首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

2.
Effects of prior exposure of pial arterioles to endothelin-1 (ET-1) (10(-9) M) on the constriction induced by the by-products of hemolyzed blood (5-HT, LTC4, LPA, and thromboxane analog U-46619) were examined. Piglets (age: 1-3 d) anesthetized with a mixture of ketamine hydrochloride and acepromazine were implanted with cranial windows, and anesthesia was maintained with alpha-chloralose. Topical applications of the by-products of hemolyzed blood mildly constricted pial arterioles. Following prior exposure of the microvessels to ET-1, application of the by-products of hemolyzed blood produced significantly potentiated and long-lasting constrictions compared to the controls. In another experiment, pretreatment of pial arterioles with U-46619 (10(-8) M) also potentiated the constriction induced by ET-1. The constriction produced was fast and longer-lasting. Thus, these data show that by-products of hemolyzed blood, though not potent vasoconstrictors per se, potently constricted pial arterioles in the presence of ET-1. The same agents in the CSF can also potentiate constriction induced by ET-1. Hence, by-products of hemolyzed blood may play a significant role in the initiation and maintenance of cerebral arterial narrowing observed following intracranial bleeding.  相似文献   

3.
The aim of this study was to investigate if a low concentration of endothelin-1 (ET-1; 8 x 10(-10) M) may amplify the skin vasoconstrictor effect of other vasoactive substances in the pathogenesis of skin vasospasm. Pig skin flaps (6 x 16 cm) were perfused with Krebs buffer equilibrated with 95% O(2) and 5% CO(2) at 37 degrees C and pH 7.4. Skin perfusion pressure measured by a pressure transducer and skin perfusion assessed by the dermofluorometry technique were used for assessment of skin vasoconstriction. We observed that ET-1 (8 x 10(-10) M) significantly amplified the concentration-dependent (10(-7)-10(-5) M) skin vasoconstrictor effect of norepinephrine. More importantly, we observed for the first time that this low concentration of ET-1 also amplified the concentration-dependent (10(-8)-10(-6) M) skin vasoconstrictor effect of the thromboxane A(2) mimetic U-46619, and this amplification effect of ET-1 was completely blocked by the protein kinase C (PKC) inhibitor chelerythrine (5 x 10(-6) M). Conversely, the PKC activator phorbol 12,13-dibutyrate (10(-7) M) amplified the vasoconstrictor effect of U-46619. Furthermore, the sensitivity of the skin vasculature to the vasoconstrictor effect of extracellular Ca(2+) in U-46619-induced skin vasoconstriction was significantly enhanced in the presence of 8 x 10(-10) M ET-1. Finally, the cyclooxygenase inhibitor indomethacin (5 x 10(-6) M) did not affect the amplification effect of ET-1 on U-46619-induced skin vasoconstriction. We conclude that a low concentration of ET-1 can amplify the skin vasoconstrictor effect of U-46619 independent of endogenous cyclooxygenase products, and the mechanism may involve activation of PKC and increase in sensitivity of the contractile apparatus to Ca(2+) in smooth muscle cells.  相似文献   

4.
The aim of this study was to investigate the effects of U-46619, a thromboxane A2-mimetic, and 6-keto prostaglandin E1 (6-keto PGE1) a biologically active metabolite of prostacyclin, on vasoconstrictor responses to noradrenaline and 5-hydroxytryptamine (5-HT). In vitro, U-46619 (3-100 nmol/l) amplified responses to both noradrenaline and 5-HT in a concentration-dependent manner. This effect was not caused by an increase in the affinity of the alpha-adrenoceptor for noradrenaline because U-46619 (100 nmol/l) did not alter the pA2 of phentolamine. In vivo, U-46619 (100 nmol/l) induced vasoconstriction and consequently significantly shifted the log-concentration-effect curves to noradrenaline and 5-HT upward in an additive manner. 6-Keto PGE1 (1 mumol/l) did not affect either perfusion pressure or vasoconstriction in response to noradrenaline in vivo. The study highlights some differences in responses between in vitro- and in vivo-perfused mesentery.  相似文献   

