首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human schistosomiasis is associated with IgE and eosinophilia, feature of a type 2 response. In experimental investigations, murine model has been widely used in order to dissect the immune responses involved in the expression of protective immunity or disease in Schistosoma mansoni infection. Collectively, observations made in this model and in humans demonstrated a strong contrast since a Th2 response in infected mice is involved in the expression of pathology, however, in infected humans the same type of response is rather beneficial for the host. This review will consider the relevance of extrapolating studies of immune responses from experimentally infected rats a semi-permissive host, to studies on S. mansoni infected humans.  相似文献   

2.
Exposure to ultraviolet (UV) radiation, as in sunlight, can modulate immune responses in animals and humans. This immunomodulation can lead to positive health effects especially with respect to certain autoimmune diseases and allergies. However, UV-induced immunomodulation has also been shown to be deleterious. Experimental animal studies have revealed that UV exposure can impair resistance to many infectious agents, such as bacteria, parasites, viruses, and fungi. Importantly, these effects are not restricted to skin-associated infections, but also concern systemic infections. The real consequences of UV-induced immunomodulation on resistance to infectious diseases are not known for humans. Risk estimations have been performed through extrapolation of animal data, obtained from infection models, to the human situation. This estimation indicated that UV doses relevant to outdoor exposure can impair the human immune system sufficiently to have effects on resistance to infections. To further quantify and validate this risk estimation, data, e.g., from human volunteer studies, are necessary. Infection models in humans are not allowed for ethical reasons. However, vaccination against an infectious disease evokes a similar immune response as the pathogen and thereby provides an opportunity to measure the effect of UV radiation on the immune system and an estimate of the possible consequences of altered resistance to infectious agents. Effects of controlled UVB exposure on immune responses after hepatitis B vaccination have been established in mice and human volunteers. In mice, cellular and Th1-associated humoral immune responses to hepatitis B were significantly impaired, whereas in human volunteers no significant effect of UVB on these responses could be found. Preliminary data indicate that cytokine polymorphisms might be, at least in part, responsible for interindividual differences in immune responses and in susceptibility to UVB-induced immunomodulation. In addition, adaptation to UV exposure needs to be considered as a possible explanation for the difference between mice and humans that was observed in the hepatitis B vaccination model.  相似文献   

3.
Schistosomiasis is a major public health problem in Africa, the Middle East, Asia and South America. The main control strategy is to treat infected people with anthelmintic drugs, principally the safe and relatively cheap drug praziquantel. Several treatment re-infection studies in humans have shown that praziquantel can have long-term effects beyond a transient reduction of infection intensity. These long-term effects include the altering of schistosome-specific immune responses in humans, which is associated with resistance to re-infection. Differences have been observed in treatment-induced immunological changes between individuals and between populations. This article discusses the contributions of host- and parasite-related heterogeneities to post-treatment humoral responses in humans infected with Schistosoma mansoni and Schistosoma haematobium and considers the practical implications of such heterogeneity for schistosome immuno-epidemiology studies.  相似文献   

4.
Mycobacterium abscessus has been identified as an emerging pulmonary pathogen in humans. Because little is known regarding immune responses elicited by M. abscessus or its antigens, immunological responses were studied in two murine models subjected to intravenous (high-dose or systemic infection) or pulmonary (low-dose or local infection) inoculation with M. abscessus ATCC 19977. An overall comparison between the two models showed similar patterns of bacterial survival and host immune responses. The colonization of M. abscessus was the highest at 5 days post-infection (dpi) and its elimination was positively correlated with cell-mediated immunity in both challenges. However, an inverse relationship was observed between progressive inflammation and mycobacterial colonization levels in mice infected with a high dose at 14 dpi. Regarding antigens, culture filtrate (CF) of M. abscessus strongly induced IFN-γ secretion, whereas cellular extract (CE) antigen elicited strong antibody responses. The antibody response to M. abscessus antigens in mice subjected to low-dose infection increased when the cellular immune response decreased over 14 dpi. However, the antibody response for the high-dose infection increased promptly after the infection. In comparison of cytokine expression in lung homogenates after M. abscessus infection, Thl and Th2 cytokines increased simultaneously in the high-dose infection, whereas only cell-mediated immunity developed in the low-dose pulmonary infection. These findings not only enhance our understanding of the immune response to M. abscessus infection according to systemic or pulmonary infection, but may also aid in immunological diagnosis and vaccine development. M. abscessus, murine infection model, immune response, antigens, cytokines  相似文献   

