首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Multiple intracellular signaling pathways have been shown to regulate the hypertrophic growth of cardiac myocytes including mitogen-activated protein kinase (MAPK) and calcineurin-nuclear factor of activated T-cells. However, it is uncertain if individual regulatory pathways operate in isolation or if interconnectivity between unrelated pathways is required for the orchestration of the entire hypertrophic response. To this end, we investigated the interconnectivity between calcineurin-mediated cardiac myocyte hypertrophy and p38 MAPK signaling in vitro and in vivo. We show that calcineurin promotes down-regulation of p38 MAPK activity and enhances expression of the dual specificity phosphatase MAPK phosphatase-1 (MKP-1). Transgenic mice expressing activated calcineurin in the heart were characterized by inactivation of p38 and increased MKP-1 expression during early postnatal development, before the onset of cardiac hypertrophy. In vitro, cultured neonatal cardiomyocytes infected with a calcineurin-expressing adenovirus and stimulated with phenylephrine demonstrated reduced p38 phosphorylation and increased MKP-1 protein levels. Activation of endogenous calcineurin with the calcium ionophore decreased p38 phosphorylation and increased MKP-1 protein levels. Inhibition of endogenous calcineurin with cyclosporin A decreased MKP-1 protein levels and increased p38 activation in response to agonist stimulation. To further investigate potential cross-talk between calcineurin and p38 through alteration in MKP-1 expression, the MKP-1 promoter was characterized and determined to be calcineurin-responsive. These data suggest that calcineurin enhances MKP-1 expression in cardiac myocytes, which is associated with p38 inactivation.  相似文献   

4.
5.
MAPK phosphatase-1 (MKP-1) is an archetypical member of the dual-specificity phosphatase family that deactivates MAPKs. Induction of MKP-1 has been implicated in attenuating the LPS- or peptidoglycan-induced biosynthesis of proinflammatory cytokines, but the role of noncoding RNA in the expression of the MKP-1 is still poorly understood. In this study, we show that MKP-1 is a direct target of microRNA-101 (miR-101). Transfection of miR-101 attenuates induction of MKP-1 by LPS as well as prolonged activation of p38 and JNK/stress-activated protein kinase, whereas inhibition of miR-101 enhances the expression of MKP-1 and shortens p38 and JNK activation. We also found that expression of miR-101 is induced by multiple TLR ligands, including LPS, peptidoglycan, or polyinosinic-polycytidylic acid, and that inhibition of PI3K/Akt by LY294002 or Akt RNA interference blocks the induction of miR-101 by LPS in RAW264.7 macrophage cells. Moreover, treatment of cells with dexamethasone, a widely used anti-inflammatory agent, markedly inhibits miR-101 expression and enhances the expression of MKP-1 in LPS-stimulated macrophages. Together, these results indicate that miR-101 regulates the innate immune responses of macrophages to LPS through targeting MKP-1.  相似文献   

6.
Annexin 1 (Anx-1) is a mediator of the anti-inflammatory actions of glucocorticoids, but the mechanism of its anti-inflammatory effects is not known. We investigated the role of Anx-1 in the regulation of the proinflammatory cytokine, IL-6. Lung fibroblast cell lines derived from Anx-1(-/-) and wild-type (WT) mice were treated with dexamethasone and/or IL-1. IL-6 mRNA and protein were measured using real-time PCR and ELISA, and MAPK pathway activation was studied. Compared with WT cells, unstimulated Anx-1(-/-) cells exhibited dramatically increased basal IL-6 mRNA and protein expression. In concert with this result, Anx-1 deficiency was associated with increased basal phosphorylated p38, JNK, and ERK1/2 MAPKs. IL-1-inducible phosphorylated p38 was also increased in Anx-1(-/-) cells. The increase in IL-6 release in Anx-1(-/-) cells was inhibited by inhibition of p38 MAPK. Anx-1(-/-) cells were less sensitive to dexamethasone inhibition of IL-6 mRNA expression than WT cells, although inhibition by dexamethasone of IL-6 protein was similar. MAPK phosphatase-1 (MKP-1), a glucocorticoid-induced negative regulator of MAPK activation, was up-regulated by dexamethasone in WT cells, but this effect of dexamethasone was significantly impaired in Anx-1(-/-) cells. Treatment of Anx-1(-/-) cells with Anx-1 N-terminal peptide restored MKP-1 expression and inhibited p38 MAPK activity. These data demonstrate that Anx-1 is an endogenous inhibitory regulator of MAPK activation and IL-6 expression, and that Anx-1 is required for glucocorticoid up-regulation of MKP-1. Therapeutic manipulation of Anx-1 could provide glucocorticoid-mimicking effects in inflammatory disease.  相似文献   

