首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The signal recognition particle (SRP) RNA is a universally conserved and essential component of the SRP that mediates the co-translational targeting of proteins to the correct cellular membrane. During the targeting reaction, two functional ends in the SRP RNA mediate distinct functions. Whereas the RNA tetraloop facilitates initial assembly of two GTPases between the SRP and SRP receptor, this GTPase complex subsequently relocalizes ∼100 Å to the 5′,3′-distal end of the RNA, a conformation crucial for GTPase activation and cargo handover. Here we combined biochemical, single molecule, and NMR studies to investigate the molecular mechanism of this large scale conformational change. We show that two independent sites contribute to the interaction of the GTPase complex with the SRP RNA distal end. Loop E plays a crucial role in the precise positioning of the GTPase complex on these two sites by inducing a defined bend in the RNA helix and thus generating a preorganized recognition surface. GTPase docking can be uncoupled from its subsequent activation, which is mediated by conserved bases in the next internal loop. These results, combined with recent structural work, elucidate how the SRP RNA induces GTPase relocalization and activation at the end of the protein targeting reaction.  相似文献   

3.
We describe the further utilization of a genetic screen that identifies mutations defective in the assembly of proteins into the Escherichia coli cytoplasmic membrane. The screen yielded mutations in each of the known genes encoding components of the E. coli signal recognition particle pathway: ffh, ffs, and ftsY, which encode Ffh, 4.5S RNA, and FtsY, respectively. In addition, the screen yielded mutations in secM, which is involved in regulating levels of the SecA component of the bacterium's protein export pathway. We used a sensitive assay involving biotinylation to show that all of the mutations caused defects in the membrane insertions of three topologically distinct membrane proteins, AcrB, MalF, and FtsQ. Among the mutations that resulted in membrane protein insertion defects, only the secM mutations also showed defects in the translocation of proteins into the E. coli periplasm. Genetic evidence suggests that the S382T alteration of Ffh affects the interaction between Ffh and 4.5S RNA.  相似文献   

4.
Export-specific chaperone SecB and translocational ATPase SecA catalyze the cytoplasmic steps of Sec-dependent secretion in Escherichia coli. Their effects on secretion of periplasmic alkaline phosphatase (PhoA) were shown to depend on the N-terminal region of the mature PhoA sequence contained in the PhoA precursor. Amino acid substitutions in the vicinity of the signal peptide (positions +2, +3) not only dramatically inhibited secretion, but they also reduced its dependence on SecB. Immunoprecipitation reported their impaired binding with mutant prePhoA. The results testified that SecB and SecA interact with the mature PhoA region located close to the signal peptide in prePhoA.  相似文献   

5.
The cytoplasmic step of posttranslational secretion in Escherichia coli is catalyzed by export-specific chaperone SecB and translocational ATPase SecA. In addition, the efficiency of secretion depends on the charge of the signal peptide (SP). Replacement of positively charged Lys(–20) with uncharged Ala or negatively charged Glu in the N-terminal region of SP of the alkaline phosphatase precursor (prePhoA) was shown to decrease the PhoA secretion in the periplasm. The effect on secretion increased in the absence of SecB and was especially high on SecA inactivation. A change in SP charge strengthened the SecA and SecB dependences of secretion. On evidence of immunoprecipitation, the charge of the N-terminal region of SP had no effect on prePhoA interaction with the cytoplasmic secretion factors, suggesting no direct binding between this region and SecA or SecB. Yet the charge of the N-terminal region proved to affect the functions of SP as an intramolecular chaperone and a factor of prePhoA targeting to the membrane in cooperation with SecA and SecB.  相似文献   

6.
Short-chain fatty acid (SCFA) biosynthesis is pertinent to production of biofuels, industrial compounds, and pharmaceuticals from renewable resources. To expand on Escherichia coli SCFA products, we previously implemented a coenzyme A (CoA)-dependent pathway that condenses acetyl-CoA to a diverse group of short-chain fatty acyl-CoAs. To increase product titers and reduce premature pathway termination products, we conducted in vivo and in vitro analyses to understand and improve the specificity of the acyl-CoA thioesterase enzyme, which releases fatty acids from CoA. A total of 62 putative bacterial thioesterases, including 23 from the cow rumen microbiome, were inserted into a pathway that condenses acetyl-CoA to an acyl-CoA molecule derived from exogenously provided propionic or isobutyric acid. Functional screening revealed thioesterases that increase production of saturated (valerate), unsaturated (trans-2-pentenoate), and branched (4-methylvalerate) SCFAs compared to overexpression of E. coli thioesterase tesB or native expression of endogenous thioesterases. To determine if altered thioesterase acyl-CoA substrate specificity caused the increase in product titers, six of the most promising enzymes were analyzed in vitro. Biochemical assays revealed that the most productive thioesterases rely on promiscuous activity but have greater specificity for product-associated acyl-CoAs than for precursor acyl-CoAs. In this study, we introduce novel thioesterases with improved specificity for saturated, branched, and unsaturated short-chain acyl-CoAs, thereby expanding the diversity of potential fatty acid products while increasing titers of current products. The growing uncertainty associated with protein database annotations denotes this study as a model for isolating functional biochemical pathway enzymes in situations where experimental evidence of enzyme function is absent.  相似文献   