5.
Insulin-resistance (IR) impairs agonist-induced relaxation in cerebral arteries, but little is known about its effect on constrictor mechanisms. We examined the vascular responses of the basilar artery (BA) and its side branches in anesthetized Zucker lean (ZL) and IR Zucker obese (ZO) rats using a cranial window technique. Endothelin-1 (ET-1) constricted the BAs in both the ZL and ZO rats, but there was no significant difference between the two groups (ZL: 36 +/- 8%; ZO: 33 +/- 3% at 10(-8) M). Inhibition of the ET(A) receptors by BQ-123 slightly increased the diameters of the BAs, with no difference shown between the ZL (6 +/- 1%) and ZO (5 +/- 3%) rats. Expressions of the ET(A) receptors and ET-1 mRNA examined by immunoblot analysis and RT-PCR, respectively, were also similar in the ZL and ZO groups. Phorbol 12,13-dibutyrate (PDBu), an activator of protein kinase C (PKC), and the thromboxane A(2) (TxA(2)) mimetic U-46619 constricted the BAs, but similarly to ET-1, there was no significant difference between the ZL and ZO groups (10(-6) M PDBu: ZL: 33 +/- 2%; ZO: 32 +/- 4%; and 10(-7) M U-46619: ZL: 23 +/- 1%; ZO: 19 +/- 2%). Inhibition of Rho-kinase with Y-27632 induced dilation of the BAs, and these responses were also comparable in the ZL and ZO rats (ZL: 39 +/- 4%; ZO: 38 +/- 2% at 10(-5) M). In contrast, nitric oxide-dependent relaxation to bradykinin was significantly reduced in the ZO rats (10(-6) M: 10 +/- 3%) compared with ZLs (29 +/- 7%, P < 0.01). These findings indicate that vasoconstrictor responses of the BA mediated by ET-1, TxA(2), PKC, and Rho-kinase are not affected by IR.  相似文献   

6.
Cerebral vascular smooth muscle cells express the CB(1) cannabinoid receptor, and CB(1) receptor agonists produce vasodilation of cerebral arteries. The purpose of this study was to determine whether vasoconstriction of rat middle cerebral artery (MCA) results in the local formation of endocannabinoids (eCBs), which, via activation of CB(1) receptors, oppose the vasoconstriction in a feedback manner. The thromboxane A(2) (TXA(2)) mimetic U-46619 significantly increased N-arachidonylethanolamine (AEA) and 2-arachidonylglycerol (2-AG) content of isolated MCA, whereas 5-hydroxytrypamine (5-HT) decreased AEA and 2-AG content. If eCBs play a feedback role in the regulation of MCA tone, then CB(1) receptor antagonists should enhance the constriction of MCA produced by U-46619 but not 5-HT. U-46619 caused concentration-dependent constrictions of endothelium-denuded MCA. Two CB(1) receptor antagonists SR-141716 and AM-251 decreased the EC(50) value for U-46619 to constrict endothelium-denuded MCA without affecting the maximal effect. A low concentration of CB(1) receptor agonist Win-55212-2 (30 nM) produced vasodilation of MCAs constricted with low but not saturating concentrations of U-46619. SR-141716 had no effect on the 5-HT concentration-contraction relationship. These data suggest that TXA(2) receptor activation increases MCA eCB content, which, via activation of CB(1) receptors, reduces the constriction produced by moderate concentrations of the TXA(2) agonist. Although 5-HT-induced vasoconstriction is reduced by exogenous CB(1) receptor agonist, activation of 5-HT receptors does not increase eCB content. These results suggest that MCA production of eCBs is not regulated by constriction per se but likely via a signaling pathway that is specific for TXA(2) receptors and not 5-HT receptors.  相似文献   

