regulation of endocytic markers occurs upon entering the insect midgut and expression of Rab11 and clathrin remains low throughout subsequent development, which suggests that high endocytic activity is not required for remodeling the parasite surface or for survival within the fly. However, salivary gland metacyclic forms dramatically increase expression of clathrin and Rab11, indicating that emergence of mammalian infective forms is coupled to reacquisition of a high-activity endocytic-recycling system. These data suggest that high-level endocytosis in Trypanosoma brucei is an adaptation required for viability in the mammalian host.  相似文献   

6.
Invertebrate stages of Leishmania are capable of genetic exchange during their extracellular growth and development in the sand fly vector. Here we explore two variables: the ability of diverse L. major strains from across its natural range to undergo mating in pairwise tests; and the timing of the appearance of hybrids and their developmental stage associations within both natural (Phlebotomus duboscqi) and unnatural (Lutzomyia longipalpis) sand fly vectors. Following co-infection of flies with parental lines bearing independent drug markers, doubly-drug resistant hybrid progeny were selected, from which 96 clonal lines were analyzed for DNA content and genotyped for parent alleles at 4–6 unlinked nuclear loci as well as the maxicircle DNA. As seen previously, the majority of hybrids showed ‘2n’ DNA contents, but with a significant number of ‘3n’ and one ‘4n’ offspring. In the natural vector, 97% of the nuclear loci showed both parental alleles; however, 3% (4/150) showed only one parental allele. In the unnatural vector, the frequency of uniparental inheritance rose to 10% (27/275). We attribute this to loss of heterozygosity after mating, most likely arising from aneuploidy which is both common and temporally variable in Leishmania. As seen previously, only uniparental inheritance of maxicircle kDNA was observed. Hybrids were recovered at similar efficiencies in all pairwise crosses tested, suggesting that L. major lacks detectable ‘mating types’ that limit free genetic exchange. In the natural vector, comparisons of the timing of hybrid formation with the presence of developmental stages suggest nectomonads as the most likely sexually competent stage, with hybrids emerging well before the first appearance of metacyclic promastigotes. These studies provide an important perspective on the prevalence of genetic exchange in natural populations of L. major and a guide for experimental studies to understand the biology of mating.  相似文献   

7.
8.
Several authors have described the extinction of myogenic competence in hybrids produced by fusion of myogenic and non-myogenic cells. Interpretations of such experiments rest upon the assumption that extinction does not occur with any appreciable frequency as a non-specific consequence of the cell hybridization process itself. In order to test this assumption we have analyzed the myogenic competence of over 140 independent homotypic hybrid clones produced by PEG-mediated fusion of rat L6 myoblasts. Based upon an evaluation of myotube formation in hybrid colonies, we demonstrate that 99% of primary hybrid clones are myogenic. The fact that 97% of secondary hybrid colonies also differentiate indicates that myogenic competence is a stable characteristic of the hybrids. Four hybrid clones were isolated and expanded for analyses of chromosome numbers, myotube formation, creatine kinase activities, and microfluorimetric DNA determinations of myotube nuclei. Our results demonstrate that polyploid homotypic hybrid cells produced by fusion of non-neoplastic, developmentally determined rat myoblasts retain and express their program of differentiation. This work provides a foundation for future studies which will investigate the expression of myogenic properties in hybrids between myogenic and non-myogenic cells.  相似文献   

9.
Genetic exchange among disease-causing micro-organisms can generate progeny that combine different pathogenic traits. Though sexual reproduction has been described in trypanosomes, its impact on the epidemiology of Human African Trypanosomiasis (HAT) remains controversial. However, human infective and non-human infective strains of Trypanosoma brucei circulate in the same transmission cycles in HAT endemic areas in subsaharan Africa, providing the opportunity for mating during the developmental cycle in the tsetse fly vector. Here we investigated inheritance among progeny from a laboratory cross of T. brucei and then applied these insights to genomic analysis of field-collected isolates to identify signatures of past genetic exchange. Genomes of two parental and four hybrid progeny clones with a range of DNA contents were assembled and analysed by k-mer and single nucleotide polymorphism (SNP) frequencies to determine heterozygosity and chromosomal inheritance. Variant surface glycoprotein (VSG) genes and kinetoplast (mitochondrial) DNA maxi- and minicircles were extracted from each genome to examine how each of these components was inherited in the hybrid progeny. The same bioinformatic approaches were applied to an additional 37 genomes representing the diversity of T. brucei in subsaharan Africa and T. evansi. SNP analysis provided evidence of crossover events affecting all 11 pairs of megabase chromosomes and demonstrated that polyploid hybrids were formed post-meiotically and not by fusion of the parental diploid cells. VSGs and kinetoplast DNA minicircles were inherited biparentally, with approximately equal numbers from each parent, whereas maxicircles were inherited uniparentally. Extrapolation of these findings to field isolates allowed us to distinguish clonal descent from hybridization by comparing maxicircle genotype to VSG and minicircle repertoires. Discordance between maxicircle genotype and VSG and minicircle repertoires indicated inter-lineage hybridization. Significantly, some of the hybridization events we identified involved human infective and non-human infective trypanosomes circulating in the same geographic areas.  相似文献   

