首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of ribonuclease A with either 6-chloropurine riboside 5'-monophosphate or the corresponding nucleoside yields one derivative, with the reagent covalently bound to the alpha-amino group of Lys-1, called derivative II and derivative E, respectively. We studied by means of 1H-n.m.r. at 270 MHz the interaction of these derivatives with different purine ligands. The pK values of His-12- and -119 were obtained and compared with those resulting from the interaction with ribonuclease A. The results showed that the interaction of derivative E with 3'AMP is similar to that described for RNase A as the pK2 of His-12 is increased while that of His-119 remains unaltered. However, derivative II presents some differences as it was found an enhancement of the pK2 values of both His-12 and His-119. Interaction of derivative II and derivative E with dApdA increases the pK2 of His-119, whereas a decrease is found when it interacts with ribonuclease A. These results suggest that the phosphate group and the nucleoside of both derivatives are located in regions of the enzyme where natural substrate analogues have secondary interactions and they can be interpreted as additional binding sites.  相似文献   

2.
The titration curves of the C-2 histidine protons of RNase A and of derivative II--a covalent derivative obtained by reaction of the enzyme with the halogenated nucleotide 9-beta-D-ribofuranosyl-6-chloropurine 5'-phosphate--in the presence of a number of purine nucleosides, nucleoside monophosphates, and nucleoside diphosphates were studied by means of proton nuclear magnetic resonance at 270 MHz. The examination of the perturbations found on the chemical shifts and pKs of the C-2 protons of His-12, -48, and -119 are consistent with the following conclusions: (1) The interaction of adenosine in the primary purine binding site of the enzyme (B2R2) induces a conformational change in the active center of the enzyme [for the nomenclature of the RNase A binding subsites, see Parés et al. [Parés, X., Llorens, R., Arús, C., & Cuchillo, C. M. (1980) Eur. J. Biochem. 105, 571-579]]. (2) The phosphate moiety of the ligands, independently of its position, probably acts as a general carrier of the nucleotide to the active center, while the substituents of the base are the generators of the specificity of the binding and control the binding equilibrium between subsites B2R2 and B1R1. (3) There is no overlapping between the binding sites occupied by the labeling nucleotide in derivative II (B3R3p2) and the primary binding site for purine mononucleotides (B2R2p1).  相似文献   

3.
1H-NMR studies on the binding subsites of bovine pancreatic ribonuclease A   总被引:1,自引:0,他引:1  
The titration curves of the C-2 histidine protons of an RNAase derivative (a covalent derivative obtained by reaction of bovine pancreatic RNAase A (EC 3.1.27.5) with 6-chloropurine 9-beta-D-ribofuranosyl 5'-monophosphate) were studied by means of 1H-NMR spectroscopy at 270 MHz. The interaction of natural (5'AMP, 5'GMP, 5'IMP) and halogenated purine mononucleotides (cl6RMP, br8AMP) with RNAase A was also monitored by using the same technique. The slight change observed in the pK values of the active centre histidine residues of the RNAase derivative, with respect to those in the native enzyme, can be considered as evidence that the phosphate of the label does not interact directly either with His-12 or 119 in the p1 site, but the p2 site as proposed previously (Parés, X., Llorens, R., Arús, C. and Cuchillo, C.M. (1980) Eur. J. Biochem. 105, 571--579). Lys-7 and/or Arg-10 are proposed as part of the p2 phosphate-binding subsite. The pK values of His-12 and 119 and the shift of an aromatic resonance of the native enzyme found on interaction with some purine nucleotides, can be interpreted by postulating that the interaction of 5'AMP, 5'GMP and 5'IMP takes place not only in the so-called purine-binding site B2R2p1 but also in the primary pyrimidine-binding site B1R1 and p0 of RNAase A.  相似文献   

4.
Zn2+, Cd2+ and Hg2+ inhibit ribonuclease but Mn2+ does not except at very high concentrations. By high resolution NMR one can detect in the pH range 5-8 the C-2 protons of histidines 105, 12, and 119. The inhibiting ions produce large shifts of the resonance of His-12 but not of His-105. On the other hand Mn2+ broadens the C-2 proton of His-105 much more than it does those of His-12 and 119. The selective shifts suggest that the mechanism of inhibition is binding at or near the active site of which His-12 and 119 are a part. The selective broadening is a consequence of binding of the Mn2+ to a site very far from the active site but closer to His-105.  相似文献   

