首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice plants (Oryzae sativa L.) grown in a nutrient solutionwere fed with (15NH4)2SO4 during the 5 days of their young panicleformation. At the end of that time in the youngest leaf blade, which hadstarted to emerge during the labelling, absorbed-nitrogen accountedfor 37% of the increased nitrogen of the tissue; in the nextdeveloping leaf blade it accounted for 55%. Thus, remobilized-nitrogenoriginating from older patrs of the plant made up 63 and 45%,respectively, of their total nitrogen. The important contributionof the remobilized-nitrogen to the development of a leaf isevident. The remobilization of nitrogen in the 12th leaf blade on themain stem was examined in detail after labelling during itsdeveloping stage. The 15N level started to decrease soon afterthe end of the labelling period and continued to decrease untilfull senescence, although the total nitrogen in the same leafincreased until just after its complete expansion, suggestingthat even a young leaf plays a role as a supplier of remobilized-nitrogen. During the rapid decrease in the total nitrogen after its peakat full expansion of the leaf, the actual proportion of labelledabsorbed nitrogen remained nearly the same, indicating thatinflux of new nitrogen into a senescing leaf is very limited. (Received March 13, 1981; Accepted July 13, 1981)  相似文献   

2.
The effect of leaf age on K (86Rb) influx into tomato (Lycopersiconesculentum Mill.) leaf lamina slices was determined for leaves5, 9 and 13 counting acropetally. Potassium influx rates expressedon a leaf fresh weight basis declined rapidly during leaf elongationat external KCI concentrations between 0.5 and 20.0 mM. In fullyexpanded leaves, K influx rates declined more slowly with age.The onset of senescence in mature leaves did not result in alarge loss in K uptake capability. Leaf position on the shootaxis and the stage of whole plant development had little influenceon K influx into leaf cells. It is suggested that the rapiddecrease in K influx in growing leaves is related to a dilutionin the concentration of K transporter sites resulting from anincrease in cell volume and weight. Lycopersicon esculentum Mill, tomato, free space, potassium, influx rate, ion uptake, leaf slices, leaf age leaf ontogeny  相似文献   

3.
Effects of irradiance on changes in the amounts of chlorophyll(Chl) and light-harvesting chlorophyll a/b protein of PS II(LHCII) were examined in senescing leaves of rice (Oryza sativaL.). Results of treatments at two irradiances (100% and 20%natural sunlight) were examined after the full expansion ofthe 13th leaf throughout the course of senescence. With 20%sunlight, the Chl content decreased only a little during leafsenescence, while with 100% sunlight it decreased appreciably.Similarly, the amount of LHCII protein during treatment with20% sunlight remained almost constant. However, the ratio ofChl a/b during the shade treatment decreased significantly andthe rate of decrease was greater than during the full-sunlighttreatment. The ratio of Chl a/b for Chl a and b bound to LHCIIwas about 1.2, irrespective of leaf age or irradiance treatment.When the amounts of Chl bound to LHCII were calculated fromthe total leaf content of Chl and the ratio of Chl a/b, assuminga ratio of Chl a/b bound to LHCII of 1.2, they were well correlatedwith the amounts of LHCII protein. Changes in the amounts of LHCII synthesized during the two irradiancetreatments were examined using an 15 tracer. Incorporation of15N into LHCII declined dramatically during both treatmentsfrom full expansion through senescence, suggesting that therewas little synthesis of LHCII protein during that time. In addition,the amount of LHCII synthesized during senescence was lowerduring the shade treatment than during the 100% sunlight treatment.These results indicate that the absence of an apparent changein levels of LHCII with shade treatment during senescence wascaused by the very low rate of turnover of LHCII protein. (Received June 17, 1992; Accepted September 28, 1992)  相似文献   

4.
The internal cycling of nitrogen (N) has been studied in applerootstocks grown in sand culture and subjected to a constantN supply, or defoliation, or withholding the N supply in theautumn in order to manipulate the amount of N stored over thewinter. The trees subsequently received either no N or 8–0mol N m–3 (labelled with 15N to 498 atom%) with the irrigationthe following spring in order to determine the effect of thecurrent N supply on the remobilization of N for leaf growth. Provision of an autumnal N supply delayed leaf senescence andreduced the amount of N withdrawn from leaves from 156 mg Nplant–1 to 91 mg N plant–1. Loss of protein ribulose1,5-bisphosphate carboxylase/oxygenase (RUBISCO) accounted for83–87% of the soluble protein N lost during leaf senescence,there being a preferential loss of RUBISCO compared with othersoluble leaf proteins. Remobilization of N from perennial woody tissues (stems androots) in the spring was used predominantly for leaf growth.The amount of N remobilized depended upon the size of the Nstore, but was unaffected by the current N supply, demonstratingthat fertilization of trees does not alter the efficiency withwhich they cycle N. Degradation of RUBISCO in the autumn accountedfor between 32% and 48% of the N subsequently remobilized forleaf growth the following spring, suggesting that RUBISCO hasa role as a summer store for N. Key words: Malus domestica, Borkh, nitrogen, senescence, ribulose 1, 5-bisphosphate carboxylase, oxygenase, storage, remobilization  相似文献   