5.
Host resistance against infections caused by the yeast Candida albicans is mediated predominantly by polymorphonuclear leukocytes and macrophages. Antigens of Candida stimulate lymphocyte proliferation and cytokine synthesis, and in both humans and mice, these cytokines enhance the candidacidal functions of the phagocytic cells. In systemic candidiasis in mice, cytokine production has been found to be a function of the CD4+ T helper (Th) cells. The Th1 subset of these cells, characterized by the production of gamma interferon and interleukin-2, is associated with macrophage activation and enhanced resistance against reinfection, whereas the Th2 subset, which produces interleukins-4, -6, and -10, is linked to the development of chronic disease. However, other models have generated divergent data. Mucosal infection generally elicits Th1-type cytokine responses and protection from systemic challenge, and identification of cytokine mRNA present in infected tissues of mice that develop mild or severe lesions does not show pure Th1- or Th2-type responses. Furthermore, antigens of C. albicans, mannan in particular, can induce suppressor cells that modulate both specific and nonspecific cellular and humoral immune responses, and there is an emerging body of evidence that molecular mimicry may affect the efficiency of anti-Candida responses within defined genetic contexts.  相似文献   

6.
Trypanosoma cruzi, the causative agent of Chagas' disease, is an important cause of heart disease in Latin America. The parasite is transmitted mucosally, with both intra- and extracellular life stages in the human host. Cruzipain, the major cysteinyl proteinase of T. cruzi, has been shown to be antigenic in both humans and mice during infection with the parasite. We extend these observations, showing here that multiple murine immune subsets of potential importance for vaccine-induced protection can be induced by cruzipain. Cruzipain-specific serum IgG responses were induced during chronic infection with T. cruzi. In addition, T. cruzi mucosal infection stimulated the development of cruzipain-specific secretory IgA detectable in fecal extracts from infected mice. Cruzipain-specific type 1 cytokine responses characterized by the production of IFN-gamma but not IL-4 were also detectable during murine infection. Furthermore, immunization of mice with a DNA vaccine encoding cruzipain was shown to stimulate cytotoxic T lymphocyte (CTL) responses capable of recognizing and lysing T. cruzi-infected cells. The induction of serum antibody, mucosal IgA, Th1 cytokine and CTL responses by cruzipain in mice supports the use of this parasite protein for further efforts in T. cruzi vaccine development.  相似文献   

7.
IL-10 is a potent immunomodulatory cytokine that affects innate and acquired immune responses. The immunological consequences of IL-10 production during pulmonary tuberculosis (TB) are currently unknown, although IL-10 has been implicated in reactivation TB in humans and with TB disease in mice. Using Mycobacterium tuberculosis-susceptible CBA/J mice, we show that blocking the action of IL-10 in vivo during chronic infection stabilized the pulmonary bacterial load and improved survival. Furthermore, this beneficial outcome was highly associated with the recruitment of T cells to the lungs and enhanced T cell IFN-gamma production. Our results indicate that IL-10 promotes TB disease progression. These findings have important diagnostic and/or therapeutic implications for the prevention of reactivation TB in humans.  相似文献   

