首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellulases and hemicellulases are responsible for the turnover of plant cell wall polysaccharides in the biosphere, and thus form the foundation of enzyme engineering efforts in biofuels research. Many of these carbohydrate-active enzymes from filamentous fungi contain both N-linked and O-linked glycosylation, the extent and heterogeneity of which depends on growth conditions, expression host, and the presence of glycan trimming enzymes in the secretome, all of which in turn impact enzyme activity. As the roles of glycosylation in enzyme function have not been fully elucidated, here we discuss the potential roles of glycosylation on glycoside hydrolase enzyme structure and function after secretion. We posit that glycosylation, instead of hindering cellulase engineering, can be used as an additional tool to enhance enzyme activity, given deeper understanding of its molecular-level role in biomass deconstruction.  相似文献   

2.
Many studies have demonstrated that the properties of enzymes expressed in eukaryotes can be affected by the position and extent of glycosylation on enzyme. In this study, two potential glycosylation sites (the 8th and the 58th asparagine) were identified and the effect of propeptide glycosylation on Rhizomucor miehei lipase (RML) expressed in Pichia pastoris was investigated. To better understand the effect of glycosylation on the activity of RML, three mutants (M1, generated by N8A; M2, generated by N58A; and M3, generated by N8A and N58A) were designed to generate deglycosylated enzymes. The results showed that deglycosylated RML exhibited a twofold higher activity compared to the wild type. However, it was also found that glycosylation on the propeptide was important for the removal of the propeptide by Kex2 protease and secretion of the enzyme. Thus, our study provided a further understanding into the role of glycosylation on enzyme function.  相似文献   

3.
A role for N-linked oligosaccharides on the biochemical properties of recombinant alpha-l-arabinofuranosidase 54 (AkAbf54) defined in glycoside hydrolase family 54 from Aspergillus kawachii expressed in Pichia pastoris was analyzed by site-directed mutagenesis. Two N-linked glycosylation motifs (Asn(83)-Thr-Thr and Asn(202)-Ser-Thr) were found in the AkAbf54 sequence. AkAbf54 comprises two domains, a catalytic domain and an arabinose-binding domain classified as carbohydrate-binding module 42. Two N-linked glycosylation sites are located in the catalytic domain. Asn(83), Asn(202), and the two residues together were replaced with glutamine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the wild-type and mutant enzymes expressed in P. pastoris were examined. The N83Q mutant enzyme had the same catalytic activity and thermostability as the wild-type enzyme. On the other hand, the N202Q and N83Q/N202Q mutant enzymes exhibited a considerable decrease in thermostability compared to the glycosylated wild-type enzyme. The N202Q and N83Q/N202Q mutant enzymes also had slightly less specific activity towards arabinan and debranched arabinan. However, no significant effect on the affinity of the mutant enzymes for the ligands arabinan, debranched arabinan, and wheat and rye arabinoxylans was detected by affinity gel electrophoresis. These observations suggest that the glycosylation at Asn(202) may contribute to thermostability and catalysis.  相似文献   

4.
Sialoglycoproteins play a key role in both brain development and neuronal plasticity with their sialylation state being controlled by the sialyltransferase (STN) family of enzymes. In this study, we have determined the role of specific kinase enzymes in the expression and catalytic activity of the alpha2,6 STN (ST6N) isozyme. The catalytic activity was moderately decreased following the inhibition of GSK3beta with LiCl. However, there was a significant increase in catalytic activity following activation of protein kinase C (PKC) by phorbol ester. There was no change in the expression levels of the enzyme protein following any of the treatments. The changes in enzyme catalytic activity were also mirrored by the expression of both protein-bound sialic acid and the polysialic acid oligosaccharide group attached to the neural cell adhesion molecule, NCAM. These results provide further evidence for the role of second messenger-associated kinase enzymes in the modulation of the cell glycosylation potential.  相似文献   

5.
In a series of investigations, N-glycosylation has proven to be a key determinant of enzyme secretion, activity, binding affinity and substrate specificity, enabling a protein to fine-tune its activity. In the majority of cases elimination of all putative N-glycosylation sites of an enzyme results in significantly reduced protein secretion levels, while removal of individual N-glycosylation sites often leads to the expression of active enzymes showing markedly reduced catalytic activity, with the decreased activity often commensurate with the number of glycosylation sites available, and the fully deglycosylated enzymes showing only minimal activity relative to their glycosylated counterparts. On the other hand, several cases have also recently emerged where deglycosylation of an enzyme results in significantly increased catalytic activity, binding affinity and altered substrate specificity, highlighting the very unique and diverse roles that individual N-glycans play in regulating enzyme function.  相似文献   