5.
The effects on leaf age on K (86Rb) efflux, influx and net fluxinto lamina slices from leaf 7 on a tomato plant (Lycopersiconesculentum Mill.) were determined. The ontogenetic trend inK efflux was dependent on the external K concentration. At externalKCI concentrations between 0.5 and 10.0 mM, K efflux rates increasedduring leaf elongation. Only a small increase in efflux occurredin mature leaves with increasing age. It is suggested that thetonoplast retains its structural integrity through the initialstages of leaf senescence. In fully expanded leaves, a zeronet K flux (a balance between influx and efflux) was achievedat external KCI concentrations between 1.0 and 3.5 mM. The Kcontent of lamina slices from leaves 5 and 13 remained constantwhen bathed in a solution containing 2 to 3 mM K. It is suggestedthat the decline in K concentration in mature tomato leaf tissueis due to a decline in leaf free space K concentrations below1 to 3 mM which would result in a net efflux out of leaf cells. Lycopersicon esculentum Mill., tor ato, free space, ion fluxes, leaf age, leaf ontogeny, potassium  相似文献   

6.
The assimilation and transport of 15N-labelled ammonium nitrogenin rice plants (Oryza sativa L.) was studied. Plants assimilatedlarge amounts of nitrogen from labelled ammonium into theiramides and amino acids, particularly in the roots and stem,at the end of a 4-day 15N feeding and 10 days later in the upperleaves, especially in the blades. Although the incorporationof 15N into all the nitrogen fractions of the newly emergedpanicle was evident, it was particularly pronounced in the amidesand amino acids of the soluble fractions. The upper leaves hada greater 15N incorporation in their organic N-fractions thandid the lower ones. Amides and amino acids are considered tobe the main forms of nitrogen transported to the shoot fromthe ammonium assimilated in the roots. The transport of theorganic forms of nitrogen was possibly greater to the upperleaves than to the lower ones. The nitrite fraction had more 15N than did the nitrate fractionin all parts of the plant, particularly in the upper leaf blades.It appeared that some of the ammonia might have been oxidizedto nitrite, then to nitrate in some parts of the plant; probablyin the upper leaves. The synthesis of protein and nucleic acid occurred rapidly inthe upper leaves, especially in the blades, also in the rootsas evidenced by the considerable incorporation of 15N in theinsoluble fractions of these parts. The variation in 15N-distribution,during the 10 days, in the different plant parts suggests thatthe nitrogen incorporated during protein synthesis in the rootsand tillers was remobilized and transported to the upper partsof the shoot. A concept for the transport of organic nitrogenouscompounds from the roots to shoot through the phloem and xylemof the rice plant stem is discussed. (Received May 11, 1974; )  相似文献   

7.
A model of nitrogen partitioning during the seasonal growthof sycamore (Acer pseudoplatanus) seedlings was developed andtested against data from trees grown with two contrasting levelsof nitrogen supply. The model considered each tissue type (roots,trunk, stems and leaves) as sources and sinks for nitrogen andused flow equations to simulate the dynamics of nitrogen partitioningduring a growing season, with increases in tissue dry matteras driving force variables. Withdrawal of nitrogen from leavesduring senescence was allocated back to other tissues assuminga linear decrease in leaf mass. The model was fitted to data from trees grown in sand culturewith 6·0 molN m-3 (high N) supplied with the irrigation.Model parameters thus determined were used to predict nitrogenpartitioning in trees grown with 1·0 molN m-3 (low N)in the same year, and for trees from both treatments given eitherhigh or low N during a second year. The model accurately predictedthe nitrogen content of roots and leaves and gave small errorsin the amount of nitrogen partitioned to stems. In contrast,the nitrogen content of the trunks were over-estimated due toa failure to simulate the decreased in nitrogen content foundat the start of the growing season. The ability of the modelto simulate nitrogen partitioning by changes in tissue dry matterin trees of varying size and nitrogen status is discussed andpossible modifications to model partitioning of trunk nitrogenmore accurately suggested.Copyright 1993, 1999 Academic Press Modelling, nitrogen partitioning, 15N supply, Acer pseudoplatanus (sycamore), young seedlings  相似文献   