7.
Heme oxygenase-1 (HO-1), which catalyzes heme degradation releasing iron, regulates several processes related to breast cancer. Iron metabolism deregulation is also connected with several tumor processes. However the regulatory relationship between HO-1 and iron proteins in breast cancer remains unclear. Using human breast cancer biopsies, we found that high HO-1 levels significantly correlated with low DMT1 levels. Contrariwise, high HO-1 levels significantly correlated with high ZIP14 and prohepcidin expression, as well as hemosiderin storage. At mRNA level, we found that high HO-1 expression significantly correlated with low DMT1 expression but high ZIP14, L-ferritin and hepcidin expression. In in vivo experiments in mice with genetic overexpression or pharmacological activation of HO-1, we detected the same expression pattern observed in human biopsies. In in vitro experiments, HO-1 activation induced changes in iron proteins expression leading to an increase of hemosiderin, ROS levels, lipid peroxidation and a decrease of the growth rate. Such low growth rate induced by HO-1 activation was reversed when iron levels or ROS levels were reduced. Our findings demonstrate an important role of HO-1 on iron homeostasis in breast cancer. The changes in iron proteins expression when HO-1 is modulated led to the iron accumulation deregulating the iron cell cycle, and consequently, generating oxidative stress and low viability, all contributing to impair breast cancer progression.  相似文献   

8.
Using the breast cell lines MCF-10A, MDA-MB-468 and T-47D, we investigated the role of various glucocorticoids in regulating human kallikrein 10 expression. We found that increased concentrations of glucocorticoids decreased KLK10 expression in MCF-10A and increased KLK10 expression in MDA-MB-468 and T-47D cells. Stimulation of the cell lines using other steroid hormones did not yield any difference in KLK10 expression in MCF-10A and MDA-MB-468 cells, suggesting that regulation of KLK10 occurs primarily through glucocorticoids. However, T-47D cells expressed higher levels of KLK10 upon dihydrotestosterone stimulation. Blocking the glucocorticoid receptor (GR) demonstrated that the mechanisms of induction and repression are different in the three cell lines studied. Taken together, our results suggest an alternative mode of KLK10 regulation - by glucocorticoids via GR-dependent mechanisms.  相似文献   

9.
GPC3 is a proteoglycan involved in the control of proliferation and survival, which has been linked to several tumor types. In this respect, we previously demonstrated that normal breast tissues exhibit high levels of GPC3, while its expression is diminished in tumors. However, the role of the GPC3 downregulation in breast cancer progression and its molecular and cellular operational machineries are not fully understood.In this study we showed that GPC3 reverts the epithelial-to-mesenchymal transition (EMT) underwent by mammary tumor cells, blocks metastatic spread and induces dormancy at secondary site. Using genetically modified murine breast cancer cell sublines, we demonstrated that the phospho-Erk/phospho-p38 ratio is lower in GPC3 reexpressing cells, while p21, p27 and SOX2 levels are higher, suggesting a dormant phenotype. In vivo metastasis assays confirmed that GPC3 reexpressing cells reduce their metastatic ability. Interestingly, the presence of dormant cells was evidenced in the lungs of inoculated mice. Dormant cells could reactivate their proliferative capacity, remain viable as well as tumorigenic, but they reentered in dormancy upon reaching secondary site. We also proved that GPC3 inhibits metastasis through p38 pathway activation. The in vivo inhibition of p38 induced an increase in cell invasion of GPC3 reexpressing orthotropic tumors as well as in spontaneous and experimental metastatic dissemination.In conclusion, our study shows that GPC3 returns mesenchymal-like breast cancer cells to an epithelial phenotype, impairs in vivo metastasis and induces tumor dormancy through p38 MAPK signaling activation. These results help to identify genetic determinants of dormancy and suggest the translational potential of research focusing in GPC3.  相似文献   

