首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
In many tropical lowland rain forests, topographic variation increases environmental heterogeneity, thus contributing to the extraordinary biodiversity of tropical lowland forests. While a growing number of studies have addressed effects of topographic differences on tropical insect communities at regional scales (e.g., along extensive elevational gradients), surprisingly little is known about topographic effects at smaller spatial scales. The present study investigates moth assemblages in a topographically heterogeneous lowland rain forest landscape, at distances of less than a few hundred meters, in the Golfo Dulce region (SW Costa Rica). Three moth lineages—Erebidae–Arctiinae (tiger and lichen moths), the bombycoid complex, and Geometridae (inchworm moths)—were examined by means of automatic light traps in three different forest types: creek forest, slope forest, and ridge forest. Altogether, 6,543 individuals of 419 species were observed. Moth assemblages differed significantly between the three forest types regarding species richness, total abundance, and species composition. Moth richness and abundance increased more than fourfold and eightfold from creek over slope to ridge forest sites. All three taxonomic units showed identical biodiversity patterns, notwithstanding their strong differences in multiple eco-morphological traits. An indicator species analysis revealed that most species identified as characteristic were associated either with the ridge forest alone or with ridge plus slope forests, but very few with the creek forest. Despite their mobility, local moth assemblages are highly differentially filtered from the same regional species pool. Hence, variation in environmental factors significantly affects assemblages of tropical moth species at small spatial scales.  相似文献   

2.
Tree species distribution in lowland tropical forests is strongly associated with rainfall amount and distribution. Not only plant water availability, but also irradiance, soil fertility, and pest pressure covary along rainfall gradients. To assess the role of water availability in shaping species distribution, we carried out a reciprocal transplanting experiment in gaps in a dry and a wet forest site in Ghana, using 2,670 seedlings of 23 tree species belonging to three contrasting rainfall distributions groups (dry species, ubiquitous species, and wet species). We evaluated seasonal patterns in climatic conditions, seedling physiology and performance (survival and growth) over a 2‐year period and related seedling performance to species distribution along Ghana's rainfall gradient. The dry forest site had, compared to the wet forest, higher irradiance, and soil nutrient availability and experienced stronger atmospheric drought (2.0 vs. 0.6 kPa vapor pressure deficit) and reduced soil water potential (?5.0 vs. ?0.6 MPa soil water potential) during the dry season. In both forests, dry species showed significantly higher stomatal conductance and lower leaf water potential, than wet species, and in the dry forest, dry species also realized higher drought survival and growth rate than wet species. Dry species are therefore more drought tolerant, and unlike the wet forest species, they achieve a home advantage. Species drought performance in the dry forest relative to the wet forest significantly predicted species position on the rainfall gradient in Ghana, indicating that the ability to grow and survive better in dry forests and during dry seasons may allow species to occur in low rainfall areas. Drought is therefore an important environmental filter that influences forest composition and dynamics. Currently, many tropical forests experience increase in frequency and intensity of droughts, and our results suggest that this may lead to reduction in tree productivity and shifts in species distribution.  相似文献   

3.
Leaf flushing during the dry season: the paradox of Asian monsoon forests   总被引:3,自引:0,他引:3  
Aim Most deciduous species of dry monsoon forests in Thailand and India form new leaves 1–2 months before the first monsoon rains, during the hottest and driest part of the year around the spring equinox. Here we identify the proximate causes of this characteristic and counterintuitive ‘spring‐flushing’ of monsoon forest trees. Location Trees of 20 species were observed in semi‐deciduous dry monsoon forests of northern Thailand with a 5–6‐month‐long severe dry season and annual rainfall of 800–1500 mm. They were growing on dry ridges (dipterocarp–oak forest) or in moist gullies (mixed deciduous–evergreen forest) at 680–750 m altitude near Chiang Mai and in a dry lowland stand of Shorea siamensis in Uthai Thani province. Methods Two novel methods were developed to analyse temporal and spatial variation in vegetative dry‐season phenology indicative of differences in root access to subsoil water reserves. Results Evergreen and leaf exchanging species at cool, moist sites leafed soon after partial leaf shedding in January–February. Drought‐resistant dipterocarp species were evergreen at moist sites, deciduous at dry sites, and trees leafed soon after leaf shedding whenever subsoil water was available. Synchronous spring flushing of deciduous species around the spring equinox, as induced by increasing daylength, was common in Thailand's dipterocarp–oak forest and appears to be prevalent in Indian dry monsoon forests of the Deccan peninsula with its deep, water‐storing soils. Main conclusions In all observed species leafing during the dry season relied on subsoil water reserves, which buffer trees against prolonged climatic drought. Implicitly, rainfall periodicity, i.e. climate, is not the principal determinant of vegetative tree phenology. The establishment of new foliage before the summer rains is likely to optimize photosynthetic gain in dry monsoon forests with a relatively short, wet growing season.  相似文献   

