首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
红豆树(Ormosia hosiei)为中国特有种,兼具材用、药用、园艺观赏及科学研究等价值,但是日益严重的干扰对红豆树种群造成了极大影响。本文基于红豆树胸径与年龄之间的关系,初步分析了受干扰程度不同的3个红豆树种群的年龄结构、种群静态生命表、存活曲线及死亡率和消失率曲线。结果显示:受严重干扰的种群幼苗严重不足,种群表现出明显的衰退趋势;近年来受中度干扰的种群幼苗个体数占绝对优势,为各级数量的7877%;长期受轻微干扰的种群年龄级结构表现出为稳定的特征。这3个种群生命表最大的差异在于受干扰最严重种群的第Ⅰ龄级和第Ⅱ龄级的死亡率为负,这说明其幼苗库不足。存活曲线都存在波动,长期受轻微干扰的种群死亡率变幅最小。研究认为,红豆树种质资源和分布面积都有所减少,应加强科学研究和保护,进行适度干扰,使种群朝着进展演替的方向发展。  相似文献   

2.
Heterogeneity in individual quality can be a major obstacle when interpreting age‐specific variation in life‐history traits. Heterogeneity is likely to lead to within‐generation selection, and patterns observed at the population level may result from the combination of hidden patterns specific to subpopulations. Population‐level patterns are not relevant to hypotheses concerning the evolution of age‐specific reproductive strategies if they differ from patterns at the individual level. We addressed the influence of age and a variable used as a surrogate of quality (yearly reproductive state) on survival and breeding probability in the kittiwake. We found evidence of an effect of age and quality on both demographic parameters. Patterns observed in breeders are consistent with the selection hypothesis, which predicts age‐related increases in survival and traits positively correlated with survival. Our results also reveal unexpected age effects specific to subgroups: the influence of age on survival and future breeding probability is not the same in nonbreeders and breeders. These patterns are observed in higher‐quality breeding habitats, where the influence of extrinsic factors on breeding state is the weakest. Moreover, there is slight evidence of an influence of sex on breeding probability (not on survival), but the same overall pattern is observed in both sexes. Our results support the hypothesis that age‐related variation in demographic parameters observed at the population level is partly shaped by heterogeneity among individuals. They also suggest processes specific to subpopulations. Recent theoretical developments lay emphasis on integration of sources of heterogeneity in optimization models to account for apparently “sub‐optimal” empirical patterns. Incorporation of sources of heterogeneity is also the key to investigation of age‐related reproductive strategies in heterogeneous populations. Thwarting “heterogeneity's ruses” has become a major challenge: for detecting and understanding natural processes, and a constructive confrontation between empirical and theoretical studies.  相似文献   

3.
Numerous studies report that early childhood biological stress impairs health in later adulthood. Overwhelmingly these studies are based on modern data, when health conditions are quite good by historical standards. Potentially much can be learned by examining the relationship within populations that lived under enormous pressure, enduring life expectancies less than one-half of those found in industrial countries of the late twentieth century. This paper uses the skeletal remains of over 3000 individuals who lived in the Western Hemisphere as long as 6000 years ago to probe the connection between several markers of early childhood stress and survival from approximately age 15 to 30. In a logit model with explanatory variables that control for sex and ethnicity, the probability of survival was systematically 7.6 percentage points less among individuals with two or more hypoplasias, 3.9 percentage points less for those with cribra orbitalia or porotic hyperostosis, and 4.6 percentage points less for individuals stunted by 20 cm in height. The paper compares these findings with those from studies on modern data and concludes with suggestions for research.  相似文献   