5.
The reassignment of the 1H NMR C-2 histidine signals of the bovine pancreatic ribonuclease A has required a revision of the 1H NMR data on the role of the different histidines in their interaction with the Cu2+. The results of our measurements carried out at p2H 5.5 and 7.0 reduce the importance of His-12 as main site of interaction. At p2H 5.5 a very strong binding site involves His-119, while a weaker one contains certainly His-105. On the contrary, at p2H 7.0 the histidines 105 and 119 seem to possess binding constants of the same order of magnitude and in addition they provide stronger ligands for the Cu2+ than His-12. The comparison with X-ray data in the crystal shows numerous analogies. Finally, preliminary results on the competitive inhibition effect between the Cu2+ and 2',3'-cytidine monophosphoric acid are discussed.  相似文献   

6.
The NMR titration curves of proton chemical shifts were observed for the C2 protons of histidine residues in intact bovine pancreatic RNAase A (EC 3.1.27.5) and carboxyalkylated RNAase A. By comparing the methyl region of NMR spectra, the 250-340 nm region of circular dichoic spectra, and the NMR titration curves of tyrosine ring protons among intact and modified RNAase A, it was ascertained that the carboxyalkylation of histidine residues at position 12 or 119 did not make any appreciable conformational changes to RNAase A. With the pK values determined for intact and modified RNAase A, the microscopic pK values and molar ratios of tautomers were estimated for His-12 and His-119 by means of the procedure described in the preceding paper. The estimated microscopic pK values of tautomers were 6.2 for the N1-H tautomer of His-12, more than 8 for the N3-H tautomer of His-12, 7.0 for the N1-H tautomer of His-119, and 6.4 for the N3-H tautomer of His-119, respectively. These values were interpreted in terms of the microscopic environments surrounding the histidine residues. The microscopic structure estimated in the present study was discussed, comparing it with those from X-ray crystallography and hydrogen-tritium (or hydrogen-deuterium) exchange technique.  相似文献   

7.
The amino groups of ribonuclease A (RNase-A) have been methylated with formaldehyde and borohydride to provide observable resonances for proton magnetic resonance (PMR) studies. Although enzymatic activity is lost, PMR difference spectroscopy and PMR studies of thermal denaturation show native conformation is largely preserved in methylated RNase-A. Resonances corresponding to the NH2-terminal alpha-amino and 10 xi-amino N-methyl groups are titrated at 220 MHz to obtain pK values. After correction for the effects of methylation, using values previously derived from model compound studies, a pK of 6.6 is found for the alpha-amino group, a pK of 8.6 for the xi-amino group of lysine-41 and pK values ranging from 10.6 to 11.2 for the other lysine xi-amino groups. Interactions between lysine-7 and lysine-41 or between the alpha-amino and xi-amino groups of lysine-1 have been proposed to account for deviations from simple titration behaviour. The correct continuities for the titration curves of the histidine H-2 proton resonances have been confirmed by selective deuteration of the H-2 protons. Titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A show deviations from the titration curves for the native enzyme, indicating some alteration of the active-site conformation. In the presence of phosphate, titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A indicate binding of phosphate at the active site, but these curves continue to show deviations from the titration behaviour of native RNase-A. The titration curve for the N-methyl resonance of lysine-41 is perturbed considerably by the presence of phosphate, which indicates a possible catalytic role for lysine-41.  相似文献   