7.
Early activation of p160ROCK by pressure overload in rat heart   总被引:1,自引:0,他引:1  
We investigated the mechanisms underlying regulation of contraction with measurements of isometric force and intracellular Ca2+ concentration ([Ca2+]i) in NIH 3T3 fibroblast reconstituted into fibers with the use of a collagen matrix. Treatment with the major phospholipids, neurotransmitters, and growth factors had little effect on baseline isometric force. However, U-46619, a thromboxane A2 (TxA2) analog, increased force and [Ca2+]i; EC50 values were 11.0 and 10.0 nM, respectively. The time courses were similar to those induced by calf serum (CS), and the maximal force was 65% of a CS-mediated contraction. The selective TxA2 receptor antagonist SQ-29548 abolished the U-46619-induced responses. CS-induced contractions are dependent on an intracellular Ca2+ store function; however, the U-46619 response depended not only on intracellular Ca2+ stores, but also on Ca2+ influx from the extracellular medium. Inhibition of Rho kinase suppressed U-46619- and CS-induced responses; in contrast, inhibition of C kinase (PKC) reduced only the U-46619 response. Moreover, addition of U-46619 to a CS contracture enhanced force and [Ca2+]i responses. These results indicate that U-46619-induced responses involve PKC and Rho kinase pathways, in contrast to activation by CS. Thus TxA2 may have a role in not only the initial step of wound repair as an activator of blood coagulation, but also in fibroblast contractility in later stages. collagen matrix; signal transduction; wound repair  相似文献   

8.
Chronic hypoxia alters contractile sensitivity of isolated arteries to alpha-adrenergic stimulation and other agonists. However, most studies have been performed in thoracic aortas or other large vessels making little contribution to vascular resistance in their respective circulations. To determine the effect of chronic hypoxia on the vasoconstrictor response in a small, resistance-sized vessel, we studied second and third generation middle cerebral arteries (MCA; approximately 75-microm internal diameter before mounting). MCA were isolated from normoxic (inspired oxygen = 125 Torr) and hypoxic (8 wk at 3,960 m; inspired oxygen = 90 Torr) guinea pigs, and their vasoconstrictor responses were determined to the thromboxane mimetic U-46619 by using dual-pipette video microscopy. Arteries from hypoxic animals had greater contractile sensitivity to U-46619 compared with those of the normoxic animals (-log EC50 = 7.86 +/- 0.11 vs. 7.62 +/- 0.06, respectively, P < 0.05). Addition of the nitric oxide (NO) inhibitor nitro-L-arginine (200 microM) to the vessel bath eliminated the differences in contractile sensitivity between the MCA from the normoxic and chronically hypoxic groups. Supplementation with L-arginine in the drinking water sufficient to raise plasma L-arginine levels 41% reduced MCA contractile sensitivity to U-46619 in the normoxic group (-log EC50 = 7.22 +/- 0.31, P < 0.05 compared with the nonsupplemented normoxic group) but not in the chronically hypoxic group. These results show that chronic hypoxia increases the sensitivity of the MCA to the vasoconstrictor U-46619, likely because of a reduction in NO production and/or activity.  相似文献   

9.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate(S1P) are potent lipid growth factors with similar abilities tostimulate cytoskeleton-based cellular functions. Their effects aremediated by a subfamily of G protein-coupled receptors (GPCRs) encoded by endothelial differentiation genes (edgs). Wehypothesize that large quantities of LPA and S1P generated by activatedplatelets may influence endothelial cell functions. Using an in vitrowound healing assay, we observed that LPA and S1P stimulated closure ofwounded monolayers of human umbilical vein endothelial cells and adultbovine aortic endothelial cells, which express LPA receptor Edg2, andS1P receptors Edg1 and Edg3. The two major components of wound healing,cell migration and proliferation, were stimulated individually by bothlipids. LPA and S1P also stimulated intracellular Ca2+mobilization and mitogen-activated protein kinase (MAPK)phosphorylation. Pertussis toxin partially blocked the effects of bothlipids on endothelial cell migration, MAPK phosphorylation, andCa2+ mobilization, implicatingGi/o-coupled Edg receptor signaling inendothelial cells. LPA and S1P did not cross-desensitize each other inCa2+ responses, suggesting involvement of distinctreceptors. Thus LPA and S1P affect endothelial cell functions throughsignaling pathways activated by distinct GPCRs and may contribute tothe healing of wounded vasculatures.

