首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Smooth muscle has the distinctive ability to maintain force for long periods of time and at low energy costs. While it is generally agreed that this property, called the latch-state, is due to the dephosphorylation of myosin while attached to actin, dephosphorylated-detached myosin can also attach to actin and may contribute to force maintenance. Thus, we investigated the role of calponin in regulating and enhancing the binding force of unphosphorylated tonic muscle myosin to actin.

Methods

To measure the effect of calponin on the binding of unphosphorylated myosin to actin, we used the laser trap assay to quantify the average force of unbinding (Funb) in the absence and presence of calponin or phosphorylated calponin.

Results

Funb from F-actin alone (0.12 ± 0.01 pN; mean ± SE) was significantly increased in the presence of calponin (0.20 ± 0.02 pN). This enhancement was lost when calponin was phosphorylated (0.12 ± 0.01 pN). To further verify that this enhancement of Funb was due to the cross-linking of actin to myosin by calponin, we repeated the measurements at high ionic strength. Indeed, the Funb obtained at a [KCl] of 25 mM (0.21 ± 0.02 pN; mean ± SE) was significantly decreased at a [KCl] of 150 mM, (0.13 ± 0.01 pN).

Conclusions

This study provides direct molecular level-evidence that calponin enhances the binding force of unphosphorylated myosin to actin by cross-linking them and that this is reversed upon calponin phosphorylation. Thus, calponin might play an important role in the latch-state.

General significance

This study suggests a new mechanism that likely contributes to the latch-state, a fundamental and important property of smooth muscle that remains unresolved.  相似文献   

2.
A new rapid method of the cytoplasmic actin purification, not requiring the use of denaturants or high concentrations of salt, was developed, based on the affinity chromatography using the C-terminal half of gelsolin (G4-6), an actin filament severing and capping protein. When G4-6 expressed in Escherichia coli was added to the lysate of HeLa cells or insect cells infected with a baculovirus encoding the beta-actin gene, in the presence of Ca2+ and incubated overnight at 4 °C, actin and G4-6 were both detected in the supernatant. Following the addition of Ni-Sepharose beads to the mixture, only actin was eluted from the Ni-NTA column by a Ca2+-chelating solution. The functionality of the cytoplasmic actins thus purified was confirmed by measuring the rate of actin polymerization, the gliding velocity of actin filaments in an in vitro motility assay on myosin V-HMM, and the ability to activate the ATPase activity of myosin V-S1.  相似文献   

3.
4.

Background

Studies conducted at the whole muscle level have shown that smooth muscle can maintain tension with low Adenosine triphosphate (ATP) consumption. Whereas it is generally accepted that this property (latch-state) is a consequence of the dephosphorylation of myosin during its attachment to actin, free dephosphorylated myosin can also bind to actin and contribute to force maintenance. We investigated the role of caldesmon (CaD) in regulating the binding force of unphosphorylated tonic smooth muscle myosin to actin.

Methods

To measure the effect of CaD on the binding of unphosphorylated myosin to actin (in the presence of ATP), we used a single beam laser trap assay to quantify the average unbinding force (Funb) in the absence or presence of caldesmon, extracellular signal-regulated kinase (ERK)-phosphorylated CaD, or CaD plus tropomyosin.

Results

Funb from unregulated actin (0.10 ± 0.01 pN) was significantly increased in the presence of CaD (0.17 ± 0.02 pN), tropomyosin (0.17 ± 0.02 pN) or both regulatory proteins (0.18 ± 0.02 pN). ERK phosphorylation of CaD significantly reduced the Funb (0.06 ± 0.01 pN). Inspection of the traces of the Funb as a function of time suggests that ERK phosphorylation of CaD decreases the binding force of myosin to actin or accelerates its detachment.

Conclusions

CaD enhances the binding force of unphosphorylated myosin to actin potentially contributing to the latch-state. ERK phosphorylation of CaD decreases this binding force to very low levels.

General significance

This study suggests a mechanism that likely contributes to the latch-state and that explains the muscle relaxation from the latch-state.  相似文献   

5.
6.
We observed a three-dimensional up-and-down movement of an actin filament sliding on heavy mero-myosin (HMM) molecules in an in vitro motility assay. The up-and-down movement occurred along the direction perpendicular to the planar glass plane on which the filament demonstrated a sliding movement. The height length of the up-and-down movement was measured by monitoring the extent of diminishing fluorescent emission from the marker attached to the filament in the evanescent field of attenuation. The height lengths whose distribution exhibits a local maximum were found around the two values, 150 nm and 90 nm, separately. This undulating three-dimensional movement of an actin filament suggests that the interactions between myosin (HMM) molecules and the actin filament may temporally be modulated during its sliding movement.  相似文献   