4.
Variation between and within individuals in life history traits is ubiquitous in natural populations. When affecting fitness‐related traits such as survival or reproduction, individual heterogeneity plays a key role in population dynamics and life history evolution. However, it is only recently that properly accounting for individual heterogeneity when studying population dynamics of free‐ranging populations has been made possible through the development of appropriate statistical models. We aim here to review case studies of individual heterogeneity in the context of capture–recapture models for the estimation of population size and demographic parameters with imperfect detection. First, we define what individual heterogeneity means and clarify the terminology used in the literature. Second, we review the literature and illustrate why individual heterogeneity is used in capture–recapture studies by focusing on the detection of life‐history tradeoffs, including senescence. Third, we explain how to model individual heterogeneity in capture–recapture models and provide the code to fit these models ( https://github.com/oliviergimenez/indhet_in_CRmodels ). The distinction is made between situations in which heterogeneity is actually measured and situations in which part of the heterogeneity remains unobserved. Regarding the latter, we outline recent developments of random‐effect models and finite‐mixture models. Finally, we discuss several avenues for future research.  相似文献   

5.
濒危植物海南龙血树的种群结构与动态   总被引:1,自引:0,他引:1  
了解种群的生存现状与动态趋势对濒危植物的保护至关重要。为了更好地保护濒危海南龙血树种群,对海南岛不同生境的11个海南龙血树(Dracaena cambodiana)种群进行了调查;并利用个体基径数据建立各种群的年龄结构和静态生命表,得到种群年龄结构动态指数,绘制种群存活曲线和生存函数曲线,从而获得海南龙血树的种群结构与动态。结果表明:海南龙血树种群年龄结构与种群所处的生境关系密切,海边的NS和YL种群结构为衰退型,LN和CH居群为稳定型,而非海边种群为增长型,没有老龄个体;11个种群中,EXL种群显示出最高的增长趋势和最好的种群稳定性,NS和YL种群稳定性最差,种群抗干扰能力极低;11个种群的存活曲线均属于Deevey-Ⅰ型,但生存函数分析显示海南龙血树种群生活史早期和晚期脆弱,中期稳定,这表明海南龙血树种群所处的生境更适合成年个体生存,现有的生境对幼龄个体的环境筛作用较强。海南龙血树属于退偿物种,针对其种群的生存现状,应采取多种方法相结合的方式进行保护与复壮。  相似文献   

6.
云南是毒药树(Sladenia celastrifolia)的分布中心,日益严重的人为干扰不可避免地影响毒药树种群的数量特征。基于毒药树年龄与胸径之间的关系,初步分析了受人为干扰程度不同的两个种群的年龄结构、静态生命表和存活曲线,并对这两个种群进行了比较。严重受干扰的种群的幼苗库相对不足,Ⅰ龄级个体数比例为12.7%,Ⅱ、Ⅲ、Ⅳ龄级个体数所占比例为80.3%,种群衰退趋势明显;未受干扰的种群幼苗库相对充足,年龄结构呈现稳定种群的特征。这两个种群的生命表也存在差异,其中最明显的就是严重受干扰的种群的Ⅰ龄级和Ⅱ龄级的死亡率为负,这是幼苗库不足的一个直接反映。两个种群的存活曲线都表现出低龄级个体死亡率高的特征,但未受干扰的种群各龄级个体的死亡率的变化幅度较小。毒药树种群的各项特征与鹅掌楸(Liriodendron chinense)及其它几种濒危植物的相关特征相似。虽然毒药树还未被列为受威胁的物种,但它已具备IUCN所定义的受威胁物种的特点,因此,对它的保护已十分必要,除了在野外建立相应的毒药树保护点之外,在植物园中培植人工种群也是必须的。  相似文献   