7.
The chloroplast signal recognition particle (cpSRP) and its receptor, chloroplast FtsY (cpFtsY), form an essential complex with the translocase Albino3 (Alb3) during post-translational targeting of light-harvesting chlorophyll-binding proteins (LHCPs). Here, we describe a combination of studies that explore the binding interface and functional role of a previously identified cpSRP43-Alb3 interaction. Using recombinant proteins corresponding to the C terminus of Alb3 (Alb3-Cterm) and various domains of cpSRP43, we identify the ankyrin repeat region of cpSRP43 as the domain primarily responsible for the interaction with Alb3-Cterm. Furthermore, we show Alb3-Cterm dissociates a cpSRP·LHCP targeting complex in vitro and stimulates GTP hydrolysis by cpSRP54 and cpFtsY in a strictly cpSRP43-dependent manner. These results support a model in which interactions between the ankyrin region of cpSRP43 and the C terminus of Alb3 promote distinct membrane-localized events, including LHCP release from cpSRP and release of targeting components from Alb3.  相似文献   

8.
The subcellular localization of SecA, a protein essential for the catalysis of general protein export, was studied to better understand its state(s) and function(s) within Escherichia coli cells. In a wild-type strain approximately half of the cellular SecA content was found to be associated with the inner membrane, while the remainder was soluble. Association of SecA protein with the inner membrane required the presence of anionic phospholipids and was modulated by ATP. A fraction of the membrane-bound SecA was found to be integrally associated with the membrane. In the secA51(Ts) mutant 75-95% of SecA protein was found to be membrane associated, independent of the protein export status of the cell, implying that the partitioning of this protein between the cell membrane and cytoplasm may play an important role in its function. secA-lacZ fusions were used to map a membrane association determinant to the amino-terminal quarter of SecA protein sequence. When this portion of SecA protein was expressed within cells, it was found solely in membrane fractions and complemented the growth and protein secretion defect of the secA51(Ts) mutant. This indicates that the membrane is the site of the limiting defect in this mutant and suggests that either SecA functions can be divided into at least two separable activities or that productive interaction between SecA and the amino-terminal fragment can occur in vivo.  相似文献   

9.
As they respond to numerous extracellular and intracellularstimuli, plants develop various morphological features and thecapacity for a large variety of physiological processes duringtheir growth. If we are to understand the molecular basis ofsuch developments, we must elucidate the way in which signalsgenerated by such stimuli can be transduced into plant cellsand transmitted by cellular components to induce the appropriateterminal events. In yeast and animal systems, signal pathwaysthat are known collectively as MAPK (mitogen-activated proteinkinase) cascades have been shown to play a central role in thetransmission of various signals. The components of these pathwaysinclude the MAPK family, the activator kinases of the MAPK family(the MAPKK family) and the activator kinases of the MAPKK family(the MAPKKK family). The members of each respective family arestructurally conserved and signals are transmitted by similarphosphotransfer reactions at corresponding steps that are mediatedby a specific member of each family in turn. Both cDNAs andgenes that encode putative homologues of these components haverecently been isolated from plant sources. Some of them havebeen shown to be related not only structurally but also functionallyto members of the MAPK cascades of other organisms. These findingssuggest that plants have signal pathways that are analogousto the MAPK cascades in yeast and animal cells but it remainsto be proven that plant homologues do in fact constitute kinasecascades. Given the presence of so many homologues of MAPKsand MAPKKKs in a single plant species, namely, Arabidopsis thaliana,we can be fairly confident that the putative MAPK cascades areinvolved in various physiological processes in plants. (Received March 28, 1995; )  相似文献   