8.
Malaria infection in humans elicits a wide range of immune responses that can be detected in peripheral blood, but we lack detailed long-term follow-up data on the primary and subsequent infections that lead to naturally acquired immunity. Studies on antimalarial immune responses in mice have been based on models yielding homogenous infection profiles. Here, we present a mouse model in which a heterogeneous course of Plasmodium yoelii lethal malaria infection is produced in a non-congenic ICR strain to allow comparison among different immunological and clinical outcomes. Three different disease courses were observed ranging from a fatal outcome, either early or late, to a self-resolved infection that conferred long-term immunity against re-infection. Qualitative and quantitative changes produced in leukocyte subpopulations and cytokine profiles detected in peripheral blood during the first week of infection revealed that monocytes, dendritic cells and immature B cells were the main cell subsets present in highly-parasitized mice dying in the first week after infection. Besides, CD4+CD25high T cells expanded at an earlier time point in early deceased mice than in surviving mice and expressed higher levels of intracellular Foxp3 protein. In contrast, survivors showed a limited increase of cytokines release and stable circulating innate cells. From the second week of infection, mice that would die or survive showed similar immune profiles, although CD4+CD25high T cells number increased earlier in mice with the worst prognosis. In surviving mice the expansion of activated circulating T cell and switched-class B cells with a long-term protective humoral response from the second infection week is remarkable. Our results demonstrate that the follow-up studies of immunological blood parameters during a malaria infection can offer information about the course of the pathological process and the immune response.  相似文献   

9.
Malaria is one of the most widespread human infectious diseases worldwide and a cause of mortality. It is difficult to induce immunological memory against the malarial parasite Plasmodium. The immunity to clinical malaria disease is acquired with multiple infection and treatment cycles, along with substantial reduction in parasite burden. However, the mechanism of the acquired immunity remains largely unclear. Conventional DCs (cDCs) play a pivotal role in orchestration of immune responses. The purpose of this study is to analyze the characterization of cDCs after the infection and cure treatment cycles. Mice were infected with the lethal rodent malarial parasite Plasmodium berghei ANKA, which was followed by cure treatment with the antimalarial drug pyrimethamine. This was then followed by a challenge with live parasites. The mice that went through infection cure cycles showed significant immune response, demonstrating robust immunological memory against malaria parasites. We investigated the cytokine production capacity of splenic cDCs in both naive and infection cure mice by stimulating purified splenic cDCs with LPS (TLR4 agonist) or CpG (TLR9 agonist). The capacity of cytokine production was found to be significantly decreased in infection cure mice. The suppression of cytokine production was sustained for a long term (6 months). Moreover, the surface expression of MHC Class II molecules was significantly lower in infection cure mice than in naive mice. These results suggest that Plasmodium infection and cure treatment resulted in strong immunological memory and modulation of full functionality of cDCs.  相似文献   

10.
In mice, plasmacytoid dendritic cells (pDC) and natural killer (NK) cells both contribute to resistance to systemic infections with herpes viruses including mouse Cytomegalovirus (MCMV). pDCs are the major source of type I IFN (IFN-I) during MCMV infection. This response requires pDC-intrinsic MyD88-dependent signaling by Toll-Like Receptors 7 and 9. Provided that they express appropriate recognition receptors such as Ly49H, NK cells can directly sense and kill MCMV-infected cells. The loss of any one of these responses increases susceptibility to infection. However, the relative importance of these antiviral immune responses and how they are related remain unclear. In humans, while IFN-I responses are essential, MyD88 is dispensable for antiviral immunity. Hence, a higher redundancy has been proposed in the mechanisms promoting protective immune responses against systemic infections by herpes viruses during natural infections in humans. It has been assumed, but not proven, that mice fail to mount protective MyD88-independent IFN-I responses. In humans, the mechanism that compensates MyD88 deficiency has not been elucidated. To address these issues, we compared resistance to MCMV infection and immune responses between mouse strains deficient for MyD88, the IFN-I receptor and/or Ly49H. We show that selective depletion of pDC or genetic deficiencies for MyD88 or TLR9 drastically decreased production of IFN-I, but not the protective antiviral responses. Moreover, MyD88, but not IFN-I receptor, deficiency could largely be compensated by Ly49H-mediated antiviral NK cell responses. Thus, contrary to the current dogma but consistent with the situation in humans, we conclude that, in mice, in our experimental settings, MyD88 is redundant for IFN-I responses and overall defense against a systemic herpes virus infection. Moreover, we identified direct NK cell sensing of infected cells as one mechanism able to compensate for MyD88 deficiency in mice. Similar mechanisms likely contribute to protect MyD88- or IRAK4-deficient patients from viral infections.  相似文献   