8.
Assimilate distribution in leaves of Lolium temulentum was establishedby root absorption of [14C]sucrose and after exposure to 14CO2.Age determined the amount of carbon assimilated, with more labelbeing incorporated during expansion than at maturity. Duringsenescence 14C assimilation was much lower. Ethanol-solubleextracts from various tissues of root-labelled plants containedmost of the radioactivity chiefly in basic and acidic compounds.The neutral fraction was composed predominantly of sucrose. Sucrose was comparably labelled in leaves from plants fed equalamounts of either [14C]sucrose, glucose, or fructose and onlytraces of labelled monosaccharides appeared in extracts. Radioactive sucrose was translocated rapidly from mature leaveswhereas, in the expanding leaf, carbon incorporation was directedtowards growth and the greater proportion of label present atligule formation was in ethanol-insoluble material. Induced senescence, of a mature leaf fed during expansion, produceda rapid loss from the pool of insoluble 14C. This was accompaniedby a reduction in the contents of chlorophyll and soluble proteinand an accumulation of amino acids. The onset of senescencecaused changes in leaf sugar levels which were correlated withincreased rates of respiration.  相似文献   

9.
An investigation was made to study the assimilation and transportof 15N-labelled nitrate nitrogen in rice plant (Oryza sativaL.). Nitrogen from labelled nitrate at the end of plant feedingwas found mainly in nitrate form, and was more prevalent inroots, stem and leaf sheaths. The nitrite fraction had the nextlargest 15N enrichment. The 15NO3 assimilation in the newlyemerged panicle was mainly in amide and amino acid. The 15N-incorporation at day 0 was greatest in amino acid andnitrate of roots and decreased towards the stem and leaves.Incorporation in these fractions considerably decreased fromday 0 to day 10. Probably most of the nitrogen from the nitratesource was transported from the roots to the shoot in nitrateand amino acid forms. A decrease of 15N-incorporation in the soluble N fraction andincrease in the insoluble N fraction from day 0 to day 10 inplant parts, particularly the blades, suggested that proteinsynthesis occurred mostly in young parts of the shoot duringthis period. The marked variation in 15N distribution in differentparts of the plant during the 10 days indicated that the nitrogenin roots and tillers was probably remobilized and transportedto other parts, particularly the upper leaf blades. Ammonium and nitrate nitrogen transport in rice plant are compared. (Received May 11, 1974; )  相似文献   

10.
In situ synthesis and degradation of ribulose bisphosphate carboxylase(RuBPCase) were studied quantitatively in the 12th leaf bladeof the rice plant during the life span of the leaf. Levels ofRuBPCase protein were determined by rocket immunoelectrophoresis.The amounts of RuBPCase synthesized and degraded were estimatedusing 15N tracer. RuBPCase was scarcely recognized in the leaf when the tip ofthe leaf had just emerged from the 1 lth leaf sheath. Then itincreased rapidly and reached its maximum content a week afterthe completion of leaf expansion. At this time RuBPCase accountedfor 56% of the soluble leaf protein N (26% of the total leafN). The total amount of RuBPCase synthesized up to this timewas about 90% of the amount synthesized throughout the leaf'slife. Degradation of RuBPCase started about the time when it reachedthe maximum content and proceeded at a faster rate during senescencethan that of the remaining soluble protein. When the leaf hadsenesced completely, it contained little measurable RuBPCasealthough the total leaf N was about 30% of the maximum level.These results clearly suggest that RuBPCase is a major N componentwhich is used as remobilized N for the growth of young tissues. Influx and efflux of N and the synthesis and degradation ofRuBPCase are discussed in relation to leaf age. (Received February 18, 1983; Accepted June 16, 1983)  相似文献   