8.
M Flogel  R L Biltonen 《Biochemistry》1975,14(12):2603-2609
The proton association behavior of ribonuclease A and its complex with 3'-cytosine monophosphate has been thermodynamically characterized in the pH range 4--8 at 25 degrees, mu = 0.05. Calorimetric and potentiometric titration data have been used to estimate the apparent pK values and enthalpy values for protonation of the four histidine residues of the protein, deltaHp. In the free enzyme the pK values were deduced to be 5.0, 5.8, 6.6, and 6.7 and deltaHp deduced to be -6.5, -6.5, -6.5, and -24 kcal/mol for residues 119, 12, 105, and 48, respectively. For the nucleotide-enzyme complex it was concluded that the apparent pK values of residues 119, 12, and 48 increased to an average value of about 7.2, the deltaHp values remaining constant for all histidine groups except 48. It was also concluded that only the dianionic phosphate form of the nucleotide inhibitor is bound to the enzyme in this pH range. These results are consistent with a thermodynamic model for the binding reaction in which inhibitor-enzyme association is coupled to the ionization of three imidazole residues (12, 119, and 48) and the interaction between the negative phosphate moiety of the inhibitor and the positively charged residues 12 and 119 is purely electrostatic. However, the "interaction" with residue 48 probably involves a conformational rearrangement of the macromolecule.  相似文献   

9.
Nuclear magnetic resonances of the C-2 protons of the three histidine residues in ribonuclease T1 have been studied at 360 MHz as a function of pH to discuss the structure of the active site. Comparison of the order of deuterium exchange of the histidine peaks with tritium incorporation rates into individual histidines of the enzyme leads to the unambigous assignment of one of the C-2 proton peaks to histidne-40. It has been concluded that histidine-40 is in the active site, interacting with a charged group of pK 4.1, which is replaced by the phosphate group of guanosine-3′-monophosphate in the enzyme-inhibitor complex. Histidine-92 is most likely a binding site for the complex, where the existence of a hydrogen bond between N-7 of the inhibitor and the ring NH proton of the histidine is suggested on the basis of NMR data.  相似文献   

10.
S D Lewis  F A Johnson  J A Shafer 《Biochemistry》1976,15(23):5009-5017
The ionization behavior of groups at the active site of papain was determined from the pH dependence of the difference of proton content of papain and the methylthio derivative of the thiol group at the active site of papain (papain-S-SCH3). This difference in proton content was determined directly by two independent methods. One method involved potentiometric measurements of the protons released and demethylthiolation of papain-S-SCH3 with dithiothreitol, as a function of pH. The other method involved analogous measurements of the protons released on methylthiolation of papain with methyl methanethiosulfonate. The methylthio pH-difference titrations generated by these measurements indicate that ionization of the thiol group at the active site of papain is linked to the ionization of His-159. The pK of the thiol group changes from 3.3 to 7.6 on deprotonation of His-159 at 29 degrees C/20.05. Similarly, the pK of His-159 shifts from 4.3 to 8.5 when the active site thiol group is deprotonated. The microscopic ionization constants determined in this work for Cys-25 and His-159 indicate that equilibrium constant for transfer of the proton from Cys-25 to His-159 is 8--12, and that in the physiological pH range the active site thiol group exists mainly as a thiol anion.  相似文献   

11.
Human muscle adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3.) was studied by 1H-nuclear magnetic resonance spectroscopy. The C-2 and C-4 proton resonances of the active-center histidine His-36 could be identified; the pK of His-36 was determined as 6.1. The pK of His-189 is very low (4.9) although it is located at the surface of the protein. Other resonance lines are discussed in comparison with NMR spectra of porcine adenylate kinase [McDonald et al. (1975) J. Biol. Chem. 250, 6947-6954]. A pH-dependent structural isomerization as shown by X-ray crystallography in the pig enzyme [Pai et al. (1977) J. Mol. Biol. 114, 37-45] was not observed for human adenylate kinase in solution. However, the binding of adenosine(5')pentaphospho(5')adenosine (Ap5A), a bisubstrate inhibitor, to adenylate kinase causes an overall change of the NMR spectrum indicative of a large conformational change of the enzyme. The exchange rate (koff) for Ap5A was estimated as 10 s-1 and decreases by addition of Mg2+. On the basis of these values and the known dissociation constant it is likely that the binding of Ap5A is a diffusion-controlled process kon being 10(8) M-1 s-1. In conclusion, the system Ap5A/Mg2+/human adenylate kinase, which has been studied by NMR spectroscopy and X-ray diffraction in parallel, is suitable for analyzing the induced fit postulated by Jencks for all kinase-catalyzed reactions.  相似文献   