11.
Mycobacterium avium strain 104 was chosen as the M. avium isolate to sequence, as it is virulent to humans, stable and readily transfectable. As this strain has not been widely studied we sought to investigate the pattern of 104 infection in mice. Bacterial growth and the immune response generated were compared with infection with the low virulence M. avium strain 100, and the high virulence common laboratory strain, 101. Mycobacterium avium strains 104 and 101 grew progressively within mice, while strain 100 was gradually cleared. Strains 104 and 101 induced strong T cell activation and spleen cell cultures produced similar levels of IFN-gamma. In mice infected with strain 100 no significant T cell activation or IFN-gamma production was measured. Further, mice infected with strain 104 or 101 also displayed comparable inflammatory responses and similar granuloma formation, while only minimal inflammation was seen in mice infected with strain 100. Strains 101 and 104 also grew in a similar fashion in bone-marrow-derived macrophages and induced significant levels of TNF and nitric oxide. Thus infection with M. avium strain 104 induced an immunological response comparable to M. avium strain 101 and, with the availability of its sequence, should be a useful tool for designing new vaccines or drugs therapies to treat the increasing incidence of M. avium infection in humans.  相似文献   

12.
Glucocorticoids, acting through the glucocorticoid receptor, potently modulate immune function and are a mainstay of therapy for treatment of inflammatory conditions, autoimmune diseases, leukemias and lymphomas. Moreover, removal of systemic glucocorticoids, by adrenalectomy in animal models or adrenal insufficiency in humans, has shown that endogenous glucocorticoid production is required for regulation of physiologic immune responses. These effects have been attributed to suppression of cytokines, although the crucial cellular and molecular targets remain unknown. In addition, considerable controversy remains as to whether glucocorticoids are required for thymocyte development. To assess the role of the glucocorticoid receptor in immune system development and function, we generated T-cell-specific glucocorticoid receptor knockout mice. Here we show that the T-cell is a critical cellular target of glucocorticoid receptor signaling, as immune activation in these mice resulted in significant mortality. This lethal activation is rescued by cyclooxygenase-2 (COX-2) inhibition but not steroid administration or cytokine neutralization. These studies indicate that glucocorticoid receptor suppression of COX-2 is crucial for curtailing lethal immune activation, and suggest new therapeutic approaches for regulation of T-cell-mediated inflammatory diseases.  相似文献   

13.
The main goal of the present study was to characterise the course of infection and immunological responses developed by Leishmania infantum infected BALB/c mice. Parasite load was determined by Real-time TaqMan PCR while cytokine and Immunoglobulin G (IgG) production were assessed by ELISA. Leishmania DNA was detected in spleen and liver as soon as day 1 post-inoculation (pi) and the parasitism was sustained until the end of the experiment. The cytokine kinetics in spleen and liver was generally associated with the oscillations of parasite load. Overall, it was not observed a distinct Th1 or Th2 pattern of cytokine production during the time of experiment. The infected mice developed a mixed immune response, with concomitant production of IFN-gamma, IL-4 and IL-10, both in spleen and liver, and both IgG isotypes. However, our results suggest that, compared to liver, the spleen is more susceptible to L. infantum infection.  相似文献   