6.
The cephalopod digestive gland plays an important role in the efficient assimilation of nutrients and therefore the fast growth of the animal. The histological and enzymatic structure of Euprymna tasmanica was studied and used in this experiment to determine the dynamics of the gland in response to feeding. The major roles of the digestive gland were secretion of digestive enzymes in spherical inclusions (boules) and excretion of metabolic wastes in brown body vacuoles. High levels of trypsin, chymotrypsin and α-amylase, low levels of α-glucosidase and negligible carboxypeptidase activity were produced by the gland. There was no evidence of secretion of digestive enzymes in other organs of the digestive tract. Within 60 min of a feeding event, the gland produced increasing numbers of boules to replace those lost from the stomach during the feeding event. Initially, small boules were seen in the digestive cells, they increased in size until they are released into the lumen of the gland where they are transported to the stomach. There was no evidence of an increase in activity of digestive enzymes following a feeding event, despite structural changes in the gland. However, there was large variation among individuals in the level of digestive enzyme activity. A negative correlation between boule and brown body vacuole density suggested that the large variation in enzyme activity may be due to the digestive gland alternating between enzyme production and excretion.  相似文献   

7.
Barbier O  Girard C  Breton R  Bélanger A  Hum DW 《Biochemistry》2000,39(38):11540-11552
The recent cloning of several human and monkey UDP-glucuronosyltransferase (UGT) 2B proteins has allowed the characterization of these steroid metabolic enzymes. However, relatively little is known about the structure-function relationship, and the potential post-translational modifications of these proteins. The mammalian UGT2B proteins contain at least one consensus asparagine-linked glycosylation site NX(S/T). Endoglycosidase H digestion of the human and monkey UGT2B proteins demonstrates that only UGT2B7, UGT2B15, UGT2B17, and UGT2B20 are glycosylated. Although UGT2B15 and UGT2B20 contain three and four potential glycosylation sites, respectively, site-directed mutagenesis revealed that both proteins are glycosylated at the same first site. In both proteins, abolishing glycosylation decreased glucuronidation activity; however, the K(m) values and the substrate specificities were not affected. Despite the similarities between UGT2B15 and UGT2B20, UGT2B20 is largely more labile than UGT2B15. Treating HK293 cells stably expressing UGT2B20 with cycloheximide for 2 h decreased the enzyme activity by more than 50%, whereas the activity of UGT2B15 remained unchanged after 24 h. The UGT2B20 protein is unique in having an isoleucine at position 96 instead of an arginine as found in all the other UGT2B enzymes. Changing the isoleucine in UGT2B20 to an arginine stabilized enzyme activity, while the reciprocal mutation in UGT2B15 R96I produced a more labile enzyme. Secondary structure predictions of UGT2B proteins revealed a putative alpha-helix in this region in all the human and monkey proteins. This alpha-helix is shortest in UGT2B20; however, the helix is lengthened in UGT2B20 I96R. Thus, it is apparent that the length of the putative alpha-helix between residues 84 and 100 is a determining factor in the stability of UGT2B enzyme activity. This study reveals the extent and importance of protein glycosylation on UGT2B enzyme activity and that the effect of residue 96 on UGT2B enzyme stability is correlated to the length of a putative alpha-helix.  相似文献   

8.
In our previous studies, we reported that the activity of an anti-oxidant enzyme, Cu,Zn-superoxide dismutase (Cu,Zn-SOD) became decreased as the result of glycation in vitro and in vivo. Glycated Cu,Zn-SOD produces hydroxyl radicals in the presence of transition metals due to the formation of a Schiff base adduct and a subsequent Amadori product. This results in the site-specific cleavage of the molecule, followed by random fragmentation. The glycation of other anti-oxidant enzymes such as glutathione peroxidase and thioredoxin reductase results in a loss or decrease in enzyme activity under pathological conditions, resulting in oxidative stress. The inactivation of anti-oxidant enzymes induces oxidative stress in aging, diabetes and neurodegenerative disorders. It is well known that the levels of Amadori products and Ne-(carboxylmethyl)lysine (CML) and other carbonyl compounds are increased in diabetes, a situation that will be discussed by the other authors in this special issue. We and others, reported that the glycation products accumulate in the brains of patients with Alzheimer’s disease (AD) patients as well as in cerebrospinal fluid (CSF), suggesting that glycation plays a pivotal role in the development of AD. We also showed that enzymatic glycosylation is implicated in the pathogenesis of AD and that oxidative stress is also important in this process. Specific types of glycosylation reactions were found to be up- or downregulated in AD patients, and key AD-related molecules including the amyloid-precursor protein (APP), tau, and APP-cleaving enzymes were shown to be functionally modified as the result of glycosylation. These results suggest that glycation as well as glycosylation are involved in oxidative stress that is associated with aging, diabetes and neurodegenerative diseases such as AD.  相似文献   