12.
1. The aromatic proton resonances in the 360-MHz 1H nuclear magnetic resonance (NMR) spectrum of bovine pancreatic ribonuclease were divided into histidine, tyrosine and phenylalanine resonances by means of pH titrations and double resonance experiments. 2. Photochemically induced dynamic nuclear polarization spectra showed that one histidine (His-119) and two tyrosines are accessibly to photo-excited flavin. This permitted the identification of the C-4 proton resonance of His-119. 3. The resonances of the ring protons of Tyr-25, Tyr-76 and Tyr-115 and the C-4 proton of His-12 were identified by comparison with subtilisin-modified and nitrated ribonucleases. Other resonances were assigned tentatively to Tyr-73, Tyr-92 and Phe-46. 4. On addition of active-site inhibitors, all phenylalanine resonances broadened or disappeared. The resonance that was most affected was assigned tentatively to Phe-120. 5. Four of the six tyrosines of bovine RNase, identified as Tyr-76, Tyr-115 and, tentatively, Tyr-73 and Tyr-92, are titratable above pH 9. The rings of Tyr-73 and Tyr-115 are rapidly rotating or flipping by 180 degrees about their C beta--C gamma bond and are accessible to flavin in photochemically induced dynamic nuclear polarization experiments. Tyr-25 is involved in a pH-dependent conformational transition, together with Asp-14 and His-48. A scheme for this transition is proposed. 6. Binding of active-site inhibitors to bovine RNase only influences the active site and its immediate surroundings. These conformational changes are probably not connected with the pH-dependent transition in the region of Asp-14, Tyr-25 and His-48. 7. In NMR spectra of RNase A at elevated temperatures, no local unfolding below the temperature of the thermal denaturation was observed. NMR spectra of thermally unfolded RNase A indicated that the deviations from a random coil are small and might be caused by interactions between neighbouring residues.  相似文献   

13.
The titration curves of the histidine residues of porcine lutropin and its isolated alpha and beta subunits have been determined by following the pH-dependence of the imidazole C-2 proton resonances. The isolated alpha subunit contains a buried histidine, whose C-2 proton does not exchange with solvent, and which has the unusually low pK of 3.3. In the native hormone all the histidine residues have relatively normal pK values (between 5.7 and 6.2). The four histidine C-2 proton resonances have been assigned to specific residues in the amino-acid sequence, by means of deuterium and tritium exchange experiments on the alpha subunit and its des(92-96) derivative. The histidine with a pK of 3.3 is identified as His-alpha87. The effects of pH on tyrosine and methyl proton resonances show that the titration of His-87 in the isolated alpha subunit is accompanied by a significant conformational change which involves loosening of the protein structure but which is not a normal unfolding transition. The role of conformational changes in the generation of biological activity by subunit association in the glycoprotein hormones is discussed.  相似文献   

14.
1H NMR spectroscopy at 100 MHz was used to determine the first-order rate constants for the 1H-2H exchange of the H-2 histidine resonances of RNase-A in 2H2O at 35 degrees C and pH meter readings of 7, 9, 10 and 10.5. Prolonged exposure in 2H2O at 35 degrees C and pH meter reading 11 caused irreversible denaturation of RN-ase-A. The rate constants at pH 7 and 9 agreed reasonably well with those obtained in 1H-3H exchange experiments by Ohe, J., Matsuo, H., Sakiyama, F. and Narita, K. [J. Biochem, (Tokyo) 75, 1197-1200 (1974)]. The rate data obtained by various authors is summarised and the reasons for the poor agreement between the data is discussed. The first-order rate constant for the exchange of His-48 increases rapidly from near zero at pH 9 (due to its inaccessibility to solvent) with increase of pH to 10.5 The corresponding values for His-119 show a decrease and those for His-12 a small increase over the same pH range. These changes are attributed to a conformational change in the hinge region of RNase-A (probably due to the titration of Tyr-25) which allows His-48 to become accessible to solvent. 1H NMR spectra of S-protein and S-peptide, and of material partially deuterated at the C-2 positions of the histidine residues confirm the reassignment of the histidine resonances of RNase-A [Bradbury, J. H. & Teh, J. S. (1975) Chem. Commun., 936-937]. The chemical shifts of the C-2 and C-4 protons of histidine-12 of S-peptide are followed as a function of pH and a pK' value of 6.75 is obtained. The reassignment of the three C-2 histidine resonances of S-protein is confirmed by partial deuteration studies. The pK' values obtained from titration of the H-2 resonances of His-48, His-105 and His-119 are 5.3, 6.5 and 6.0, respectively. The S-protein is less stable to acid than RNase-A since the former, but not the latter, shows evidence of reversible denaturation at pH 3 and 26 degrees C. His-48 in S-protein titrates normally and has a lower pK than in RN-ase-A probably because of the absence of Asp-14, which in RN-ase-A forms a a hydrogen bond with His-48 and causes it to be inaccessible to solvent, at pH values below 9.  相似文献   