4.
Forest succession can influence herbivore communities through changes in host availability, plant quality, microclimate, canopy structure complexity and predator abundance. It is not well known, however, if such influence is constant across years. Caterpillars have been reported to be particularly susceptible to changes in plant community composition across forest succession, as most species are specialists and rely on the presence of their hosts. Nevertheless, in the case of tropical dry forests, plant species have less defined successional boundaries than tropical wet forests, and hence herbivore communities should be able to persist across different successional stages. To test this prediction, caterpillar communities were surveyed during eight consecutive years in a tropical dry forest in four replicated successional stages in Chamela, Jalisco and Mexico. Lepidopteran species richness and diversity were equivalent in mature forests and early successional stages, but a distinctive caterpillar community was found for the recently abandoned pastures. Species composition tended to converge among all four successional stages during the span of eight years. Overall, our results highlight the importance of both primary and secondary forest for the conservation of caterpillar biodiversity at a landscape level. We also highlight the relevance of long‐term studies when assessing the influence of forest succession to account for across year variation in species interactions and climatic factors. Abstract in French is available with online material.  相似文献   

5.
Soil respiration (SR) in forests contributes significant carbon dioxide emissions from terrestrial ecosystems and is highly sensitive to environmental changes, including soil temperature, soil moisture, microbial community, surface litter, and vegetation type. Indeed, a small change in SR may have large impacts on the global carbon balance, further influencing feedbacks to climate change. Thus, detailed characterization of SR responses to changes in environmental conditions is needed to accurately estimate carbon dioxide emissions from forest ecosystems. However, data for such analyses are still limited, especially in tropical forests of Southeast Asia where various stages of forest succession exist due to previous land‐use changes. In this study, we measured SR and some environmental factors including soil temperature (ST), soil moisture (SM), and organic matter content (OM) in three successional tropical forests in both wet and dry periods. We also analyzed the relationships between SR and these environmental variables. Results showed that SR was higher in the wet period and in older forests. Although no response of SR to ST was found in younger forest stages, SR of the old‐growth forest significantly responded to ST, plausibly due to the nonuniform forest structure, including gaps, that resulted in a wide range of ST. Across forest stages, SM was the limiting factor for SR in the wet period, whereas SR significantly varied with OM in the dry period. Overall, our results indicated that the responses of SR to environmental factors varied temporally and across forest succession. Nevertheless, these findings are still preliminary and call for detailed investigations on SR and its variations with environmental factors in Southeast Asian tropical forests where patches of successional stages dominate.  相似文献   

6.
云南热带季雨林及其与热带雨林植被的比较   总被引:2,自引:0,他引:2       下载免费PDF全文
朱华 《植物生态学报》2011,35(4):463-470
在中国植物学文献中, 对热带季雨林的解释和运用是不一致的, 特别是易于把季雨林与热带雨林相混淆。季雨林是在具有明显干、湿季变化的热带季风气候下发育的一种热带落叶森林植被, 是介于热带雨林与热带稀树草原(savanna)之间的一个植被类型。云南的热带季雨林在分布生境、生态外貌特征、植物种类组成和地理成分构成上, 均与热带雨林有明显区别, 季雨林主要分布在海拔1 000 m以下的几大河流开阔河段两岸和河谷盆地, 其群落结构相对简单, 乔木一般仅有1至2层, 上层树种在干季落叶或上层及下层树种在干季都落叶; 在生活型组成上, 季雨林的木质藤本相对较少, 大高位芽植物及地上芽植物很少, 但地面芽植物很丰富, 地下芽植物和一年生植物也相对丰富; 在叶级和叶型特征上, 季雨林植物的小叶和复叶比例相对较高, 分别占到24%和44%; 在植物区系地理成分构成上, 季雨林的热带分布属合计也占绝对优势, 但以泛热带分布属的比例相对较高, 约占到总属数的30%, 热带亚洲至热带非洲分布属的比例也较高, 约占总属数的12%。季雨林的地理成分更为多样性, 起源与发展历史也更复杂和古老。  相似文献   