7.
The two major isoforms of smoothelin (A and B) contain a calponin homology (CH) domain, colocalize with alpha-smooth muscle actin (alpha-SMA) in stress fibers and are only expressed in contractile smooth muscle cells (SMCs). Based on these findings, we hypothesized that smoothelins are involved in smooth muscle cell contraction, presumably via interaction with actin. The interaction between smoothelins and three different actin isoforms (alpha- and gamma-smooth muscle and alpha-skeletal actin [alpha-SKA]) was investigated using several in vitro assays. Smoothelin-B co-immunoprecipitated with alpha-smooth muscle actin from pig aorta extracts. In rat embryonic fibroblasts, transfected smoothelins-A and -B associated with stress fibers. In vitro dot blot assays, in which immobilized actin was overlaid with radio-labeled smoothelin, showed binding of smoothelin-A to actin filaments, but not to monomeric G-actin. A truncated smoothelin, containing the calponin homology domain, associated with stress fibers when transfected and bound to actin filaments in overlay, but to a lesser extent. ELISA results showed that the binding of smoothelin to actin has no significant isoform specificity. Our results indicate an interaction between smoothelin and actin filaments. Moreover, the calponin homology domain and its surrounding sequences appear to be sufficient to accomplish this interaction, although the presence of other domains is apparently necessary to facilitate and/or strengthen the binding to actin.  相似文献   

8.
树突棘和突触的病理改变在认知功能障碍发病机制中具有十分重要的作用,研究表明大脑发育调节蛋白(developmentregulationbrainprotein,Drebrin)能够调节树突棘和突触的形态和重塑。Drebrin的减少可能通过树突棘内细胞骨架变化,使树突棘的形态结构受到影响,导致突触功能和结构的变化。但目前阿尔茨海默病(Alzheimer’Sdisease,AD)脑内突触病理变化的具体机制及Drebrin和突触之间的关系仍不明确。探讨Drebrin与认知功能的关系及其机制,对临床上早期干预认知功能障碍、寻找AD的有效诊断治疗措施具有重要意义。  相似文献   

9.
Drebrin, an actin-binding 70-kDa protein with an unusually slow SDS-PAGE mobility corresponding to approximately 120 kDa, containing a proline-rich, profilin-binding motif, had originally been reported from neuronal cells, but recently has also been found in diverse other kinds of tissues and cell lines. In biochemical analyses of various cells and tissues, employing gel filtration, sucrose gradient centrifugation, immunoprecipitation and -blotting, we have identified distinct states of soluble drebrin: a approximately 4S monomer, an 8S, ca. 217-kDa putative trimer, a 13S and a > 20S oligomer. In the 8S particles only [35S]methionine-labelled drebrin but no other actin-binding protein has been detected in stoichiometric amounts. By immunofluorescence and immunoelectron microscopy, drebrin-positive material often appeared as "granules" up to 400 nm in diameter, in some cell types clustered near the Golgi apparatus or in lamellipodia, particularly at leading edges, or in dense-packed submembranous masses at tips (acropodia) or ruffles of leading edges, in filopodia and at plaques of adhering junctions. We conclude that these drebrin complexes and drebrin-rich structures allow the build-up and maintenance of high local drebrin concentrations in strategic positions for the regulation of actin filament assembly, thereby contributing to cell motility and morphology, in particular local changes of plasticity and the formation of protrusions.  相似文献   

10.
Summary The distribution and polarity of actin in sensory hair cells of the chinchilla cochlea has been determined by decoration of actin filaments with myosin sub fragment S1. Decorated actin filaments of the same polarity were present within the stereocilia above the cuticular plate. However the filaments in the rootlets and the thin filaments projecting laterally from the rootlets into the cuticular plate did not decorate with S1. Decorated actin filaments were present within the cuticular plate, and near the plasma-membrane filaments of opposite polarity were observed. In the cross-striated region at the base of the cuticular plate of inner hair cells, decorated filaments were present in the dense bands of the cross-striations but the thin filaments perpendicular to the dense bands were not decorated. These results are discussed with respect to the two mechanisms that have been suggested for actin-myosin mediated movement of the stereocilia of inner-ear sensory cells.  相似文献   

11.
This study shows that there is only a negligible difference in actomyosin function in the in vitro motility assay among actin filaments labeled with Rhodamine phalloidin (RhPh), Alexa-488 phalloidin (APh), and biotin-XX phalloidin (BPh). Similar results were obtained at varying ionic strengths (0.02-0.13 M), in the presence of imidazole or 3-[N-morpholino]propanesulfonic acid (MOPS) buffer, and at varying MgATP concentrations (0.1-3 mM). If RhPh- and APh-labeled filaments were studied in a given flow cell, there was minimal variability in sliding velocity between the fluorophores (standard deviation of 3% of the absolute sliding velocity). The variability was considerably smaller than that between flow cells, allowing us to use dual labeling of different actin types and then apply analysis of variance to detect minor functional differences between them. Using this method, we could statistically verify a 4% difference (P<0.001) in sliding velocity (3mM Mg ATP) between cardiac and skeletal muscle actin. Suggested improvements of the method would readily allow the detection of even smaller differences. We discuss implications of the results for nanotechnological applications, understanding actomyosin function, and reducing experimental costs and the use of laboratory animals.  相似文献   