10.
The discovery of genetic exchange in African trypanosomes belonging to the Trypanosoma brucei group is an important development in our understanding of these organisms. Genetic exchange is a feature of major importance in relation to population structure and speciation. Furthermore, a convenient laboratory-based mating system would be of considerable value as a tool in trypanosomiasis research. It is now known that although cyclical development of trypanosomes within the tsetse fly does not require mating to occur, genetic exchange may take place under Conditions in which genetically distinct trypanosomes develop within the same fly. During the past few years there has been a considerable body of research on laboratory crosses, and a number of controversial and apparently contradictory models of the mechanism of genetic exchange and the ploidy of different life cycle stages have been proposed. In this article, Andy Tait and Mike Turner review the present state of knowledge regarding gene exchange in T. brucei, and attempt to reconcile the various observations and models available.  相似文献   

11.
Development of Leishmania infantum/Leishmania major hybrids was studied in two sand fly species. In Phlebotomus papatasi, which supported development of L. major but not L. infantum, the hybrids produced heavy late-stage infections with high numbers of metacyclic promastigotes. In the permissive vector Lutzomyia longipalpis, all Leishmania strains included in this study developed well. Hybrids were found to express L. major lipophosphoglycan, apparently enabling them to survive in P. papatasi midgut. The genetic exchange of the hybrids thus appeared to have enhanced their transmission potential and fitness. A potentially serious consequence is the future spread of the hybrids using this peridomestic and antropophilic vector.  相似文献   

12.
In Trypanosoma brucei, the activation of the variant-specific antigen gene AnTat 1.1 proceeds by the synthesis of an additional gene copy, the AnTat 1.1 ELC, which is transposed to a new location, the expression site, where it is transcribed. Using the AnTat 1.1 variant to infect flies, we investigated the fate of the AnTat 1.1 ELC during cyclic transmission of T. brucei. We show here that the AnTat 1.1 ELC is conserved in procyclic trypanosomes, obtained either from the midgut of infected Glossina or from cultures, and in metacyclic trypanosomes, although the AnTat 1.1 serotype is not detected among metacyclic antigen types. This same AnTat 1.1 ELC, which is thus silent as the parasite develops in the insect vector, can be reactivated without duplication during the first parasitemia wave following cyclical transmission. This re-expression of the conserved ELC accounts for the early appearance of the 'ingested' antigenic type after passage through the fly.  相似文献   

13.
Sonicated suspensions of epimastigote, metacyclic, or bloodstream forms of Trypanosoma cruzi were emulsified in Freund's complete adjuvant. Rabbits immunized with epimastigotes or metacyclics received five intramuscular (i.m.) injections of 1 x 10(9) sonicated trypanosomes at weekly intervals. Immunization with bloodstream forms included three i.m. injections of 5 x 10(7) and six injections of 2 x 10(8) sonicated trypanosomes. Selected antisera from these rabbits were employed in crossed immunoelectrophoretic studies against the homologous or heterologous extracts of sonicated trypanosomes. Extracts of epimastigote, metacyclic, and trypomastigotes produced 31, 29, and 11 precipitin peaks respectively against the homologous rabbit antisera. Tandem, crossed-immunoelectrophoresis of these extracts against antiepimastigote or antimetacyclic sera revealed that epimastigotes or metacyclics may each have at least four antigens that did not appear to be shared by the other, whereas each of these forms may have at least eight or nine antigens that were not detected with extracts from trypomastigotes. Cross-absorptions of antiepimastigote or antimetacyclic sera with live trypanosomes caused marked reductions in the numbers of precipitin peaks formed against the homologous extracts, but cross-absorptions with sonicated suspensions of epimastigotes or metacyclics showed that epimastigotes or metacyclics each have at least two antigens that were not detected in extracts of the other. Differentiation appeared to be accompanied by antigenic change. More antigens appear to be shared by epimastigotes and metacyclic forms than by trypomastigotes and epimastigotes or metacyclics.  相似文献   

14.
African trypanosomes are flagellated protozoan parasites that cause sleeping sickness and are transmitted by the bite of the tsetse fly. To complete their life cycle in the insect, trypanosomes reach the salivary glands and transform into the metacyclic infective form. The latter are expelled with the saliva at each blood meal during the whole life of the insect. Here, we reveal a means by which the continuous production of infective parasites could be ensured. Dividing trypanosomes present in the salivary glands of infected tsetse flies were monitored by live video-microscopy and by quantitative immunofluorescence analysis using molecular markers for the cytoskeleton and for surface antigens. This revealed the existence of two distinct modes of trypanosome proliferation occurring simultaneously in the salivary glands. The first cycle produces two equivalent cells that are not competent for infection and are attached to the epithelium. This mode of proliferation is predominant at the early steps of infection, ensuring a rapid colonization of the glands. The second mode is more frequent at later stages of infection and involves an asymmetric division. It produces a daughter cell that matures into the infective metacyclic form that is released in the saliva, as demonstrated by the expression of specific molecular markers - the calflagins. The levels of these calcium-binding proteins increase exclusively in the new flagellum during the asymmetric division, showing the commitment of the future daughter cell to differentiation. The coordination of these two alternative cell cycles contributes to the continuous production of infective parasites, turning the tsetse fly into an efficient and long-lasting vector for African trypanosomes.  相似文献   