10.
In vitro experiments employing the soluble proteins from Escherichia coli reveal that about half of them, in their unfolded or partially folded states, but not in their native states, can form stable binary complexes with chaperonin 60 (groEL). These complexes can be isolated by gel filtration chromatography and are efficiently discharged upon the addition of Mg.ATP. Binary complex formation is substantially reduced if chaperonin 60 is presaturated with Rubisco-I, the folding intermediate of Rubisco, but not with native Rubisco. Binary complex formation is also reduced if the transient species that interact with chaperonin 60 are permitted to progress to more stable states. This implies that the structural elements or motifs that are recognized by chaperonin 60 and that are responsible for binary complex formation are only present or accessible in the unfolded states of proteins or in certain intermediates along their respective folding pathways. Given the high-affinity binding that we have observed in the present study and the normal cellular abundance of chaperonin 60, we suspect that the folding of most proteins in E. coli does not occur in free solution spontaneously, but instead takes place while they are associated with molecular chaperones.  相似文献   

11.
RainbowTM Agar O157 is designed for the rapid isolation and identification of enterohaemorrhagic Escherichia coli (EHEC), particularly O157, characterised by black colonies. Five-hundred-eighty-five E. coli strains, including O157, O111 and O113 serogroups from many sources were examined on RainbowTM Agar O157. EHEC O157 could readily be isolated and recognized uniquely by typical black colonies. Some other EHEC also stand out as blue-black, whereas O113 and some other EHEC strains were mauve, red or pink and indistinguishable from SLT-negative strains of E. coli.  相似文献   

12.
Sumoylation is a post-translational modification essential in most eukaryotes that regulates stability, localization, activity, or interaction of a multitude of proteins. It is a reversible process wherein counteracting ligases and proteases, respectively, mediate the conjugation and deconjugation of SUMO molecules to/from target proteins. Apart from attachment of single SUMO moieties to targets, formation of poly-SUMO chains occurs by the attachment of additional SUMO molecules to lysine residues in the N-terminal extensions of SUMO. In Saccharomyces cerevisiae there are apparently only two SUMO(Smt3)-specific proteases: Ulp1 and Ulp2. Ulp2 has been shown to be important for the control of poly-SUMO conjugates in cells and to dismantle SUMO chains in vitro, but the mechanism by which it acts remains to be elucidated. Applying an in vitro approach, we found that Ulp2 acts sequentially rather than stochastically, processing substrate-linked poly-SUMO chains from their distal ends down to two linked SUMO moieties. Furthermore, three linked SUMO units turned out to be the minimum length of a substrate-linked chain required for efficient binding to and processing by Ulp2. Our data suggest that Ulp2 disassembles SUMO chains by removing one SUMO moiety at a time from their ends (exo mechanism). Apparently, Ulp2 recognizes surfaces at or near the N terminus of the distal SUMO moiety, as attachments to this end significantly reduce cleavage efficiency. Our studies suggest that Ulp2 controls the dynamic range of SUMO chain lengths by trimming them from the distal ends.  相似文献   

13.
There is a growing concern about the presence of pathogens in cattle manure and its implications on human and environmental health. The phytochemical-rich forage sainfoin (Onobrychis viciifolia) and purified phenolics (trans-cinnamic acid, p-coumaric acid, and ferulic acid) were evaluated for their ability to reduce the viability of pathogenic Escherichia coli strains, including E. coli O157:H7. MICs were determined using purified phenolics and acetone extracts of sainfoin and alfalfa (Medicago sativa), a non-tannin-containing legume. Ground sainfoin or pure phenolics were mixed with fresh cattle feces and inoculated with a ciprofloxacin-resistant strain of E. coli, O157:H7, to assess its viability at −20°C, 5°C, or 37°C over 14 days. Forty steers were fed either a sainfoin (hay or silage) or alfalfa (hay or silage) diet over a 9-week period. In the in vitro study, the MICs for coumaric (1.2 mg/ml) and cinnamic (1.4 mg/ml) acids were 10- to 20-fold lower than the MICs for sainfoin and alfalfa extracts. In the inoculated feces, the −20°C treatment had death rates which were at least twice as high as those of the 5°C treatment, irrespective of the additive used. Sainfoin was less effective than coumaric acid in reducing E. coli O157:H7 Cipr in the inoculated feces. During the animal trial, fecal E. coli numbers declined marginally in the presence of sainfoin (silage and hay) and alfalfa silage but not in the presence of hay, indicating the presence of other phenolics in alfalfa. In conclusion, phenolic-containing forages can be used as a means of minimally reducing E. coli shedding in cattle without affecting animal production.  相似文献   