12.
Evidence is presented that the kinesin-related ncd protein is not as processive as kinesin. In low surface density motility experiments, a dimeric ncd fusion protein behaved mechanistically more similar to non-processive myosins than to the highly processive kinesin. First, there was a critical microtubule length for motility; only microtubules longer than this critical length moved in low density ncd surfaces, which suggested that multiple ncd proteins must cooperate to move microtubules in the surface assay. Under similar conditions, native kinesin demonstrated no critical microtubule length, consistent with the behavior of a highly processive motor. Second, addition of methylcellulose to decrease microtubule diffusion decreased the critical microtubule length for motility. Also, the rates of microtubule motility were microtubule length dependent in methylcellulose; short microtubules, that interacted with fewer ncd proteins, moved more slowly than long microtubules that interacted with more ncd proteins. In contrast, short microtubules, that interacted with one or a few kinesin proteins, moved on average slightly faster than long microtubules that interacted with multiple kinesins. We conclude that a degree of processivity as high as that of kinesin, where a single dimer can move over distances on the order of one micrometer, may not be a general mechanistic feature of the kinesin superfamily. Received: 16 September 1997 / Accepted: 4 November 1997  相似文献   

13.
Actin-based comet tails produced by Listeria monocytogenes are considered as representative models for cellular force-producing machineries crucial for cell migration. We here present a proteomic picture of these tails formed in extracts from brain and platelets. This provides a comprehensive view, revealing high molecular complexity and novel host cell proteins as tail components, and suggests the participation of specific multicomponent regulatory complexes. This work forms a new basis to expand current models of cellular protrusion.  相似文献   

14.
Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å2 to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (Vmax) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller Kapp) than that of the wild-type actin, with the Vmax being almost unchanged. The Kapp and Vmax of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of Kapp was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA) of the replaced amino acid molecule. Because 1/Kapp reflects the affinity of F-actin for the myosin–ADP-phosphate intermediate (M.ADP.Pi) through the weak binding, these data suggest that the bulkiness or the aromatic nature of the tyrosin-143 is important for the initial binding of the M.ADP.Pi intermediate with F-actin but not for later processes such as the phosphate release.  相似文献   

15.
Human heat shock 27-kDa protein 1 (HSPB1)/heat shock protein (Hsp) 27 is a small heat shock protein which is thought to have several roles within the cell. One of these roles includes regulating actin filament dynamics in cell movement, since Hsp27 has previously been found to inhibit actin polymerization in vitro. In this study, the role of Hsp27 in regulating actin filament dynamics is further investigated. Hsp27 protein levels were reduced using siRNA in SW480 cells, a human colon cancer cell line. An in vitro wound closure assay showed that cells with knocked down Hsp27 levels were unable to close wounds, indicating that this protein is involved in regulating cell motility. Immunoprecipitation pull down assays were done, to observe if and when Hsp27 and actin are in the same complex within the cell, before and after heat shock. At all time points tested, Hsp27 and actin were present in the same cell lysate fraction. Lastly, indirect immunostaining was done before and after heat shock to evaluate Hsp27 and actin interaction in cells. Hsp27 and actin showed colocalization before heat shock, little association 3 h after heat shock, and increased association 24 h after heat shock. Cytoprotection was observed as early as 3 h after heat shock, yet cells were still able to move. These results show that Hsp27 and actin are in the same complex in cells and that Hsp27 is important for cell motility. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The interaction of capping protein (CP) with actin filaments is an essential element of actin assembly and actin-based motility in nearly all eukaryotes. The dendritic nucleation model for Arp2/3-based lamellipodial assembly features capping of barbed ends by CP, and the formation of filopodia is proposed to involve inhibition of capping by formins and other proteins. To understand the molecular basis for how CP binds the barbed end of the actin filament, we have used a combination of computational and experimental approaches, primarily involving molecular docking and site-directed mutagenesis. We arrive at a model that supports all of our biochemical data and agrees very well with a cryo-electron microscopy structure of the capped filament. CP interacts with both actin protomers at the barbed end of the filament, and the amphipathic helix at the C-terminus of the β-subunit binds to the hydrophobic cleft on actin, in a manner similar to that of WH2 domains. These studies provide us with new molecular insight into how CP binds to the actin filament.  相似文献   