15.
The C(2) proton resonances of the active site histidines (His 12 and His 119) of ribonuclease A have been exploited to study the inhibition pattern of both noncompetitive (four green tea polyphenols and their copper complexes) and competitive (3'-O-carboxy esters of thymidine and 3'-amino derivatives of uridine) inhibitors. Competitive inhibitors devoid of any phosphate group have the ability to change the pK(a) of the histidine residues at the active site. Their mode of inhibition, albeit competitive, is found to be different compared to known phosphate inhibitors 2'-CMP and 3'-CMP as revealed by changes in the pK(a) values. We find a correlation between the changes in the chemical shift of His 12 and the corresponding inhibition constants (K(i)).  相似文献   

16.
The kinetics of the interaction between deionized supernatant aspartic aminotransferase and various anions (cacodylate, phosphate and chloride) were studied by the temperature-jump technique. The anion concentration in the range covered by our experiments does not affect the transamination rate. On the other hand the conformational transition, recently observed at the active site of the enzyme, is hindered by an excess of anions. A single relaxation effect was observed at the enzyme chromophore wavelength in systems containing the aldimine form of the enzyme and the above anions. It is shown that this effect corresponds to the protonation of the chromophore. The relaxation times were of about 10 mus with phosphate, 20-100 mus with cacodylate and 1-2 ms with chloride. The pH and concentration dependence of this effect were studied. The fits of experimental data to a rate equations for various models were tested by a chi2 analysis. The best fit was obtained with models where anions bind rapidly to a site close to the chromophore, so that the pK of the chromophore is affected by anions binding. The rate of the observed relaxation considerably increased when the anion has buffering capacities; this indicates, in the case of cacodylate and phosphate, that the acidic component of the buffer directly exchanges a proton with the enzyme chromophore.  相似文献   

17.
Proton NMR spectroscopy was applied to myoglobin in the ferric, water-liganded form (metMbH2O) and the apo form (apoMb) to probe the structure and stability of the latter. Proteins from sperm whale and horse skeletal muscles were studied to simplify the spectral assignment task. Nuclear Overhauser effects and the response of chemical shifts to variations of pH were used as indicators of residual native holoprotein structure in the apoprotein. The investigation was focused in the histidine side chains and their environment. In metMbH2O, the resonances of all imidazole rings not interacting with the heme were assigned by applying standard two-dimensional methods. These assignments were found to differ from those reported elsewhere [Carver, J. A., & Bradbury, J. H. (1984) Biochemistry 23, 4890-4905] except for His-12, -113, and -116. Only one histidine (His-36) has a pK(a) higher than 7, two (His-48 and His-113) have a pK(a) lower than 5.5, and two (His-24 and His-82) appear not to titrate between pH 5.5 and pH 10. In the apoproteins, the signals of His-113 and His-116, as well as those of His-24, -36, -48, and -119 previously assigned in the horse globin [Cocco, M. J.. & Lecomte, J. T. J. (1990) Biochemistry 29, 11067-11072], could be followed between pH 5 and pH 10. A comparison to the holoprotein data indicated that heme removal has limited effect on the pK(a) and the surroundings of these residues. Five additional histidines which occur in the two helices and connecting loops forming the heme binding site were identified in the horse apoprotein. Four of these were found to have pK(a) values lower than that expected of an exposed residue. The NOE and titration data were proposed to reflect the fact that several holoprotein structural elements, in particular outside the heme binding site, are maintained in the apoprotein. In the heme binding region of the apoprotein structure, the low pK(a)'s suggest local environments which are resistant to protonation.  相似文献   