10.
11.
Antiestrogens, such as the drug tamoxifen, inhibit breast cancer growth by inducing cell cycle arrest. Antiestrogens require action of the cell cycle inhibitor p27(Kip1) to mediate G1 arrest in estrogen receptor-positive breast cancer cells. We report that constitutive activation of the mitogen-activated protein kinase (MAPK) pathway alters p27 phosphorylation, reduces p27 protein levels, reduces the cdk2 inhibitory activity of the remaining p27, and contributes to antiestrogen resistance. In two antiestrogen-resistant cell lines that showed increased MAPK activation, inhibition of the MAPK kinase (MEK) by addition of U0126 changed p27 phosphorylation and restored p27 inhibitory function and sensitivity to antiestrogens. Using antisense p27 oligonucleotides, we demonstrated that this restoration of antiestrogen-mediated cell cycle arrest required p27 function. These data suggest that oncogene-mediated MAPK activation, frequently observed in human breast cancers, contributes to antiestrogen resistance through p27 deregulation.  相似文献   

12.
Somatic activating mutations of BRAF are the earliest and most common genetic abnormality detected in the genesis of human melanoma. However, the mechanism(s) by which activated BRAF promotes melanoma cell cycle progression and/or survival remain unclear. Here we demonstrate that expression of BIM, a pro-apoptotic member of the BCL-2 family, is inhibited by BRAF-->MEK-->ERK signaling in mouse and human melanocytes and in human melanoma cells. Trophic factor deprivation of melanocytes leads to elevated BIM expression. However, re-addition of trophic factors or activation of a conditional form of BRAF(V600E) leads to rapid inhibition of BIM expression. In both cases, inhibition of BIM expression was dependent on the activity of MEK1/2 and the proteasome. Consistent with these observations, pharmacological inhibition of BRAF(V600E) or MEK1/2 in human melanoma cells (using PLX4720 and CI-1040 respectively) led to a striking elevation of BIM expression. Re-activation of BRAF-->MEK-->ERK signaling led to phosphorylation of BIM-EL on serine 69 and its subsequent degradation. Interestingly, endogenous expression of BIM in melanoma cells was insufficient to induce apoptosis unless combined with serum deprivation. Under these circumstances, inhibition of BIM expression by RNA interference provided partial protection from apoptosis. These data suggest that regulation of BIM expression by BRAF-->MEK-->ERK signaling is one mechanism by which oncogenic BRAF(V600E) can influence the aberrant physiology of melanoma cells.  相似文献   

13.
Synucleins are a family of highly conserved small proteins predominantly expressed in neurons. Recently we and others have found that gamma-synuclein is dramatically up-regulated in the vast majority of late-stage breast and ovarian cancers and that gamma-synuclein over-expression can enhance tumorigenicity. In the current study, we have found that gamma-synuclein is associated with two major mitogen-activated kinases (MAPKs), i.e. extracellular signal-regulated protein kinases (ERK1/2) and c-Jun N-terminal kinase 1 (JNK1), and have shown that over-expression of gamma-synuclein leads to constitutive activation of ERK1/2 and down-regulation of JNK1 in response to a host of environmental stress signals, including UV, arsenate, and heat shock. We also tested the effects of gamma-synuclein on apoptosis and activation of JNK and ERK in response to several chemotherapy drugs. We have found that gamma-synuclein-expressing cells are significantly more resistant to the chemotherapeutic drugs paclitaxel and vinblastine as compared with the parental cells. The resistance to paclitaxel can be partially obliterated when ERK activity is inhibited using a MEK1/2 inhibitor. Activation of JNK and its downstream caspase-3 by paclitaxel or vinblastine is significantly down-regulated in gamma-synuclein-expressing cells, indicating that the paclitaxel- or vinblastine-activated apoptosis pathway is blocked by gamma-synuclein. In contrast to paclitaxel and vinblastine, etoposide does not activate JNK, and gamma-synuclein over-expression has no apparent effect on this drug-induced apoptosis. Taken together, our data indicate that oncogenic activation of gamma-synuclein contributes to the development of breast and ovarian cancer by promoting tumor cell survival under adverse conditions and by providing resistance to certain chemotherapeutic drugs.  相似文献   