7.
Although open-cup nesting birds generally face increased risk of nest depredation from forest edge predators and brood parasites in fragmented temperate landscapes, little information exists to assess such risks in tropical birds. We compared nesting success of real birds' nests in large and small forest fragments to a control site in Caribbean lowland wet forest of Costa Rica. Pooling across species, nesting success was significantly greater in unfragmented forest than in either small, isolated fragments or the La Selva Biological Reserve, which is at the tip of a forest 'peninsula' embedded in a largely deforested landscape. Nesting success in isolated fragments did not vary according to distance from edge, suggesting that predators in fragments act throughout these forest patches. The case for increased nest predation as a plausible mechanism to explain the documented decline of forest interior bird populations in this fragmented tropical landscape is enhanced by a simple demographic model that suggests nesting success is likely too low to maintain populations at La Selva and in the fragments. The fact that the large (> 1000 ha) La Selva forest reserve is experiencing nest predation rates similar to those in much smaller fragments is cause for concern. Our results make a strong case for additional studies to document the identities of nest predators in both fragmented and unfragmented forests in such tropical forest landscapes.  相似文献   

8.
Burgess, N.D. & Mlingwa, C.O.F. 2000. Evidence for altitudinal migration of forest birds between montane Eastern Arc and lowland forests in East Africa. Ostrich 71 (1 & 2): 184–190.

In this paper we assess the evidence for altitudinal movements of forest birds from the montane forests of the Eastern Arc mountains of East Africa to nearby lowland forest patches. For 34 montane species, including all the Eastern Arc endemics except Banded Green Sunbird Anthreptes rubritorques there is no evidence that they undertake seasonal movements to lower altitudes. An additional 26 montane species, of somewhat wider distribution, have been recorded at low (<500 m) altitudes during the cold/dry season (June to September). Most records of these montane birds at lower altitudes are from sites adjoining montane forest areas, although a few records are from lowland coastal forests at 100–240 km distance from montane areas. Only five of the 26 species (White-chested Alethe Alethe fulleborni, White-starred Forest Robin Pogonocichla stellata, Orange Ground Thrush Zoothera gurneyi, Evergreen Forest Warbler Bradypterus mariae and Barred Long-tailed Cuckoo Cercococcyx montanus) are regularly and commonly reported in the lowlands. They are also found in the lowlands in small numbers during the warm/wet season (October to February), when they may breed. The abundance of at least four, and probably more, of the forest birds with a more widespread distribution in the lowland and montane forests of East Africa declines greatly at high altitudes from the onset of the cold/wet season (February) and only increases again at the start of the warm/wet season (September). It is not known how far these species move as they cannot be easily separated from resident populations in lowland forests, and there are no ringing recoveries in different forests. Altitudinal migration of a proportion of the Eastern Arc avifauna is the most likely explanation for available data, although source-sink metapopulation theories may be helpful to explain the distributions of some species. As the movement of forest birds from the Eastern Arc to the lowland forests does not involve the rare endemics, they are of lower conservation concern, but the presence of montane and lowland forest may be important for the long-term survival of some more widely distributed forest species.  相似文献   

9.
研究群落构建机制是群落生态学的一个重要目标, 群落动态过程中的构建规律对于了解群落演替机理有重要的作用。该文以海南岛刀耕火种干扰后自然恢复的10 hm 2热带低地雨林为研究对象, 通过比较不同恢复阶段的次生林(15年、30年和60年)和老龄林在幼苗、幼树和成年树群落的物种组成, 揭示次生演替过程中的群落构建规律。研究结果表明, 老龄林中不同径级群落的物种多样性及不同径级间的物种相似度显著高于各恢复阶段的次生林, 但优势种在群落中的比例低于各恢复阶段的次生林。随着自然恢复过程的进行, 次生林群落物种组成与老龄林的相似性也逐渐增大, 支持演替平衡理论。所有恢复阶段样地中幼苗的个体、物种丰富度和基于多度涵盖估计量(ACE)都低于幼树和成年树群落, 幼苗层物种组成与幼树、成年树也有较大差异, 说明新增到幼苗群落可能是一个难于预测的过程。研究结果说明了确定过程和随机过程共同决定了次生演替的群落构建。  相似文献   