  相似文献   

10.
Our objectives were to identify the relative contributions of [Ca2+]i and myofilament Ca2+ sensitivity in the pulmonary venous smooth muscle (PVSM) contractile response to the thromboxane A2 mimetic U-46619 and to assess the roles of PKC, tyrosine kinases (TK), and Rho-kinase (ROK) in that response. We tested the hypothesis that U-46619-induced contraction in PVSM is mediated by both increases in [Ca2+]i and myofilament Ca2+ sensitivity and that the PKC, TK, and ROK signaling pathways are involved. Isometric tension was measured in isolated endothelium-denuded (E-) canine pulmonary venous (PV) rings. In addition, [Ca2+]i and tension were simultaneously measured in fura-2-loaded E- PVSM strips. U-46619 (0.1 nM-1 microM) caused dose-dependent (P < 0.001) contraction in PV rings. U-46619 contraction was attenuated by inhibitors of L-type voltage-operated Ca2+ channels (nifedipine, P < 0.001), inositol 1,4,5-trisphosphate-mediated Ca2+ release (2-aminoethoxydiphenylborate, P < 0.001), PKC (bisindolylmaleimide I, P < 0.001), TK (tyrphostin A-47, P = 0.014), and ROK (Y-27632, P = 0.008). In PV strips, U-46619 contraction was associated with increases in [Ca2+]i and myofilament Ca2+ sensitivity. Both Ca2+ influx and release mediated the early transient increase in [Ca2+]i, whereas the late sustained increase in [Ca2+]i only involved Ca2+ influx. Inhibition of both PKC and ROK (P = 0.006 and P = 0.002, respectively), but not TK, attenuated the U-46619-induced increase in myofilament Ca2+ sensitivity. These results suggest that U-46619 contraction is mediated by Ca2+ influx, Ca2+ release, and increased myofilament Ca2+ sensitivity. The PKC, TK, and ROK signaling pathways are involved in U-46619 contraction.  相似文献   

11.
Previous studies have demonstratedthat functional interaction between endothelin (ET)-1 and nitric oxide(NO) involves changes in Ca2+ mobilization and cytoskeletonin human brain microvascular endothelial cells. The focus of thisinvestigation was to examine the possible existence of analogousinterplay between these vasoactive substances and elucidate theirsignal transduction pathways in human brain capillary endothelialcells. The results indicate that ET-1-stimulated Ca2+mobilization in these cells is dose-dependently inhibited by NOR-1 (anNO donor). This inhibition was prevented by ODQ (an inhibitor ofguanylyl cyclase) or Rp-8-CPT-cGMPS (an inhibitor of proteinkinase G). Treatment of endothelial cells with 8-bromo-cGMP reducedET-1-induced Ca2+ mobilization in a manner similar to thatobserved with NOR-1 treatment. In addition, NOR-1 or cGMP reducedCa2+ mobilization induced by mastoparan (an activator of Gprotein), inositol 1,4,5-trisphosphate, or thapsigargin (an inhibitorof Ca2+-ATPase). Interestingly, alterations in endothelialcytoskeleton (actin and vimentin) were associated with these effects.The data indicate for the first time that the cGMP-dependent proteinkinase colocalizes with actin. These changes were accompanied byaltered levels of phosphorylated vasodilator-stimulated phosphoprotein, which were elevated in endothelial cells incubated with NOR-1 andsignificantly reduced by ODQ or Rp-8-CPT-cGMPS. The findings indicate a potential mechanism by which the functionalinterrelationship between ET-1 and NO plays a role in regulatingcapillary tone, microcirculation, and blood-brain barrier function.

  相似文献   

12.
Chronic exposure to low-O2 tension induces pulmonary arterial hypertension (PAH), which is characterized by vascular remodeling and enhanced vasoreactivity. Recent evidence suggests that reactive oxygen species (ROS) may be involved in both processes. In this study, we critically examine the role superoxide and NADPH oxidase plays in the development of chronic hypoxic PAH. Chronic hypoxia (CH; 10% O2 for 3 wk) caused a significant increase in superoxide production in intrapulmonary arteries (IPA) of wild-type (WT) mice as measured by lucigenin-enhanced chemiluminescence. The CH-induced increase in the generation of ROS was obliterated in NADPH oxidase (gp91phox) knockout (KO) mice, suggesting that NADPH oxidase was the major source of ROS. Importantly, pathological changes associated with CH-induced PAH (mean right ventricular pressure, medial wall thickening of small pulmonary arteries, and right heart hypertrophy) were completely abolished in NADPH oxidase (gp91phox) KO mice. CH potentiated vasoconstrictor responses of isolated IPAs to both 5-hydroxytryptamine (5-HT) and the thromboxane mimetic U-46619. Administration of CuZn superoxide dismutase to isolated IPA significantly reduced CH-enhanced superoxide levels and reduced the CH-enhanced vasoconstriction to 5-HT and U-46619. Additionally, CH-enhanced superoxide production and vasoconstrictor activity seen in WT IPAs were markedly reduced in IPAs isolated from NADPH oxidase (gp91phox) KO mice. These results demonstrate a pivotal role for gp91phox-dependent superoxide production in the pathogenesis of CH-induced PAH.  相似文献   