7.
In many animal populations, demographic parameters such as survival and recruitment vary markedly with age, as do parameters related to sampling, such as capture probability. Failing to account for such variation can result in biased estimates of population‐level rates. However, estimating age‐dependent survival rates can be challenging because ages of individuals are rarely known unless tagging is done at birth. For many species, it is possible to infer age based on size. In capture–recapture studies of such species, it is possible to use a growth model to infer the age at first capture of individuals. We show how to build estimates of age‐dependent survival into a capture–mark–recapture model based on data obtained in a capture–recapture study. We first show how estimates of age based on length increments closely match those based on definitive aging methods. In simulated analyses, we show that both individual ages and age‐dependent survival rates estimated from simulated data closely match true values. With our approach, we are able to estimate the age‐specific apparent survival rates of Murray and trout cod in the Murray River, Australia. Our model structure provides a flexible framework within which to investigate various aspects of how survival varies with age and will have extensions within a wide range of ecological studies of animals where age can be estimated based on size.  相似文献   

8.
Summary We address the problem of establishing a survival schedule for wild populations. A demographic key identity is established, leading to a method whereby age-specific survival and mortality can be deduced from a marked cohort life table established for individuals that are randomly sampled at unknown age and marked, with subsequent recording of time-to-death. This identity permits the construction of life tables from data where the birth date of subjects is unknown. An analogous key identity is established for the continuous case in which the survival schedule of the wild population is related to the density of the survival distribution in the marked cohort. These identities are explored for both life tables and continuous lifetime data. For the continuous case, they are implemented with statistical methods using non-parametric density estimation methods to obtain flexible estimates for the unknown survival distribution of the wild population. The analytical model provided here serves as a starting point to develop more complex models for residual demography, i.e. models for estimating survival of wild populations in which age-at-entry is unknown and using remaining information in randomly encountered individuals. This is a first step towards a broad new concept of 'expressed demographic information content of marked or captured individuals'.  相似文献   

9.
Understanding trade‐offs in wild populations is difficult, but important if we are to understand the evolution of life histories and the impact of ecological variables upon them. Markers that reflect physiological state and predict future survival would be of considerable benefit to unraveling such trade‐offs and could provide insight into individual variation in senescence. However, currently used markers often yield inconsistent results. One underutilized measure is hematocrit, the proportion of blood comprising erythrocytes, which relates to the blood's oxygen‐carrying capacity and viscosity, and to individual endurance. Hematocrit has been shown to decline with age in cross‐sectional studies (which may be confounded by selective appearance/disappearance). However, few studies have tested whether hematocrit declines within individuals or whether low hematocrit impacts survival in wild taxa. Using longitudinal data from the Seychelles warbler (Acrocephalus sechellensis), we demonstrated that hematocrit increases with age in young individuals (<1.5 years) but decreases with age in older individuals (1.5–13 years). In breeders, hematocrit was higher in males than females and varied relative to breeding stage. High hematocrit was associated with lower survival in young individuals, but not older individuals. Thus, while we did not find support for hematocrit as a marker of senescence, high hematocrit is indicative of poor condition in younger individuals. Possible explanations are that these individuals were experiencing dehydration and/or high endurance demands prior to capture, which warrants further investigation. Our study demonstrates that hematocrit can be an informative metric for life‐history studies investigating trade‐offs between survival, longevity, and reproduction.  相似文献   

10.
The dynamics of plant populations in arid environments are largely affected by the unpredictable environmental conditions and are fine-tuned by biotic factors, such as modes of recruitment. A single species must cope with both spatial and temporal heterogeneity that trigger pulses of sexual and clonal establishment throughout its distributional range. We studied two populations of the clonal, purple prickly pear cactus, Opuntia macrocentra, in order to contrast the factors responsible for the population dynamics of a common, widely distributed species. The study sites were located in protected areas that correspond to extreme latitudinal locations for this species within the Chihuahuan Desert. We studied both populations for four consecutive years and determined the demographic consequences of environmental variability and the mode of reproduction using matrix population models, life table response experiments (LTREs), and loop and perturbation analyses. Although both populations seemed fairly stable (population growth rate, λ∼1), different demographic parameters and different life cycle routes were responsible for this stability in each population. In the southernmost population (MBR) LTRE and loop and elasticity analyses showed that stasis is the demographic process with the highest contributions to λ, followed by sexual reproduction, and clonal propagation contributed the least. The northern population (CR) had both higher elasticities and larger contributions of stasis, followed by clonal propagation and sexual recruitment. Loop analysis also showed that individuals in CR have more paths to complete a life cycle than those in MBR. As a consequence, each population differed in life history traits (e.g., size class structure, size at sexual maturity, and reproductive value). Numerical perturbation analyses showed a small effect of the seed bank on the λ of both populations, while the transition from seeds to seedlings had an important effect mainly in the northern population. Clonal propagation (higher survival and higher contributions to vital rates) seems to be more important for maintaining populations over long time periods than sexual reproduction.  相似文献   