11.
Changes in net photosynthesis, respiration, transpiration andcontents of total C, NO3-N and reduced N were followed throughoutthe life of leaf 6 of nitrate-dependent plants of castor beanexposed to moderate salinity stress (71 mol m–3 NaCl).Salt treatment was applied for measuring mineral flows in aparallel study (Jeschke and Pate, 1991b). Concurrent measurementswere made of solute composition and C: N molar ratios and concentrationsof reduced N and collected NO3-N in phloem sap bleeding fromshallow incisions in the top and at the base of petioles andin xylem exudates from flaps of proximal leaf midribs followingpressurization of the root system. The resulting data were usedto construct empirical models of the respective economies ofC, total N, NO3 and reduced N for a sequence of defined phasesof leaf life. Water use efficiency increased 3-fold from emergenceto a maximum of 1·5 mmol CO2 mol–1 H2O before decliningto 0·5 mmol CO2 mol–1 H2O at senescence. Xylemmolar ratios of C:N varied from 1·2–2·8,with nitrate always a smaller component than reduced N. Phloemsap C:N increased from 10–40 with leaf expansion and wasthen maintained in the range of 40–50 until falling steeplyto 20 at leaf senescence. Nitrate comprised less than 1% oftotal N in all phloem sap samples. The models of C uptake, flow,and utilization showed a major role of phloem import and thenincreasingly of laminar photosynthesis in providing C for leafgrowth. The carbon budget was thereafter characterized by ratesof phloem export closely matched to net rates of CO2 fixationby the lamina. Corresponding data for total N depicted an earlymajor role of both xylem and phloem import, but the eventualdominance of xylem import as the N source for leaf growth. Cyclingof N by xylem to phloem exchange commenced before the leaf hadachieved maximum N content, and was the major contributor tophloem export until leaf senescence when mobilized N providedmost exported N. The nitrate economy of the leaf was characterizedby early establishment of tissue pools of the ion in the petioleand to a lesser extent in the lamina, continued high rates ofnitrate reduction in the lamina but negligible assimilationin the petiole, and a release through xylem of previously accumulatedNO3 from petiole to lamina. Related data for reduced N illustratedthe much greater importance of this form of N than nitrate intransport, storage and cycling of N at all stages of leaf andpetiole life. Xylem to phloem interchanges of reduced N in petiolewere minimal in comparison with cycling through the lamina.The ratio of CO2 reduction to NO3 reduction in the lamina wasat first low (57 mol mol–1) increasing to a peak valueof 294 during mature leaf functioning before declining to 190during the presenescence phase of leaf development. This patternreflected age-related effects on water use efficiency, changesin NO3 levels in the xylem stream entering the lamina, and therelatively low photosynthetic performances of very young andsenescent laminae. Key words: Ricinus communis, leaf development, phloem transport, xylem transport, carbon, nitrogen, nitrate, reduced nitrogen, nitrate reduction, partitioning  相似文献   

12.
15N-Nitrate feeding via the transpiration stream and simultaneousfeeding of 14C via photosynthesis to a leaf-fruit system inD. stramonium indicate that glutamine is the prime recipientof photosynthetically reduced nitrogen in the leaf. Analysisof petiole and seed indicates that glutamine supplies the seedwith most of the reduced nitrogen required for amino acid synthesis.Carbon and nitrogen assimilation in the leaf do not appear tobe directly related in that serine and aspartate and not glutaminereceive the heaviest initial 14C label.  相似文献   

13.
The changes in membrane permeability (soluble leakage), lipidperoxidation, and activities of superoxide dismutase (SOD) andcatalase have been studied during in situ senescence of leavesof Nicotiana tabacum L., cv. Wisconsin 38. After full leaf expansionwas reached there was a rapid, almost linear increase in therate of 86Rb leakage from the preloaded leaf discs, with leafage. Parallel with this increase in membrane permeability wasa cumulative increase in the level of lipid peroxidation. Atthe same leaf age there were changes in the activities of SODand catalase. SOD activity decreased on the basis of fresh weightbut did not change when measured on the basis of protein contentprobably due to relative stability of SOD during the senescence-associatedgeneral decline in protein content. Catalase activity firstincreased parallel with the chlorophyll content of the leafand then, after full leaf expansion, declined on the basis ofboth fresh weight and protein content. These changes in membranepermeability, lipid peroxidation, and the enzyme activitiescoincide in leaf age with the decline in protein and chlorophyllcontents and in chlorophyll a: b ratio. When the senescenceof the bottom-most leaves was reversed by removing the stemfrom immediately above them, the senescence-associated changesin protein and chlorophyll contents, lipid peroxidation, andthe enzyme activities were also reversed. It is suggested thatleaf senescence may be a consequence of cumulative membranedeterioration due to increasing level of lipid peroxidationprobably controlled by, among other factors, the activitiesof SOD and catalase.  相似文献   