14.
Avipoxviruses have recently been studied as potential vectors for the delivery of heterologous vaccine antigen. Because these viruses abortively infect mammalian cells yet still effectively present encoded foreign genes to the host immune system, they offer a safer but effective alternative to other live virus vectors. We have examined the effect of coexpressing the cytokine interleukin-6 or gamma interferon on immune responses to a recombinant fowlpox virus expressing influenza virus hemagglutinin. The encoded cytokine was expressed for prolonged periods in infected cell culture with little cytopathic effect due to the abortive nature of the infection. In mice, vector-expressed cytokine dramatically altered immune responses induced by the coexpressed hemagglutinin antigen. Expression of interleukin-6 augmented both primary systemic and mucosal antibody responses and primed for enhanced recall responses. In contrast, expression of gamma interferon markedly inhibited antibody responses without affecting the generation of cell-mediated immunity. The safety of these constructs was demonstrated in mice with severe combined immunodeficiency, and no side effects due to cytokine expression were observed. In summary, fowlpox virus vectors encoding cytokines represent a safe and effective vaccine strategy which may be used to selectively manipulate the immune response.  相似文献   

15.
Immunity in mammals to intestinal cestodes has been reviewed using the normal final host infected with the tapeworms Hymenolepis diminuta in rats and H. microstoma and H. nana in mice as a model. Primary infections up to a certain level continue to live as long the host, while most worms in infections with larger doses are destrobilated and expelled. It has been argued that concomitant immunity against a superimposed infection exists in rats and mice infected with H. diminuta and H. microstoma, respectively, and suggested that it also takes place in humans infected with Taenia spp. Immunity to secondary infections after expulsion of a primary infection occurs, but immunological memory is rather short-lived, although depression of worm growth occurs for at least two third of the rat's life. Serum antibodies have been shown to produce a direct precipitate on the surface of cestodes in vitro, but a direct effect of antibodies in vivo or the relationship with e.g. host effector cells, like mast cells and eosinophils, is unknown. It has been shown that peritoneal exudate cells from rats are able to kill H. diminuta in vitro. Very little is known about the mechanisms of tapeworms to counteract host immunological responses, but the tegumental glycoconjugates and discoidal secretory bodies are possible candidates. Passive transfer of immunity by mesenteric lymph node cells has only been successful using cells from H. nana egg-infected mice and has shown that only short-lived proliferating cells are responsible for transferring immunity. Vaccination procedures and problems are discussed with special reference to E. granulosus in dogs.  相似文献   

16.
Riley EM  Viney ME 《Molecular ecology》2011,20(23):4827-4829
The immune system has evolved, and continues to evolve, in response to the selection pressure that infections exert on animals in their natural environments, yet much of our understanding about how the immune system functions comes from studies of model species maintained in the almost complete absence of such environmental selection. The scientific discipline of immunology has among its aims the improvement of human and animal health by the application of immunological knowledge. As research on humans and domesticated animals is highly constrained-ethically, logistically and financially-experimental animal models have become an invaluable tool for dissecting the functioning of the immune system. The house mouse (Mus musculus) is by far the most widely used animal model in immunological research but laboratory-reared mice provide a very narrow view of the immune system-that of a well-fed and comfortably housed animal with minimal exposure to microbial pathogens. Indeed, so much of our immunological knowledge comes from studies of a very few highly inbred mouse strains that-to all intents and purposes-our immunological knowledge is based on enormously detailed studies of very small numbers of individual mice. The limitations of studies in inbred strains of laboratory mice are well-recognized (Pedersen & Babayan 2011), but serious attempts to address these limitations have been few and far between. However, the emerging field of 'ecological immunology' where free-living populations are studied in their natural habitat is beginning to redress this imbalance (Viney et al. 2005; Martin et al. 2006; Owen et al. 2010; Abolins et al. 2011). As demonstrated in the work by Boysen et al. (2011) in this issue of Molecular Ecology, studies in wild animal populations-especially free-living M. musculus-represent a valuable bridge between studies in humans and livestock and studies of captive animals.  相似文献   