11.
Fox CW  Bush ML  Roff DA  Wallin WG 《Heredity》2004,92(3):170-181
The age at which individuals die varies substantially within and between species, but we still have little understanding of why there is such variation in life expectancy. We examined sex-specific and genetic variation in adult lifespan and the shape of mortality curves both within and between two populations of the seed beetle, Callosobruchus maculatus, that differ in a suite of life history characters associated with adaptation to different host species. Mean adult lifespan and the shape of the logistic mortality curves differed substantially between males and females (males had lower initial mortality rates, but a faster increase in the rate of mortality with increasing age) and between populations (they differed in the rate of increase in mortality with age). Larger individuals lived longer than smaller individuals, both because they had lower initial mortality rates and a slower increase in the rate of mortality with increasing age. However, differences in body size were not adequate to explain the differences in mortality between the sexes or populations. Both lifespan and mortality rates were genetically variable within populations and genetic variance/covariance matrices for lifespan differed between the populations and sexes. This study thus demonstrated substantial genetic variation in lifespan and mortality rates within and between populations of C. maculatus.  相似文献   

12.
Apparent changes in breeding performance with age measured at the population level can be due to changes in individual capacity at different ages, or to the differential survival of individuals with different capabilities. Estimating the relative importance of the two is important for understanding ageing patterns in natural populations, but there are few studies of such populations in which these effects have been disentangled. We analysed laying date and clutch size as measures of individual performance in a population of mute swans (Cygnus olor) studied over 25 years at Abbotsbury, UK. On both measures of breeding performance, individuals tended to improve up to the age of 6 or 7, and to decline after about the age of 12. Individuals with longer lifespans performed better at all ages (earlier laying, larger clutches) than animals that ceased breeding earlier. We conclude that the apparent mean increase in performance with age in mute swans is due to both individual improvement and differential survival of individuals who perform well, while the decline in older age groups is due to individual loss of function. Our results underline the need to take individual differences into account when testing hypotheses about life histories in wild populations.  相似文献   

13.
Fluctuations of fish populations abundances are shaped by the interplay between population dynamics and the stochastic forcing of the environment. Age-structured populations behave as a filter of the environment. This filter is characterised by the species-specific life cycle and life-history traits. An increased mortality of mature individuals alters these characteristics and may therefore induce changes in the variability of populations. The response of a generic age-structured model was analysed to investigate the expected changes in the fluctuations of fish populations in response to decreased adult survival. These expectations were then tested on an extensive dataset. In accordance with theory, the analyses revealed that decreased adult survival and mean age of spawners were linked to an increase in the relative importance of short-term fluctuations. It suggests that intensive exploitation can lead to a change in the variability of fish populations, an issue of central interest from both conservation and management perspectives.  相似文献   

14.
Natural diversity in aging and other life‐history patterns is a hallmark of organismal variation. Related species, populations, and individuals within populations show genetically based variation in life span and other aspects of age‐related performance. Population differences are especially informative because these differences can be large relative to within‐population variation and because they occur in organisms with otherwise similar genomes. We used experimental evolution to produce populations divergent for life span and late‐age fertility and then used deep genome sequencing to detect sequence variants with nucleotide‐level resolution. Several genes and genome regions showed strong signatures of selection, and the same regions were implicated in independent comparisons, suggesting that the same alleles were selected in replicate lines. Genes related to oogenesis, immunity, and protein degradation were implicated as important modifiers of late‐life performance. Expression profiling and functional annotation narrowed the list of strong candidate genes to 38, most of which are novel candidates for regulating aging. Life span and early age fecundity were negatively correlated among populations; therefore, the alleles we identified also are candidate regulators of a major life‐history trade‐off. More generally, we argue that hitchhiking mapping can be a powerful tool for uncovering the molecular bases of quantitative genetic variation.  相似文献   