14.
Tracer amounts of atmospheric [13N]-Iabelled ammonia gas, wereabsorbed by leaves of Lupinus albus and Helianthus annuus inboth the light and the dark. Exogenous [13N]-ammonia was onlyabsorbed in the dark when the feeding occurred shortly aftera period of illumination and the tissue was not depleted ofits carbohydrate reserves (e.g. starch). Incorporation of the[13N]-ammonia appeared to occur via the leaf glutamine synthetase/glutamatesynthase (GS/GOGAT) cycle since 2.0 mol m–3 MSX, an inhibitorof the GS reduced uptake in both the light and dark. Photosyntheticincorporation of 11CO2 was not affected by this treatment Therate of movement of [13N]-assimilates in the petiole of attachedleaves of Helianthus and Lupinus was similar to that of the11Cl-photo assimilates. Export of both [13N] and [11C]-Iabelledassimilates from the leaf and movement in the petiole in boththe light and the dark was inhibited by source leaf anoxia (i.e.nitrogen gas). Translocation was re-established at the samerate when the feed leaf was exposed to gas containing more than2% O2 which permitted dark respiration to proceed. After aninitial feeding of either 11CO2 or [13N]-ammonia at ambient(21%) O2 exposure of the source leaf to 2% O2, or 50% O2 didnot alter the rates of translocation, indicating that changesin photosynthetic activity in the source leaf due to photorespiratoryactivity need not markedly alter, at least during the shortperiod, the loading and translocation of either [11C ] or [13N]-labelledleaf products. Key words: Translocation, CO2, NH3, Leaves, Helianthus annuus, Lupinus albus  相似文献   

15.
VOS  J; BIEMOND  H 《Annals of botany》1992,70(1):27-35
Potatoes (Solanum tuberosum L) were planted in pots in a temperature-controlledglasshouse to collect data on the rate of leaf apearance, leafexpansion, apical lateral branching and active life spans ofleaves The treatments consisted of three rates of nitrogen supply,i e the NI treatment with 2 5 g N per pot and the N2 and N3treatments with 8 and 16 g N per pot, respectively The rate of leaf appearance was 0·53 leaves d–1(one leaf per 28 °C d) and was negligibly affected by nitrogensupply The rate of leaf expansion was related to leaf numberand nitrogen supply The areas of mature leaves increased withleaf number on the main stem to reach a maximum for leaf numbers12–14, and declined for higher leaf numbers Leaves onapical lateral branches declined in mature area with increasein leaf number The expansion rate of leaves was the dominantfactor that determined the mature leaf area, irrespective ofleaf number and nitrogen treatment The smallest leaves wereobserved at the lowest rate of nitrogen supply Nitrogen promotedapical branching and hence the total number of leaves that appearedon a plant The proportion of total leaf area contributed byleaves on apical branches increased with time and nitrogen supply Active life span, i e the period of time between leaf appearanceand yellowing of the leaf, showed a similar relation to leafnumber as mature leaf area, at least in qualitative terms Leavesof the N3 treatment showed systematically longer life spansthan leaves of the NI and N2 treatment in the order of 3 weeksThe number of main stem leaves was not affected by nitrogensupply Potato, Solanum tuberosum L, leaf development, leaf extension, plant structure, nitrogen nutrition  相似文献   

16.
STEER  B. T. 《Annals of botany》1971,35(5):1003-1015
In Capsicum frutescens L. cv. California Wonder the specificleaf weight (dry weight per unit laminar area) at leaf unfoldingis three times higher in the eighth leaf than in the first leafproduced. Intermediate leaves exhibit a trend between the twoThe change in specific leaf weight during laminar expansionis greatest in leaf 1 and least (sometimes zero) in leaf 8.Large changes in specific leaf weight during laminar expansionare associated with a large degree of palisade cell expansion,while leaves showing smaller rates of change have less palisadecell expansion but cell division is more evident. At leaf unfoldingthe fraction I protein content per unit laminar area is higherin upper than in lower leaves. Ribulose diphosphate carboxylaseactivity per unit laminar area and 14CO2 fixation per unit laminararea have a similar pattern of development in all leaves andshow no correlation with the changes in specific leaf weight.The peak of activity in all leaves occurs when the laminar areais 10 cm2. These results are compared with previous data onlaminar expansion and are seen as in accord with current ideason leaf growth.  相似文献   