9.
We previously reported that the beta-1,4-endoglucanase (EGase) belonging to glycoside hydrolase family (GHF) 45 of the mulberry longicorn beetle, Apriona germari (Ag-EGase II), has three potential N-linked glycosylation sites; these sites are located at amino acid residues 56-59 (NKSG), 99-102 (NSTF), and 237-239 (NYSstop). In the present study, we analyze the functional role of these potential N-linked glycosylation sites. Tunicamycin treatment completely abolished the enzymatic activity of Ag-EGase II. To further elucidate the functional role of the N-linked glycosylation sites in Ag-EGase II, we have assayed the cellulase enzyme activity in Ser58Gln, Thr101Gln, or Ser239Gln mutants. Lack of N-linked glycosylation site at residues 99-102 (NSTF), the site of which is conserved in known beetle GHF 45 cellulases, showed loss of enzyme activity and reduced the molecular mass of the enzyme. In contrast, mutations in Ser58Gln or Ser239Gln affected neither the activity nor the apparent molecular mass of the enzyme, indicating that these sites did not lead to N-linked glycosylation. The present study demonstrates that N-linked glycosylation at residues 99-102 (NSTF), while not essential for secretion, is required for Ag-EGase II enzyme activity.  相似文献   

10.
A role for N-linked oligosaccharides on the biochemical properties of recombinant α-l-arabinofuranosidase 54 (AkAbf54) defined in glycoside hydrolase family 54 from Aspergillus kawachii expressed in Pichia pastoris was analyzed by site-directed mutagenesis. Two N-linked glycosylation motifs (Asn83–Thr–Thr and Asn202–Ser–Thr) were found in the AkAbf54 sequence. AkAbf54 comprises two domains, a catalytic domain and an arabinose-binding domain classified as carbohydrate-binding module 42. Two N-linked glycosylation sites are located in the catalytic domain. Asn83, Asn202, and the two residues together were replaced with glutamine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the wild-type and mutant enzymes expressed in P. pastoris were examined. The N83Q mutant enzyme had the same catalytic activity and thermostability as the wild-type enzyme. On the other hand, the N202Q and N83Q/N202Q mutant enzymes exhibited a considerable decrease in thermostability compared to the glycosylated wild-type enzyme. The N202Q and N83Q/N202Q mutant enzymes also had slightly less specific activity towards arabinan and debranched arabinan. However, no significant effect on the affinity of the mutant enzymes for the ligands arabinan, debranched arabinan, and wheat and rye arabinoxylans was detected by affinity gel electrophoresis. These observations suggest that the glycosylation at Asn202 may contribute to thermostability and catalysis.  相似文献   

11.
The mammalian soluble epoxide hydrolase (sEH) is a multidomain enzyme composed of C- and N-terminal regions that contain active sites for epoxide hydrolase (EH) and phosphatase activities, respectively. We report the cloning of two 60 kDa multidomain enzymes from the purple sea urchin Strongylocentrotus purpuratus displaying significant sequence similarity to both the N- and C-terminal domains of the mammalian sEH. While one urchin enzyme did not exhibit EH activity, the second enzyme hydrolyzed several lipid messenger molecules metabolized by the mammalian sEH, including the epoxyeicosatrienoic acids. Neither of the urchin enzymes displayed phosphatase activity. The urchin EH was inhibited by small molecule inhibitors of the mammalian sEH and is the likely ancestor of the enzyme. Sequence comparisons suggest that the urchin sEH homologs are the result of a gene fusion event between a gene encoding for an EH and a gene for an enzyme of undetermined function. This fusion event was followed by a duplication event to produce the urchin enzymes.  相似文献   

12.
Miles CD  Hagen CW 《Plant physiology》1968,43(9):1347-1354
Extracts of the flower petals of Impatiens balsamina L. contain enzymes which catalyze the glycosylation of phenolic compounds. Enzymes have been extracted which glycosylate hydroquinone to arbutin and at least 3 different flavonols to the 3-monoglucoside. The hydroquinone glucosylating enzyme is similar to enzymes previously described except that it requires an unidentified low molecular weight cofactor. The glucosylation of flavonols follows normal enzyme kinetics; it requires a nucleotide diphosphate glucose donor for activity, and is made more evident by the presence of glucono-1:5-lactone, an inhibitor of endogenous glucosidases. It is suggested that the flavonol glucosylating enzyme acts naturally to glucosylate a precursor of both flavonols and anthocyanins to the 3-monoglucoside. The only elaboration of an anthocyanin observed with petal extracts was an acylation of pelargonidin-3-monoglucoside.  相似文献   