14.
15.
There is a need to interpret neurotoxic studies to help deal with uncertainties surrounding pregnant mothers, newborns and young children who must receive repeated doses of Thimerosal-containing vaccines (TCVs). This review integrates information derived from emerging experimental studies (in vitro and in vivo) of low-dose Thimerosal (sodium ethyl mercury thiosalicylate). Major databases (PubMed and Web-of-science) were searched for in vitro and in vivo experimental studies that addressed the effects of low-dose Thimerosal (or ethylmercury) on neural tissues and animal behaviour. Information extracted from studies indicates that: (a) activity of low doses of Thimerosal against isolated human and animal brain cells was found in all studies and is consistent with Hg neurotoxicity; (b) the neurotoxic effect of ethylmercury has not been studied with co-occurring adjuvant-Al in TCVs; (c) animal studies have shown that exposure to Thimerosal-Hg can lead to accumulation of inorganic Hg in brain, and that (d) doses relevant to TCV exposure possess the potential to affect human neuro-development. Thimerosal at concentrations relevant for infants’ exposure (in vaccines) is toxic to cultured human-brain cells and to laboratory animals. The persisting use of TCV (in developing countries) is counterintuitive to global efforts to lower Hg exposure and to ban Hg in medical products; its continued use in TCV requires evaluation of a sufficiently nontoxic level of ethylmercury compatible with repeated exposure (co-occurring with adjuvant-Al) during early life.  相似文献   

16.
Various environmental insults result in irreversible damage to proteins and protein complexes. To cope, cells have evolved dedicated protein quality control mechanisms involving molecular chaperones and proteases. Here, we provide both genetic and biochemical evidence that the Lon protease and the SecB and DnaJ/Hsp40 chaperones are involved in the quality control of presecretory proteins in Escherichia coli. We showed that mutations in the lon gene alleviate the cold-sensitive phenotype of a secB mutant. Such suppression was not observed with either clpP or clpQ protease mutants. In comparison to the respective single mutants, the double secB lon mutant strongly accumulates aggregates of SecB substrates at physiological temperatures, suggesting that the chaperone and the protease share substrates. These observations were extended in vitro by showing that the main substrates identified in secB lon aggregates, namely proOmpF and proOmpC, are highly sensitive to specific degradation by Lon. In contrast, both substrates are significantly protected from Lon degradation by SecB. Interestingly, the chaperone DnaJ by itself protects substrates better from Lon degradation than SecB or the complete DnaK/DnaJ/GrpE chaperone machinery. In agreement with this finding, a DnaJ mutant protein that does not functionally interact in vivo with DnaK efficiently suppresses the SecB cold-sensitive phenotype, highlighting the role of DnaJ in assisting presecretory proteins. Taken together, our data suggest that when the Sec secretion pathway is compromised, a pool of presecretory proteins is transiently maintained in a translocation-competent state and, thus, protected from Lon degradation by either the SecB or DnaJ chaperones.  相似文献   

17.
18.
The lambdoid phages are a group of related temperate bacteriophages that lysogenize by site-specific recombination with the bacterial chromosome. Various members of the group have different specific chromosomal insertion sites, despite the fact that the enzymes catalyzing the insertion (integrases) appear to be all descended from a common ancestor. Insertion sites are not located randomly on the E. coli chromosome but are restricted to one segment of the map; also, most prophages are oriented in the same direction along the chromosome. Lambdoid phage 21 inserts within the isocitrate dehydrogenase gene and introduces an alternative 165 bp 3 end for that gene. A defective element (el4) inserts at the same position. We suggest that this mode of insertion arose from insertion of an ancestral phage to the right of icd which then picked up part of the icd gene by abnormal excision speculate that, at an earlier time, phages may have arrived at their present locations by a process of chromosomal walking.  相似文献   

19.
All organisms possess fundamental metabolic pathways to ensure that needed carbon and sulfur compounds are provided to the cell in the proper chemical form and oxidation state. For most organisms capable of using CO2 as sole source of carbon, ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes primary carbon dioxide assimilation. In addition, sulfur salvage pathways are necessary to ensure that key sulfur-containing compounds are both available and, where necessary, detoxified in the cell. Using knock-out mutations and metabolomics in the bacterium Rhodospirillum rubrum, we show here that Rubisco concurrently catalyzes key and essential reactions for seemingly unrelated but physiologically essential central carbon and sulfur salvage metabolic pathways of the cell. In this study, complementation and mutagenesis studies indicated that representatives of all known extant functional Rubisco forms found in nature are capable of simultaneously catalyzing reactions required for both CO2-dependent growth as well as growth using 5-methylthioadenosine as sole sulfur source under anaerobic photosynthetic conditions. Moreover, specific inactivation of the CO2 fixation reaction did not affect the ability of Rubisco to support anaerobic 5-methylthioadenosine metabolism, suggesting that the active site of Rubisco has evolved to ensure that this enzyme maintains both key functions. Thus, despite the coevolution of both functions, the active site of this protein may be differentially modified to affect only one of its key functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号