17.
Summary The temporal pattern of the formation and dissolution of vinculin patches during experimental manipulation of the state of actin within the cell was studied. Cytochalasin D-induced retraction and disappearance of stress fibers is followed, with a brief delay, by the dissolution of vinculin-containing patches and the coordinated redistribution of both actin and vinculin into newly formed amorphous aggregates or foci. Recovery from cytochalasin treatment begins with a transformation of these foci into doughnut-shaped assemblies in which actin and vinculin are precisely co-localized. The emergence and growth of filament bundles is paralleled by the appearance of faint vinculin patches that gradually increase in size in parallel with the stress fibers. If stress fibers are stabilized by microinjected rhodamine-phalloidin against stimuli that normally induce a coordinated redistribution of actin and vinculin, also the vinculin patches persist. These observations indicate that treatments influencing the state of actin in the cell have corresponding effects on the stability of vinculin patches and suggest a strong interdependency of actin and vinculin organization.  相似文献   

18.
Dilated cardiomyopathy (DCM) is associated with mutations in cardiomyocyte sarcomeric proteins, including α-tropomyosin. In conjunction with troponin, tropomyosin shifts to regulate actomyosin interactions. Tropomyosin molecules overlap via tropomyosin–tropomyosin head-to-tail associations, forming a continuous strand along the thin filament. These associations are critical for propagation of tropomyosin''s reconfiguration along the thin filament and key for the cooperative switching between heart muscle contraction and relaxation. Here, we tested perturbations in tropomyosin structure, biochemistry, and function caused by the DCM-linked mutation, M8R, which is located at the overlap junction. Localized and nonlocalized structural effects of the mutation were found in tropomyosin that ultimately perturb its thin filament regulatory function. Comparison of mutant and WT α-tropomyosin was carried out using in vitro motility assays, CD, actin co-sedimentation, and molecular dynamics simulations. Regulated thin filament velocity measurements showed that the presence of M8R tropomyosin decreased calcium sensitivity and thin filament cooperativity. The co-sedimentation of actin and tropomyosin showed weakening of actin-mutant tropomyosin binding. The binding of troponin T''s N terminus to the actin-mutant tropomyosin complex was also weakened. CD and molecular dynamics indicate that the M8R mutation disrupts the four-helix bundle at the head-to-tail junction, leading to weaker tropomyosin–tropomyosin binding and weaker tropomyosin–actin binding. Molecular dynamics revealed that altered end-to-end bond formation has effects extending toward the central region of the tropomyosin molecule, which alter the azimuthal position of tropomyosin, likely disrupting the mutant thin filament response to calcium. These results demonstrate that mutation-induced alterations in tropomyosin–thin filament interactions underlie the altered regulatory phenotype and ultimately the pathogenesis of DCM.  相似文献   

19.
The thermodynamic properties of the actin filaments prepared from cardiomyocytes were investigated with differential scanning calorimetry. This method could distinguish between the α-cardiac and α-skeletal components of the actin filaments polymerised from ADP-actin monomers by their different melting temperatures (Tm). Similar separation was not possible with filaments polymerised from ATP-actin monomers. Further analyses revealed that the activation energy (Eact) was greater for filaments of α-skeletal actin than for α-cardiac actin monomers when the filaments were polymerised from ADP-actin monomers. These results showed that the α-cardiac actin filaments were thermodynamically less stable than the filaments of α-skeletal actin and their difference was nucleotide dependent. Based on these results and considering previous observations it was concluded that the existence of two actin isoforms and their nucleotide dependent conformational differences are part of the tuning regulatory mechanism by which the cardiac muscle cells can maintain their biological function under pathological conditions.  相似文献   

20.
The main goal of the work was to uncover the dynamical changes in actin induced by the binding of cofilin and profilin. The change in the structure and flexibility of the small domain and its function in the thermodynamic stability of the actin monomer were examined with fluorescence spectroscopy and differential scanning calorimetry (DSC). The structure around the C-terminus of actin is slightly affected by the presence of cofilin and profilin. Temperature dependent fluorescence resonance energy transfer measurements indicated that both actin binding proteins decreased the flexibility of the protein matrix between the subdomains 1 and 2. Time resolved anisotropy decay measurements supported the idea that cofilin and profilin changed similarly the dynamics around the fluorescently labeled Cys-374 and Lys-61 residues in subdomains 1 and 2, respectively. DSC experiments indicated that the thermodynamic stability of actin increased by cofilin and decreased in the presence of profilin. Based on the information obtained it is possible to conclude that while the small domain of actin acts uniformly in the presence of cofilin and profilin the overall stability of actin changes differently in the presence of the studied actin binding proteins. The results support the idea that the small domain of actin behaves as a rigid unit during the opening and closing of the nucleotide binding pocket in the presence of profilin and cofilin as well. The structural arrangement of the nucleotide binding cleft mainly influences the global stability of actin while the dynamics of the different segments can change autonomously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号