13.
Glycosylation is the most common type of post-translational modification (PTM) and is known to affect protein stability, folding and activity. Inactivity of enzymes mediating glycosylation can result in serious disorders including colon cancer and brain disorders. Out of five main types of glycosylation, N-linked glycosylation is most abundant and characterized by the addition of a sugar group to an Asparagine residue at the N-X-S/T motif. Enzyme mediating such transfer is known as oligosaccharyl transferase (OST). It has been hypothesized before that a significant number of proteins serve as glycoproteins. In this study, we used programming implementations of Python to statistically quantify the representation of glycoproteins by scanning all the available proteome sequence data at ExPASy server for the presence of glycoproteins and also the enzyme which plays critical role in glycosylation i.e. OST. Our results suggest that more than 50% of the proteins carry N-X-S/T motif i.e. they could be potential glycoproteins. Furthermore, approximately 28-36% (1/3) of proteins possesses signature motifs which are characteristic features of enzyme OST. Quantifying this bias individually reveals that both the number of proteins tagged with N-X-S/T motif and the average number of motifs per protein is significantly higher in case of eukaryotes when compared to prokaryotes. In the light of these results we conclude that there is a significant bias in the representation of glycoproteins in the proteomes of all species and is manifested substantially in eukaryotes and claim for glycosylation to be the most common and ubiquitous PTM in cells, especially in eukaryotes.  相似文献   

14.
The primary sequence of the esterase 6 (EST6) enzyme ofDrosophila melanogaster contains four potential N-linked glycosylation sites, at residues 21, 399, 435, and 485. Here we determine the extent to which EST6 is glycosylated and how the glycosylation affects the biochemistry and physiology of the enzyme. We have abolished each of the four potential glycosylation sites by replacing the required Asn residues with Gln byin vitro mutagenesis. Five mutant genes were made, four containing mutations of each site individually and the fifth site containing all four mutations. Germline transformation was used to introduce the mutant genes into a strain ofD. melanogaster null for EST6. Electrophoretic and Western blot comparisons of the mutant strains and wild-type controls showed that each of the four potential N-linked glycosylation sites in the wild-type protein is glycosylated. However, the fourth site is not utilized on all EST6 molecules, resulting in two molecular forms of the enzyme. Digestion with specific endoglycosidases showed that the glycan attached at the second site is of the high-mannose type, while the other three sites carry more complex oligosaccharides. The thermostability of the enzyme is not affected by abolition of the first, third, or fourth glycosylation sites but is reduced by abolition of the second site. Anomalously, abolition of all four sites together does not reduce thermostability. Quantitative comparisons of EST6 activities showed that abolition of glycosylation does not affect the secretion of the enzyme into the male sperm ejaculatory duct, its transfer to the female vagina during mating, or its subsequent translocation into her hemolymph. However, the activity of the mutant enzymes does not persist in the female's hemolymph for as long as wild-type esterase 6. The latter effect may compromise the role of the transferred enzyme in stimulating egg-laying and delaying receptivity to remating.  相似文献   

15.
A unique N-linked glycosylation motif (Asn(79)-Tyr-Thr) was found in the sequence of type-A feruloyl esterases from Aspergillus spp. To clarify the function of the flap, the role of N-linked oligosaccharides located in the flap region on the biochemical properties of feruloyl esterase (AwFAEA) from Aspergillus awamori expressed in Pichia pastoris was analyzed by removing the N-linked glycosylation recognition site by site-directed mutagenesis. N79 was replaced with A or Q. N-glycosylation-free N79A and N79Q mutant enzymes had lower activity than that of the glycosylated recombinant AwFAEA wild-type enzyme toward alpha-naphthylbutyrate (C4), alpha-naphthylcaprylate (C8), and phenolic acid methyl esters. Kinetic analysis of the mutant enzymes indicated that the lower catalytic efficiency was due to a combination of increased Km and decreased k(cat) for N79A, and to a considerably decreased k(cat) for N79Q. N79A and N79Q mutant enzymes also exhibited considerably reduced thermostability relative to the wild-type.  相似文献   