14.
MMP28 is constitutively expressed by epithelial cells in many tissues, including the respiratory epithelium in the lung and keratinocytes in the skin. This constitutive expression suggests that MMP28 may serve a role in epithelial cell homeostasis. In an effort to determine its function in epithelial cell biology, we generated cell lines expressing wild-type or catalytically-inactive mutant MMP28 in two pulmonary epithelial cell lines, A549 and BEAS-2B. We observed that over-expression of MMP28 provided protection against apoptosis induced by either serum-deprivation or treatment with a protein kinase inhibitor, staurosporine. Furthermore, we observed increased caspase-3/7 activity in influenza-infected lungs from Mmp28-/- mice compared to wild-type mice, and this activity localized to the airway epithelium but was not associated with a change in viral load. Thus, we have identified a novel role of MMP28 in promoting epithelial cell survival in the lung.  相似文献   

15.
Oligodendrocytes, the myelinating cells of the CNS, are highly vulnerable to glutamate excitotoxicity, a mechanism involved in tissue damage in multiple sclerosis. Thus, understanding oligodendrocyte death at the molecular level is important to develop new therapeutic approaches to treat the disease. Here, using microarray analysis and quantitative PCR, we observed that dual-specific phosphatase-6 (Dusp6), an extracellular regulated kinase-specific phosphatase, is up-regulated in oligodendrocyte cultures as well as in optic nerves after AMPA receptor activation. In turn, Dusp6 is overexpressed in optic nerves from multiple sclerosis patients before the appearance of evident damage in this structure. We further analyzed the role of Dusp6 and ERK signaling in excitotoxic oligodendrocyte death and observed that AMPA receptor activation induces a rapid increase in ERK1/2 phosphorylation. Blocking Dusp6 expression, which enhances ERK1/2 phosphorylation, significantly diminished AMPA receptor-induced oligodendrocyte death. In contrast, MAPK/ERK pathway inhibition with UO126 significantly potentiates excitotoxic oligodendrocyte death and increases cytochrome c release, mitochondrial depolarization, and mitochondrial calcium overload produced by AMPA receptor stimulation. Upstream analysis demonstrated that MAPK/ERK signaling alters AMPA receptor properties. Indeed, Dusp6 overexpression as well as incubation with UO126 produced an increase in AMPA receptor-induced inward currents and cytosolic calcium overload. Together, these data suggest that levels of phosphorylated ERK, controlled by Dusp6 phosphatase, regulate glutamate receptor permeability and oligodendroglial excitotoxicity. Therefore, targeting Dusp6 may be a useful strategy to prevent oligodendrocyte death in multiple sclerosis and other diseases involving CNS white matter.  相似文献   