13.
Oxidant stress plays a significant role in hypoxic-ischemic injury to the susceptible microvascular endothelial cells. During oxidant stress, lysophosphatidic acid (LPA) concentrations increase. We explored whether LPA caused cytotoxicity to neuromicrovascular cells and the potential mechanisms thereof. LPA caused a dose-dependent death of porcine cerebral microvascular as well as human umbilical vein endothelial cells; cell death appeared oncotic rather than apoptotic. LPA-induced cell death was mediated via LPA(1) receptor, because the specific LPA(1) receptor antagonist THG1603 fully abrogated LPA's effects. LPA decreased intracellular GSH levels and induced a p38 MAPK/JNK-dependent inducible nitric oxide synthase (NOS) expression. Pretreatment with the antioxidant GSH precursor N-acetyl-cysteine (NAC), as well as with inhibitors of NOS [N(omega)-nitro-l-arginine (l-NNA); 1400W], significantly prevented LPA-induced endothelial cell death (in vitro) to comparable extents; as expected, p38 MAPK (SB203580) and JNK (SP-600125) inhibitors also diminished cell death. LPA did not increase indexes of oxidation (isoprostanes, hydroperoxides, and protein nitration) but did augment protein nitrosylation. Endothelial cytotoxicity by LPA in vitro was reproduced ex vivo in brain and in vivo in retina; THG1603, NAC, l-NNA, and combined SB-203580 and SP600125 prevented the microvascular rarefaction. Data implicate novel properties for LPA as a modulator of the cell redox environment, which partakes in endothelial cell death and ensued neuromicrovascular rarefaction.  相似文献   

14.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S-1-P) are both low molecular weight lysophospholipid (LPL) ligands that are recognized by the Edg family of G protein-coupled receptors. In endothelial cells, these two ligands activate Edg receptors, resulting in cell proliferation and cell migration. The intercellular adhesion molecule-1 (ICAM-1, CD54) is one of many cell adhesion molecules belonging to the immunoglobulin superfamily. This study showed that LPA and S-1-P enhance ICAM-1 expression at both the mRNA and protein levels in human umbilical cord vein endothelial cells (HUVECs). This enhanced ICAM-1 expression in HUVECs was first observed at 2 h postligand treatment. Maximal expression appeared at 8 h postligand treatment, as detected by flow cytometry and Western blotting. Furthermore, the effects of S-1-P on ICAM-1 expression were shown to be concentration dependent. Prior treatment of HUVECs with pertussis toxin, a specific inhibitor of Gi, ammonium pyrrolidinedithiocarbamate and BAY 11–7082, inhibitors of the nuclear factor (NF)-B pathway, or Clostridium difficile toxin B, an inhibitor of Rac, prevented the enhanced effect of LPL-induced ICAM-1 expression. However, pretreatment of HUVECs with exoC3, an inhibitor of Rho, had no effect on S-1-P-enhanced ICAM-1 expression. In a static cell-cell adhesion assay system, pretreatment of LPL enhanced the adhesion between HUVECs and U-937 cells, a human mononucleated cell line. The enhanced adhesion effect could be prevented by preincubation with a functional blocking antibody against human ICAM-1. These results suggest that LPLs released by activated platelets might enhance interactions of leukocytes with the endothelium through a Gi-, NF-B-, and possibly Rac-dependent mechanism, thus facilitating wound healing and inflammation processes. lysophosphatidic acid; sphingosine 1-phosphate; inflammation; intercellular adhesion molecule-1; nuclear factor-B; human umbilical cord vein endothelial cells  相似文献   