16.
The trehalase I of Dictyostelium discoideum exhibits characteristics of a typical lysosomal enzyme. The enzyme is glycosylated and carries a number of negatively charged components which cause it to be a very acidic protein. Strain M31, bears a recessive mutation mod A which alters the post-translational modification of several lysosomal enzymes including trehalase. A direct consequence of this mutation is a reduction of the negatively charged components on lysosomal enzymes. This reduction in negativity is observed in the altered chromatographic and electrophoretic behaviour of M31 trehalase.Trehalase I is synthesized during spore germination. Tunicamycin prevents the formation of recoverable trehalase from germinating spores but does not interfere with the germination process. These results indicate that the trehalase I synthesized during spore germination is not required for the successful completion of spore germination. Minor modification in the glycosylation, as seen in strain M31, does not affect the enzymatic activity. However, when glycosylation is greatly reduced by tunicamycin the enzyme is inactive.  相似文献   

17.
The processing of β-endorphin by brain enzymes into peptides related to the behaviorally active γ- and α-type endorphins and the sequence of proteolytic events in the conversion process are described. Multiple enzyme activities contribute to the generation of the peptides with neurotropic activity. It is proposed that the processing into γ- and α-type neuropeptides is a post-secretional event. The enzymes involved may have a key role in the nature and levels of neurotropic β-endorphin fragments in the brain.  相似文献   

18.
T Jascur  K Matter  H P Hauri 《Biochemistry》1991,30(7):1908-1915
It was postulated that newly synthesized membrane proteins need to be assembled into oligomers in the endoplasmic reticulum in order to be transported to the Golgi apparatus. By use of the differentiated human adenocarcinoma cell line Caco-2, the general validity of this proposal was studied for small intestinal brush border enzymes which are dimers in most mammalian species. Chemical cross-linking experiments and sucrose gradient rate-zonal centrifugation revealed that dipeptidylpeptidase IV is present as a dimer in the brush border membrane of Caco-2 cells whereas the disaccharidase sucrase-isomaltase appears to be a monomer. Dipeptidylpeptidase IV was found to dimerize immediately after complex glycosylation, an event associated with the Golgi apparatus. Dimerization of this enzyme was inhibited by CCCP but did not depend on complex glycosylation of N-linked carbohydrates as assessed by the use of the trimming inhibitor 1-deoxymannojirimycin. It is concluded that dimerization of dipeptidylpeptidase IV occurs in a late Golgi compartment and therefore cannot be a prerequisite for its export from the endoplasmic reticulum.  相似文献   

19.
With a view to understand the changes in the conformation of bacterial amylase, the enzyme preparation was conjugated to dextran. Glycosylation of purified bacterial amylase resulted in increased stability against heat, proteolytic enzymes and denaturing agents. Several group specific inhibitors exhibited dose-dependent inhibition and the extent of inhibition was same for native as well as for the glycosylated enzyme. The pH optima of native and glycosylated enzyme remained the same indicating that the ionization at the active site is not greatly influenced as a result of glycosylation. Although the native as well as the glycosylated enzyme bind to the substrate with the same affinity, the rate of reaction differed greatly at 90 and 100 degrees C. At 70 degrees C, the rate of reaction was similar for the conjugated as well as the unconjugated amylase. Thermostability at different temperatures clearly showed that the glycosylated enzyme had greater stability compared to the native enzyme. The divalent cation binding site in the amylase also appears to be unaltered upon glycosylation since EDTA inhibited both enzymes to the same extent and addition of calcium ion restored the activity to almost the same level. These studies showed that conjugating the amylase enzyme with a bulky molecule like dextran does not affect the conformation at the active site.  相似文献   

20.
The heparan sulfate endosulfatases Sulf1 and Sulf2 are cell-surface enzymes that control growth factor signaling through regulation of the 6-O-sulfation states of cell-surface and matrix heparan sulfate proteoglycans. Here, we report that quail Sulf1 (QSulf1) is an asparagine-linked glycosylated protein. Domain mapping studies in combination with a protein glycosylation prediction program identified multiple asparagine-linked glycosylation sites in the enzymatic and C-terminal domains. Glycosylation inhibitor studies revealed that glycosylation of QSulf1 is essential for its enzymatic activity, membrane targeting, and secretion. Furthermore, N-glycanase cleavage of asparagine-linked sites in native QSulf1 provided direct evidence that these N-linked glycosylation sites are specifically required for QSulf1 heparin binding and its 6-O-desulfation activity, revealing that N-linked glycosylation has a key role in the control of sulfatase enzymatic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号