10.
The distribution of lichens in lowland deciduous and evergreen forests in Thailand is used to interpret recent changes in the distribution of these forests. The role of fire in changing the forest structure, microclimate and species content is discussed. Characteristic corticolous lichen communities of dry deciduous and moist evergreen forests are described, as well as changes in the composition of the flora following fire events. Where frequent fires have altered the forest rates of change in forest type are suggested using lichen data from randomly selected trees in forest plots, and growth rates of sampled species in quadrats. The disjunct nature of the lichen floras in lowland deciduous and evergreen forests is discussed, their origin and use in interpreting changes in forest types in monsoon climates over long periods of time.  相似文献   

11.
Tropical dry forests have been reduced to less than 0.1% of their original expanse on the Pacific side of Central America and are considered by some to be the most endangered ecosystem in the lowland tropics. Plots 1000 m2 were established in seven tropical dry forests in Costa Rica and Nicaragua in order to compare levels of species richness to other Neotropical dry forest sites and to identify environmental variables associated with species richness and abundance. A total of 204 species and 1484 individuals 2.5 cm were encountered. Santa Rosa National Park was the richest site with the highest family (33), genera (69), and species (75) diversity of all sites. Species richness and forest structure were significantly different between sites. Fabaceae was the dominant tree and shrub family at most sites, but no species was repeatably dominant based on number of stems in all fragments of tropical dry forest. Central American dry forests had similar species richness when compared to other Neotropical forests. There was no correlation between forest cover within reserves, or precipitation and plant species richness. There was a significant correlation between anthropogenic disturbance (intensity and frequency of fire, wood collection, grazing) and total species richness, tree and shrub species richness, and liana abundance. These results suggest controlling levels on anthropogenic disturbance within reserves should be a high priority for resource managers in Central America. Further research in forest fragments which examine individual and a combination of disturbance agents would help clarify the importance of anthropogenic disturbance on species richness and abundance.  相似文献   

12.
Contrary to large areas in Amazonia of tropical moist forests with a pronounced dry season, tropical wet forests in Costa Rica do not depend on deep roots to maintain an evergreen forest canopy through the year. At our Costa Rican tropical wet forest sites, we found a large carbon stock in the subsoil of deeply weathered Oxisols, even though only 0.04–0.2% of the measured root biomass (>2 mm diameter) to 3 m depth was below 2 m. In addition, we demonstrate that 20% or more of this deep soil carbon (depending on soil type) can be mobilized after forest clearing for pasture establishment. Microbial activity between 0.3 and 3 m depth contributed about 50% to the microbial activity in these soils, confirming the importance of the subsoil in C cycling. Depending on soil type, forest clearing for pasture establishment led from no change to a slight addition of carbon in the topsoil (0–0.3 m depth). However, this effect was countered by a substantial loss of C stocks in the subsoil (1–3 m depth). Our results show that large stocks of relatively labile carbon are not limited to areas with a prolonged dry season, but can also be found in deeply weathered soils below tropical wet forests. Forest clearing in such areas may produce unexpectedly high C losses from the subsoil.  相似文献   

13.
Drought effects on seedling survival in a tropical moist forest   总被引:2,自引:0,他引:2  
The amount and seasonality of rainfall varies strongly in the tropics, and plant species abundance, distribution and diversity are correlated with rainfall. Drought periods leading to plant stress occur not only in dry forests, but also in moist and even wet forests. We quantified experimentally the effect of drought on survival of first year seedlings of 28 co-occurring tropical woody plant species in the understory of a tropical moist forest. The seedlings were transplanted to plots and subjected to a drought and an irrigation treatment for 22 weeks during the dry season. Drought effects on mortality and wilting behavior varied greatly among species, so that relative survival in the dry treatment ranged from 0% to about 100% of that in the irrigated treatment. Drought stress was the main factor in mortality, causing about 90% (median) of the total mortality observed in the dry treatment. In almost half of the species, the difference in survival between treatments was not significant even after 22 weeks, implying that many of the species are well adapted to drought in this forest. Relative drought survival was significantly higher in species associated with dry habitats than in those associated with wet habitats, and in species with higher abundance on the dry side of the Isthmus of Panama, than in those more abundant on the wet side. These data show that differential species survival in response to drought, combined with variation in soil moisture availability, may be important for species distribution at the local and regional scale in many tropical forests.  相似文献   