17.
Pathogens are believed to drive genetic diversity at host loci involved in immunity to infectious disease. To date, studies exploring the genetic basis of pathogen resistance in the wild have focussed almost exclusively on genes of the Major Histocompatibility Complex (MHC); the role of genetic variation elsewhere in the genome as a basis for variation in pathogen resistance has rarely been explored in natural populations. Cytokines are signalling molecules with a role in many immunological and physiological processes. Here we use a natural population of field voles (Microtus agrestis) to examine how genetic diversity at a suite of cytokine and other immune loci impacts the immune response phenotype and resistance to several endemic pathogen species. By using linear models to first control for a range of non-genetic factors, we demonstrate strong effects of genetic variation at cytokine loci both on host immunological parameters and on resistance to multiple pathogens. These effects were primarily localized to three cytokine genes (Interleukin 1 beta (Il1b), Il2, and Il12b), rather than to other cytokines tested, or to membrane-bound, non-cytokine immune loci. The observed genetic effects were as great as for other intrinsic factors such as sex and body weight. Our results demonstrate that genetic diversity at cytokine loci is a novel and important source of individual variation in immune function and pathogen resistance in natural populations. The products of these loci are therefore likely to affect interactions between pathogens and help determine survival and reproductive success in natural populations. Our study also highlights the utility of wild rodents as a model of ecological immunology, to better understand the causes and consequences of variation in immune function in natural populations including humans.  相似文献   

18.
Recent advances in understanding cell traffic, especially the roles of adhesion proteins, chemokines, and chemokine receptors, provide the opportunity for understanding mechanisms involved in the immune response to tuberculosis. This review concentrates on the roles of these molecules and the immune response in tuberculosis, based on studies of humans and mice infected with Mycobacterium tuberculosis.  相似文献   

19.
Onchocerciasis is a major filarial disease and is the second most common cause of infectious blindness in the world. Disease development after infection with Onchocerca volvulus varies widely and is determined by the host's immune response to the parasite. Vector control and administration of ivermectin has reduced infection and disease rates significantly. However, limitations of these programmes, including ivermectin's selective activity on microfilariae, the need for 10-15 years of annual treatments, logistical obstacles and the potential emergence of drug-resistant strains demand alternative strategies. A vaccine that targets O. volvulus infective third-stage larvae (L3) could provide an additional tool to guarantee successful elimination of infection with O. volvulus. An essential step in the development of immunoprophylactic procedures and reagents is the identification of host immune responses toward antigens of O. volvulus L3 and L3 developing to the fourth-stage larvae that are associated with protection against these stages of the parasite. This review summarises the recent advancements in understanding the immune mechanisms in particular the CD4(+) responses to L3 stages in humans and in the mouse vaccination model. Comparison between the two uncovered common immunological elements in naturally exposed humans and mice vaccinated with radiation attenuated L3 or recombinant O. volvulus antigens, as well as significant differences. These studies promisingly suggest that the O. volvulus mouse model is a very useful adjunct to the studying of natural infection in humans and could provide us with the tools to identify the target molecules and the effector immune correlates of protection in humans responsible for attrition of L3 stages. Since some of these antigens may exist in other nematodes, any insight gained into the mechanisms of vaccine-induced anti-O. volvulus L3 protective immunity in both humans and mice could be applicable to the development of vaccines against other nematode infections.  相似文献   

20.
Murine experimentation has provided many useful tools, including the ability to knockout or over-express genes and to perform experiments that are limited by ethical considerations. Over the past century, mice have imparted valuable insights into the biology of many systems, including human immunity. However, although there are many similarities between the immune response of humans and mice, there are also many differences; none is more prominent than when examining natural killer cell biology. These differences include tissue distribution, effector molecules, receptor repertoire, and cytokine responses, all of which have important implications when extrapolating the studies to the human immune responses to Cryptococcus neoformans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号