15.
濒危植物秦岭冷杉种群数量动态   总被引:25,自引:0,他引:25  
为了对濒危植物秦岭冷杉种群数量动态评价和预测,通过样地调查和数据统计,研究了秦岭冷杉种群的年龄结构、静态生命表及其与环境因子关系,运用时间序列模型预测了种群数量动态.结果表明,多数秦岭冷杉种群幼龄级个体数较少,中老龄个体数量较大,呈衰退趋势.仅处于低海拔地区的秦岭冷杉-木蓝-苔草群丛中的种群(D种群)由于立地条件较好,幼龄级个体数量相对丰富,种群稳定.不同秦岭冷杉种群生命表和存活曲线的分析表明,尽管生境条件差异,但存活曲线基本接近DeeveyⅢ型;不同种群偏离典型存活曲线的程度与幼苗缺乏程度有关,一般Ⅲ~Ⅴ龄级死亡率较高.时间序列分析表明,在未来20、40和80年中,不同秦岭冷杉种群均会呈现老龄级株数先增后减的趋势,种群稳定性长期维持困难.对影响秦岭冷杉种群增长的10个环境因子通过主成分分析(PCA)发现,乔木层盖度、土壤有机质含量和空气湿度对种群发挥有利影响,而人为干扰和光照强度对秦岭冷杉种群增长发挥不利影响.应充分利用秦岭冷杉性喜荫、耐寒、种子活力较强的特点,加强现有林分就地保护,重点是具有结实能力的中老龄个体;在阴坡地带,对林下灌木比较密集的群丛,通过砍灌、清理林下活地被物等抚育措施,为幼苗发育创造良好的环境条件;就地采种育苗,扩大人工种群.  相似文献   

16.
Several hypotheses have been put forward to explain the evolution of senescence. One of the leading hypotheses, the disposable soma hypothesis, predicts a trade‐off, whereby early‐life investment in reproduction leads to late‐life declines in survival (survival senescence). Testing this hypothesis in natural populations is challenging, but important for understanding the evolution of senescence. We used the long‐term data set from a contained, predator‐free population of individually marked Seychelles warblers (Acrocephalus sechellensis) to investigate how age‐related declines in survival are affected by early‐life investment in reproduction and early‐life environmental conditions. The disposable soma hypothesis predicts that higher investment in reproduction, or experiencing harsh conditions during early life, will lead to an earlier onset, and an increased rate, of senescence. We found that both sexes showed similar age‐related declines in late‐life survival consistent with senescence. Individuals that started breeding at a later age showed a delay in survival senescence, but this later onset of breeding did not result in a less rapid decline in late‐life survival. Although survival senescence was not directly related to early‐life environmental conditions, age of first breeding increased with natal food availability. Therefore, early‐life food availability may affect senescence by influencing age of first breeding. The disposable soma hypothesis of senescence is supported by delayed senescence in individuals that started breeding at a later age and therefore invested less in reproduction.  相似文献   

17.
Phenology, the timing of developmental events such as oviposition or pupation, is highly dependent on temperature; since insects are ectotherms, the time it takes them to complete a life stage (development time) depends on the temperatures they experience. This dependence varies within and between populations due to variation among individuals that is fixed within a life stage (giving rise to what we call persistent variation) and variation from random effects within a life stage (giving rise to what we call random variation). It is important to understand how both types of variation affect phenology if we are to predict the effects of climate change on insect populations.  相似文献   