14.
Data from a global network of large, permanent plots in lowland tropical forests demonstrate (1) that the phenomenon of tropical tree rarity is real and (2) that almost all the species diversity in such forests is due to rare species. Theoretical and empirically based reasoning suggests that many of these rare species are not as geographically widespread as previously thought. These findings suggest that successful strategies for conserving global tree diversity in lowland tropical forests must pay much more attention to the biogeography of rarity, as well as to the impact of climate change on the distribution and abundance of rare species. Because the biogeography of many tropical tree species is poorly known, a high priority should be given to documenting the distribution and abundance of rare tropical tree species, particularly in Amazonia, the largest remaining tropical forested region in the world.  相似文献   

15.
Abstract. Ecological and biogeographic analyses of the tropical rain forest in south Yunnan were made using data from seventeen sample plots and floristic inventories of about 1000 species of seed plants. The rain forest is shown to be a type of true tropical rain forest because it has almost the same profile, physiognomic characteristics, species richness per unit area, numbers of individuals in each tree species and diameter classes of trees as classic lowland tropical rain forests. As the area is at the northern margin of monsoonal tropics, the rain forest differs from equatorial lowland rain forests in having some deciduous trees in the canopy layer, fewer megaphanaerophytes and epiphytes but more species of lianas as well as more species of microphylls. In its floristic composition, about 80% of total families. 94% of total genera and more than 90% of total species are tropical, of which about 38% of genera and 74% of species are tropical Asian. Furthermore, the rain forest has not only almost the same families and genera, but also the same families rank in the top ten both in species richness and in dominance of stems, as lowland forests in southeast Asia. It is indisputable that the flora of the rain forest is part of the tropical Asian flora. However, most of the tropical families and genera have their northern limits in south Yunnan and most have their centre of species diversity in Malesia. More strictly tropical families and genera have relatively lower species richness and importance compared with lowland rain forests in tropical southeast Asia. Thus, the flora also shows characteristics of being at the margin of the tropics. Based mainly on physiognomy and floristic composition the tropical rain forest of Yunnan is classified into two types, i.e. seasonal rain forest and wet seasonal rain forest, the latter is further divided into two subtypes, i.e. mixed rain forest and dipterocarp rain forest. From analysis of geographic elements it is also shown that the tropical rain forest of Yunnan occurs at a geographical nexus with its flora coming mainly from four sources, i.e. Malesia, south Himalayas, Indochina and China.  相似文献   

16.
In the present study the linkage between hydraulic, photosynthetic and phenological properties of tropical dry forest trees were investigated. Seasonal patterns of stem‐specific conductivity (KSP) described from 12 species, including deciduous, brevi‐deciduous and evergreen species, indicated that only evergreen species were consistent in their response to a dry‐to‐wet season transition. In contrast, KSP in deciduous and brevi‐deciduous species encompassed a range of responses, from an insignificant increase in KSP following rains in some species, to a nine‐fold increase in others. Amongst deciduous species, the minimum KSP during the dry season ranged from 6 to 56% of wet season KSP, indicating in the latter case that a significant portion of the xylem remained functional during the dry season. In all species and all seasons, leaf‐specific stem conductivity (KL) was strongly related to the photosynthetic capacity of the supported foliage, although leaf photosynthesis became saturated in species with high KL. The strength of this correlation was surprising given that much of the whole‐plant resistance appears to be in the leaves. Hydraulic capacity, defined as the product of KL and the soil–leaf water potential difference, was strongly correlated with the photosynthetic rate of foliage in the dry season, but only weakly correlated in the wet season.  相似文献   

17.
A common observation in tropical dry forests is the habitat preference of tree species along spatial soil water gradients. This pattern of habitat partitioning might be a result of species differentiation in their strategy for using water, along with competing functions such as maximizing water exploitation and tolerating soil water stress. We tested whether species from drier soil conditions exhibited a tolerance strategy compared with that of wet-habitat species. In a comparison of 12 morphophysiological traits in seedlings of 10 closely related dry and wet-habitat species pairs, we explored what trade-offs guide differentiation between habitats and species. Contrary to our expectations, dry-habitat species showed mostly traits associated with an exploitation strategy (higher carbon assimilation capacity, specific leaf area and leaf-specific conductivity and lower water-use efficiency). Strikingly, dry-habitat species tended to retain their leaves longer during drought. Additionally, we detected multiple strategies to live within each habitat, in part due to variation of strategies among lineages, as well as functional differentiation along the water storage capacity-stem density (xylem safety) trade-off. Our results suggest that fundamental trade-offs guide functional niche differentiation among tree species expressed both within and between soil water habitats in a tropical dry forest.  相似文献   