16.
17.
Transferrin receptor 1 (TfR1) is a ubiquitous type II membrane receptor with 61 amino acids in the N-terminal cytoplasmic region. TfR1 is highly expressed in cancer cells, particularly under iron deficient conditions. Overexpression of TfR1 is thought to meet the increased requirement of iron uptake necessary for cell growth. In the present study, we used transferrin (Tf), a known ligand of TfR1, and gambogic acid (GA), an apoptosis-inducing agent and newly identified TfR1 ligand to investigate the signaling role of TfR1 in breast cancer cells. We found that GA but not Tf induced apoptosis in a TfR1-dependent manner in breast cancer MDA-MB-231 cells. Estrogen receptor-positive MCF-7 cells lack caspase-3 and were not responsive to GA treatment. GA activated the three major signaling pathways of the MAPK family, as well as caspase-3, -8, and Poly(ADP-ribose)polymerase apoptotic pathway. Interestingly, only Src inhibitor PP2 greatly sensitized the cells to GA-mediated apoptosis. Further investigations by confocal fluorescence microscopy and immunoprecipitation revealed that Src and TfR1 are constitutively bound. Using TfR1-deficient CHO TRVB cells, point mutation studies showed that Tyr(20) within the (20)YTRF(23) motif of the cytoplasmic region of TfR1 is the phosphorylation site by Src. TfR1 Tyr(20) phosphomutants were more sensitive to GA-mediated apoptosis. Our results indicate that, albeit its iron uptake function, TfR1 is a signaling molecule and tyrosine phosphorylation at position 20 by Src enhances anti-apoptosis and potentiates breast cancer cell survival.  相似文献   

18.
The Down syndrome critical region 1 (DSCR1) gene encodes a regulator of calcineurin 1 (RCAN1), which is overexpressed in the patients with Down syndrome. In this study, we found that the protein expression of RCAN1 was increased by the hydrogen peroxide (H2O2). The increase of RCAN1 expression by H2O2 was blocked by the treatment with anti-oxidants and inhibitors of mitogen-activated protein kinases (MAPKs), indicating that this increase was caused by the generation of reactive oxygen species and activation of MAPKs. In addition, we found that the phosphorylation of RCAN1 by H2O2 caused an increase of RCAN1 expression by increasing of the half-life of the protein. Our results provide the evidence that H2O2 acts as an important regulator in the control of RCAN1 protein expression through phosphorylation.  相似文献   

19.
Previous studies have implicated a role for E-selectin in carcinoma cell adhesion to vascular endothelium. We examined the role of colon cancer cell adhesion to vascular endothelium via E-selectin using adenoviral vector-mediated transfection in human umbilical vein endothelial cells (HUVECs). We found that the amount of HUVEC detachment from the gelatin matrix 24 h after LS-180 cell adhesion was inhibited only when the HUVECs were transduced with wild-type E-selectin, but not with a cytoplasmic domain truncated mutant E-selectin or the control Lac-Z vector. We also found that the adhesion of LS-180 cells to wild-type E-selectin transduced HUVEC-induced activation of beta(1)-integrin receptors without affecting MMP activity. These results indicate that colon cancer cell adhesion via E-selectin inhibits HUVEC detachment from the monolayer, at least in part by modulating beta(1)-integrin activity in HUVECs. In addition, they indicate the importance of the cytoplasmic domain of E-selectin with this phenomenon.  相似文献   

20.
Signaling through the B cell Ag receptor (BCR) is a key determinant in the regulation of B cell physiology. Depending on additional factors, such as microenvironment and developmental stage, ligation of the BCR can trigger B lymphocyte activation, proliferation, or apoptosis. The regulatory mechanisms determining B cell apoptosis and survival are not known. Using the chicken B lymphoma cell line DT40 as a model system, we investigated the role of the serine/threonine kinase Akt in B cell activation. While parental DT40 cells undergo apoptosis in response to BCR cross-linking, cells overexpressing Akt show a greatly diminished apoptotic response. By contrast, limiting the activation of Akt, either by inhibiting phosphatidylinositol 3-kinase or by ectopic expression of the phospholipid phosphatase MMAC1, results in a significant increase in the percentage of apoptotic cells after BCR cross-linking. Using various DT40 knockout cell lines, we further demonstrate that the tyrosine kinase Syk is required for Akt activation and that Lyn tyrosine kinase inhibits Akt activation. Taken together, the data demonstrate that Akt plays an important role in B cell survival and that Akt is activated in a Syk-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号