18.
长柱红山茶(Camellia longistyla Chang ex F.A.Zeng et H.Zhou)是贵州特有经济植物,分布于贵州省金沙沟桫椤自然保护区和雷公山自然保护区海拔950~1400 m的常绿阔叶落叶混交林中,为我国珍稀濒危物种。通过对长柱红山茶密集分布的两个典型样地(望乡坡A和方山B)采样调查,采用径级代替龄级的方法绘制种群生命表、存活曲线(ln(ln))、生存率函数(Sn)进行生存分析研究,用动态指数(Vn、Vpi)和时间序列模型预测种群发展动向。结果表明:长柱红山茶种群的年龄结构总体上呈衰退型早期阶段,即中龄个体数量多、幼龄个体数量少,其生存曲线基本属于Deevey-Ⅰ型;生命表及其相关曲线分析显示,长柱红山茶种群有早期锐减、中期稳定、后期逐步衰退的特征;种群数量动态分析发现,幼苗不足,自然更新困难,但仍有一定的恢复潜力,且A种群受环境影响较大,对环境变化较敏感;时间序列分析表明,A、B两个种群的衰退现象是在最近的1~2个龄级时间内开始的,如果不采取有效保护措施,在未来4个龄级时间后,该物种原生种群将进入典型的衰退型年龄结构。因此,系统研究其种群特征及繁殖规律,并在加强就地保护的同时,采取人工繁育幼苗并种植回归原生境或引入相似生境中,通过栽培增加其种群数量和扩散能力,对其种质资源的有效保护和开发利用具有重要意义。  相似文献   

19.
Genetic diversity has been hypothesized to promote fitness of individuals and populations, but few studies have examined how genetic diversity varies with ontogeny. We examined patterns in population and individual genetic diversity and the effect of genetic diversity on individual fitness among life stages (adults and juveniles) and populations of captive yellow perch (Perca flavescens) stocked into two ponds and allowed to spawn naturally. Significant genetic structure developed between adults and offspring in a single generation, even as heterozygosity and allelic richness remained relatively constant. Heterozygosity had no effect on adult growth or survival, but was significantly and consistently positively related to offspring length throughout the first year of life in one pond but not the other. The largest individuals in the pond exhibiting this positive relationship were more outbred than averaged size individuals and also more closely related to one another than they were to average‐sized individuals, suggesting potential heritability of body size or spawn timing effects. These results indicate that the influence of heterozygosity may be mediated through an interaction, likely viability selection, between ontogeny and environment that is most important during early life. In addition, populations may experience significant genetic change within a single generation in captive environments, even when allowed to reproduce naturally. Accounting for the dynamic influences of genetic diversity on early life fitness could lead to improved understanding of recruitment and population dynamics in both wild and captive populations.  相似文献   

20.
Shifts in feeding habits are expected to occur during adaptation to cave life Doltchopoda cave crickets inhabit both natural and artificial caves showing differences in population size, fecundity, phenology and age structure Compared to artificial caves, typically holding a seasonal age structure, populations from natural caves maintain a constantly heterogeneous age structure Faecal content analysis of 605 individuals from 24 natural and artificial cave populations, enabled us to characterize their trophic niche and to investigate its variation The results of multivariate analyses and measures of niche breadth and niche overlap outlined differences in trophic resource exploitation between natural and artificial cave populations Seasonal variation in diet occurred in both types of caves, and it was greater in artificial cave populations However, within any season, differences in feeding habits between individuals were much greater in natural caves resulting in a wider heterogeneity in trophic resources exploitation. Such heterogeneity appears to be mainly due to differences in diet between individuals of different developmental stages In fact, in a sample of 15 populations we found a positive, statistical significant correlation between niche breadth and heterogeneity in age structure These data are discussed in a broader evolutionary context in order to understand the role of limited resources availability in shaping and maintaining heterogeneity in age structure of Dolichopoda populations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号