18.
The maximal velocity in the hydration of CO(2) catalyzed by the carbonic anhydrases in well-buffered solutions is limited by an intramolecular proton transfer from zinc-bound water to acceptor groups of the enzyme and hence to buffer in solution. Stopped-flow spectrophotometry was used to accumulate evidence that this maximal velocity is affected by residues of basic pK(a), near 8 to above 9, in catalysis of the hydration of CO(2) by carbonic anhydrases III, IV, V, and VII. A mutant of carbonic anhydrase II containing the replacement His-64-->Ala, which removes the prominent histidine proton shuttle (with pK(a) near 7), allows better observation of these basic groups. We suggest this feature of catalysis is general for the human and animal carbonic anhydrases and is due to residues of basic pK(a), predominantly lysines and tyrosines more distant from the zinc than His-64, that act as proton acceptors. These groups supplement the well-studied proton transfer from zinc-bound water to His-64 in the most efficient of the carbonic anhydrases, isozymes II, IV, and VII.  相似文献   

19.
N Luo  E Mehler  R Osman 《Biochemistry》1999,38(29):9209-9220
The structure of uracil DNA glycosylase (UDG) in complex with a nonamer duplex DNA containing a uracil has been determined only in the product state. The reactant state was constructed by reattaching uracil to the deoxyribose, and both complexes were studied by molecular dynamics simulations. Significant changes in the positions of secondary structural elements in the enzyme are induced by the hydrolysis of the glycosidic bond. The simulations show that the specificity of the uracil pocket in the enzyme is largely retained in both complexes with the exception of Asn-204, which has been identified as a residue that contributes to discrimination between uracil and cytosine. The hydrogen bond between the amide group of Asn-204 and O(4) of uracil is disrupted by fluctuations of the side chain in the reactant state and is replaced by a hydrogen bond to water molecules trapped in the interior of the protein behind the uracil binding pocket. The role of two residues implicated by mutation experiments to be important in catalysis, His-268 and Asp-145, is clarified by the simulations. In the reactant state, His-268 is found 3.45 +/- 0.34 A from the uracil, allowing a water molecule to form a bridge to O(2). The environment in the enzyme raises the pK(a) value of His-268 to 7.1, establishing a protonated residue for assisting in the hydrolysis of the glycosidic bond. In agreement with the crystallographic structure, the DNA backbone retracts after the hydrolysis to allow His-268 to approach the O(2) of uracil with a concomitant release of the bridging water molecule and a reduction in the pK(a) to 5.5, which releases the proton to the product. The side chain of Asp-145 is fully solvated in the reactant state and H-bonded through a water molecule to the 3'-phosphate of uridine. Both the proximity of Asp-145 to the negatively charged phosphate and its pK(a) of 4.4 indicate that it cannot act as a general base catalyst. We propose a mechanism in which the bridging water between Asp-145 and the 3'-phosphate accepts a proton from another water to stabilize the bridge through a hydronium ion as well as to produce the hydroxide anion required for the hydrolytic step. The mechanism is consistent with known experimental data.  相似文献   

20.
One of the four titrating histidine ring C-2 proton resonances of bovine pancreatic ribonuclease has been assigned to histidine residue 12. This was accomplished by a direct comparison of the rate of tritium incorporation into position C-2 of histidine 12 of S-peptide (residues 1 to 20) derived from ribonuclease S, with the rates of deuterium exchange of the four histidine C-2 proton resonances of ribonuclease S under the same experimental conditions. The same assignment was obtained by a comparison of the NMR titration curves of ribonuclease S, the noncovalent complex of S-peptide and S-protein (residues 21 to 124) with the results for the recombined complex in which position C-2 of histidine 12 was fully deuterated. The second active site histidine resonance was assigned to histidine residue 119 by consideration of the NMR titration results fro carboxymethylated histidines and 1-carboxymethylhistidine 119 ribonuclease. This assignment is a reversal of that originally reported, and has important implications for the interpretation of NMR titration data of ribonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号