18.
Dry forests are common, although highly threatened in the Neotropics. Their ecological processes are mostly influenced by rainfall pattern, hence their cycles exhibit contrasting phases. We studied the phenology of canopy trees in a primary dry forest in Western Brazil in the foothills of the Urucum mountain chain, in order to improve our knowledge on the functioning of these poorly-known forests. Leaf shedding started in the early dry season and was massive in the latter part of this period. Most leaf loss occurred in dry hills, while wet valleys remained evergreen. Anemochorich and autochorich species predominated in dry hills, presumably due to their tolerance to dry conditions and enhanced exposition to winds, which favour diaspores removal and dispersal. Conversely, zoochorich species dominated the wet valleys. Flowering was intense in the late dry season, the driest period of the year, while fruiting was massive just after the onset of rains, as well as flushing. Therefore, most flowering was unrelated to wet conditions, although such an abiotic factor, potentially, triggered the major fruiting episode, widely comprised by zoochorich species. Anemochorich and autochorich species flowered and fruited in the course of the long dry season. The contrasting environmental conditions present in the hills and valleys determine the arrangement of a mosaic in which patches of zoochorich and evergreen trees alternate with patches of non zoochorich and highly deciduous species. Consequently, species with such syndromes exhibited marked flowering and fruiting patterns, accordingly to the pronounced seasonality.  相似文献   

19.
Fragmentation of the lowland tropical rain forest has resulted in loss of animal and plant species and isolation of remaining populations that puts them at risk. At Los Tuxtlas, Mexico, lowland rain forests are particularly diverse in the avian fauna they contain and while most of the forests have been fragmented by human activity, many of the fragments still harbor diverse assemblages of bird species. In these landscapes, linear strips of residual rain forest vegetation along streams as well as linear strips of vegetation fences (live fences) crossing the pastures might provide some connectivity to bird populations existed in forest fragments. We investigated bird species richness and relative abundance in one 6-km long section of live fences (LF) bordering a dirt road and in two 6-km long sections of residual forest vegetation along a river (MR) and one permanent stream (BS). We used point count procedures which resulted in the count of 2984 birds representing 133 species. At the LF site we detected 74% of the species, 72% at the BS site and 57% at the MR site. Only 38% of the species were common among sites. Neotropical migratory birds accounted for 34–41% of the species counted at all sites. While edge and open habitat birds accounted for 6–10% of the species and for 50% of the records at the three vegetation strips, about 90% of the species were forest birds. Distance to forest fragments and degree of disturbance of the vegetation seemed to negatively influence bird species presence at the BS and MR strips. Rarefaction analysis indicated that the LF strip was richer in species than the other two sites, but the occurrence of the three vegetation strips in the landscape seem to favor the presence of many more species. We discuss the value of these vegetation strips to birds as stepping stones in the fragmented landscape.  相似文献   

20.
Phosphorus cycling in a Mexican tropical dry forest ecosystem   总被引:10,自引:4,他引:6  
The study was conducted in five contiguous small watersheds (12–28 ha) gauged for long-term ecosystem research. Five 80 × 30 m plots were used for the study. We quantified inputs from the atmosphere, dissolved and particulate-bound losses, throughfall and litterfall fluxes, standing crop litter and soil available P pools. Mean P input and output for a six-year period was 0.16 and 0.06 kgha–1yr–1, respectively. Phosphorus concentration increased as rainfall moved through the canopy. Annual P returns in litterfall (3.88 kg/ha) represented more than 90% of the total aboveground nutrient return to the forest floor. Phosphorus concentration in standing litter (0.08%) was lower than that in litterfall (0.11%). Phosphorus content in the litterfall was higher at Chamela than at other tropical dry forests. Mean residence time on the forest floor was 1.2 yr for P and 1.3 yr for organic matter. Together these results suggest that the forest at Chamela may not be limited by P availability and suggest a balance between P immobilization and uptake. Comparison of P losses in stream water with input rates from the atmosphere for the six-year period showed that inputs were higher than outputs. Balances calculated for a wet and a dry year indicated a small P accumulation in both years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号