15.
Monoclonal antibodies were used to demonstrate the expression of four distinct metacyclic (infective insect form) trypanosome antigens on blood forms of T. rhodesiense. Metacyclic antigens were consistently expressed on the blood forms on days 4 and 5 of the first parasitemia after metacyclic infection of C57BL/6 mice. In different mice examined, the percent of blood forms expressing metacyclic antigens ranged from 46 to 85%. Immunization with irradiated day-5 blood form trypanosomes was protective against metacyclic challenge, indicating that all antigen specificities relevant to protective immunization against metacyclic challenge are expressed on blood form trypanosomes. Blood forms, in contrast to metacyclic forms, can be isolated in quantities sufficient for purification of antigens and genetic cloning.  相似文献   

16.
Culture procyclic forms of Trypanosoma brucei rhodesiense and Trypanosoma congolense were fed to Glossina morsitans morsitans through artificial membranes. A very high percentage of the flies so fed produced established midgut infections, a proportion of which went on to develop into mature metacyclic trypanosomes capable of infecting mammalian hosts. The method offers a safe, clean way of infecting tsetse flies with African trypanosomes which reduces the need for trypanosome-infected animals in the laboratory.  相似文献   

17.
The development of methods for the formation of hybrid cells and heterokaryons by virus-induced fusion of chemically-enucleated cells and nucleated cells has been described. Heterokaryons and hybrid cells formed by fusion of anucleate mouse peritoneal macrophages (MPM) and nucleated mouse L and human HEp-2 cells were identified by mixed haemadsorption, by their sensitivity to trypsin and by their capacity to ingest antibody-coated sheep red blood cells. The expression of macrophage markers in these cells declined rapidly after fusion. Hybrid cell and heterokaryon formation was identified in mixed cultures of anucleate L cells and nucleated MPM, and was accompanied by the reactivation of DNA synthesis in the macrophage nuclei. Other hybrids and heterokaryons were formed by virus-induced fusion of anucleate MPM and nucleated chick embryo erythrocytes and anucleate L cells and nucleated HEp-2 cells. The value of anucleate-nucleate cell hybrids in the study of metabolic and genetic regulation in mammalian cells is discussed.  相似文献   

18.
Intraspecific somatic cell hybrids between T-lymphoma cells and lymphocytes are highly tumorigenic whereas fusion of T-lymphoma cells with normal fibroblasts leads to reduced or even completely suppressed tumorigenicity of the hybrid cells. A particular cytogenetic phenomenon defines these two classes of hybrids. DNA replication analysis via bromodeoxyuridine pulse labelling reveals an aberrant banding pattern in the c-myc chromosomal domain in tumour cells and highly tumorigenic hybrids. In hybrids with suppressed tumorigenicity the tumour parent derived chromosomes have reverted to normal DNA replication banding. Aberrant DNA replication in tumour cells and highly tumorigenic hybrids coincides with enhanced c-myc expression. In hybrids with suppressed tumorigenicity and with normal DNA replication banding c-myc expression is also reduced. Thus, a correlation between aberrant DNA replication and enhanced expression of a gene located in the same chromosomal domain is observed. Reversion of aberrant DNA replication and reduction of c-myc expression to normal in hybrid cells may be due to a site-specific trans effect which overrides the control brought about in cis by retroviral insertion near the c-myc gene.  相似文献   

19.
Recombination of mammalian mitochondrial DNA (mtDNA) was examined using mouse X rat somatic cell hybrid clones and rat cybrid clones. The mouse X rat hybrids were isolated by fusion of chloramphenicol-sensitive (CAPs) mouse and CAP-resistant (CAPr) rat cells. The rat cybrids were isolated by fusion of rat cells with type B mtDNA and enucleated cells with type A mtDNA. Genetic and physical analyses showed that the mtDNAs of the hybrids and cybrids were simple mixtures of the two parental mtDNAs except in the following two cases: One was subclone H2-9 of mouse X rat hybrids, which was CAPr even though mtDNA from the CAPs mouse parent was predominantly retained. The other was rat cybrid subclones, Y12-24 and -61, which showed specific loss of one Hinf I fragment of type B mtDNA, B10. These observations suggest that, in contrast to the case with plant mtDNA, recombination of mammalian mtDNA occurs rarely, if at all.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号