17.
MORITA  K. 《Annals of botany》1980,46(3):297-302
In order to ascertain the possibility that nitrogen associatedwith chloroplasts serves as a major source of nitrogen redistributedfrom senescent leaves, chloroplasts were isolated from riceleaves and changes with leaf age in total leaf nitrogen andchloroplast nitrogen were examined. Results presented here showthat decrease in total leaf nitrogen during leaf senescencewas closely correlated with decrease of chloroplast nitrogenand roughly 85–95 per cent of leaf nitrogen released fromsenescent leaves during the experimental period could be accountedfor by a loss of chloroplast nitrogen. By dividing chloroplastnitrogen into two fractions, i.e. lamellar and stroma fractions,the question of which fraction was more deeply concerned withthe loss of leaf nitrogen was clarified. Results suggested thatin the vegetative stage of plant growth the stroma was mainlyresponsible for the loss of leaf nitrogen. On the other hand,nitrogen was released from lamellar and stromal fractions atalmost the same rate during the reproductive stage. Oryza sativa L., rice, chloroplasts, nitrogen, leaf senescence  相似文献   

18.
THOMAS  H. 《Annals of botany》1983,51(3):363-371
Lolium temulentum seedlings were grown on a nutrient mediumcontaining NH4NO2 at 0, 0·1, 0·5, 1·0 and4·3 mmoll–1 as the sole N source. Relative andabsolute extension rates, maximal leaf size, duration of extensiongrowth, rate of leaf appearance and plastochron index were determinedfrom the parameters of Richards functions fitted to lengthsof laminae measured at intervals after sowing. The final lengthof leaf I was relatively insensitive to N whereas mean relativeextension rate was increased and duration of growth decreasedwith increasing NH4NO2 concentration. Leaves 2 and 3 enlargedprogressively with N at concentrations up to 1·0 mmoll–1but were unresponsive thereafter. There was no significant correlationbetween final length and mean relative extension rate for leaves1 to 3. Leaves 4 to 6 continued to show increasing length beyond1·0 mmoll–1 N and final length was significantlycorrelated with mean relative extension rate. Increasing N increasedthe rate of leaf appearance by decreasing the duration of leafextension and plastochron. These results are discussed in relationto the control of leaf and N turnover. Lolium temulentum, rye grass, leaf extension, nitrogen, Richards function, growth analysis  相似文献   

19.
Alt  C.; Stutzel  H.; Kage  H. 《Annals of botany》2000,85(6):779-787
A simple model of photosynthesis is described which is dependenton leaf area, organic nitrogen content and distribution withinthe canopy as well as on the light and temperature environments.The model is parameterized using a cauliflower crop as an example.The optimized protein-N profile within the canopy is calculatedwith respect to daily growth rate. By comparison with measuredprotein-N contents, the amount of super-optimal N-uptake, i.e.the N-uptake which does not increase productivity, is assessedfor two different nitrogen and light treatments. The amountof super-optimal N accumulated in cauliflower depends on N-supplyand can exceed 80 kg N ha-1. Copyright 2000 Annals of BotanyCompany Brassica oleracea L. botrytis, cauliflower, nitrogen, photosynthesis, respiration, model, optimization  相似文献   

20.
Parallel to the increase in atmospheric CO2 from 278 µmolmol–1 in AD 1750 to the current ambient level of 348 µmolmol–1, there have been overall decreases in leaf nitrogencontent and stomatal density from 144% and 121%, respectively,in AD 1750 to 100% today of herbarium specimens of 14 trees,shrubs, and herbs collected over the last 240 years in Catalonia,a Mediterranean climate area. These decreases were steeper duringthe initial slower increases in CO2 atmospheric levels as comparedwith the relatively faster CO2 increases in recent years. Thedeclines in leaf N content and stomatal density have also beenreported in experimental studies on leaves of plants grown underenriched CO2 environments. Meanwhile, the stomatal index andoverall carbon and sulphur leaf contents have not changed significantly.Leaf S content was higher in the 1940s samples coinciding withthe burning of increased quantities of sulphur-rich coal. Consequently,the epidermal cell density has decreased parallel to the stomataldensity and the C/N ratio of leaves has increased, implyingpossible important consequences on herbivores, decomposers,and ecosystems. An overall decrease in the specific leaf area(SLA) from 184% in the 18th century to 100% today has also beenfound, as would be expected under CO2 enrichment, but whichmight also be an artifact of prolonged storage. Key words: Carbon dioxide increase, leaf nitrogen content, leaf sulphur content, stomatal density, last centuries  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号