15.
Phosphatase holoenzyme inhibitor (PHI)-1 is one of the newest members of the family of protein phosphatase inhibitor proteins. In isolated enzyme systems, several kinases, including PKC and rho kinase (ROCK), have been shown to phosphorylate PHI-1. However, it is largely unknown whether PHI-1 is phosphorylated in response to agonist stimulation in intact cells. We investigated this question in primary cultured rat aortic vascular smooth muscle cells (VSMCs). Using two-dimensional polyacrylamide gel electrophoresis and immunoblot, we found that there are two major PHI-1 spots under resting conditions: a minor spot with an acidic isoelectric point (pI) and a major spot with a more alkaline pI. Interestingly, U-46619, a G protein-coupled receptor agonist, caused a significant increase in the acidic spot, suggesting that it may represent a phosphorylated form of PHI-1. This was confirmed by phosphatase treatment and by a specific phospho-PHI-1 antibody. Furthermore, we found that angiotensin II, thrombin, and U-46619 increased phosphorylated PHI-1 from 9% of total PHI-1 in resting cells to 18%, 18%, and 30%, respectively. We also found that inhibition of ROCK by Y-27632 or H-1152 selectively diminished U-46619-induced CPI-17 phosphorylation, whereas it did not affect PHI-1 phosphorylation. Activation of ROCK by expressing V14RhoA selectively induced CPI-17 phosphorylation without affecting PHI-1 phosphorylation. In contrast, inhibition of PKC by GF-109203X or by PKC downregulation selectively diminished U-46619-induced PHI-1 phosphorylation without significantly affecting U-46619-induced CPI-17 phosphorylation. Activating PKC by PMA induced PHI-1 phosphorylation. Together, our results show for the first time that agonist induces PHI-1 phosphorylation in VSMCs and divergent kinase signaling couples agonist stimulation to PHI-1 and CPI-17 phosphorylation. signal transduction; myosin phosphatase holoenzyme inhibitor 1; protein kinase C  相似文献   

16.
Rho activation in excitatory agonist-stimulated vascular smooth muscle   总被引:7,自引:0,他引:7  
Small GTPase Rho and its downstream effector, Rho kinase, havebeen implicated in agonist-stimulated Ca2+ sensitization of20-kDa myosin light chain (MLC20) phosphorylation andcontraction in smooth muscle. In the present study we demonstrated forthe first time that excitatory receptor agonists induce increases inamounts of an active GTP-bound form of RhoA, GTP-RhoA, in rabbit aorticsmooth muscle. Using a pull-down assay with a recombinant RhoA-bindingprotein, Rhotekin, we found that a thromboxane A2 mimetic,U-46619, which induced a sustained contractile response, induced asustained rise in the amount of GTP-RhoA in a dose-dependent mannerwith an EC50 value similar to that for the contractile response. U-46619-induced RhoA activation was thromboxaneA2 receptor-mediated and reversible. Other agonistsincluding norepinephrine, serotonin, histamine, and endothelin-1 (ET-1)also stimulated RhoA, albeit to lesser extents than U-46619. Incontrast, ANG II and phorbol 12,13-dibutyrate failed to increaseGTP-RhoA. The tyrosine kinase inhibitor genistein substantiallyinhibited RhoA activation by these agonists, except for ET-1. Thusexcitatory agonists induce Rho activation in an agonist-specificmanner, which is thought to contribute to stimulation ofMLC20 phosphorylation Ca2+ sensitivity.

  相似文献   

17.
In cerebral circulation, epileptic seizures associated with excessive release of the excitatory neurotransmitter glutamate cause endothelial injury. Heme oxygenase (HO), which metabolizes heme to a vasodilator, carbon monoxide (CO), and antioxidants, biliverdin/bilirubin, is highly expressed in cerebral microvessels as a constitutive isoform, HO-2, whereas the inducible form, HO-1, is not detectable. Using cerebral vascular endothelial cells from newborn pigs and HO-2-knockout mice, we addressed the hypotheses that 1) glutamate induces oxidative stress-related endothelial death by apoptosis, and 2) HO-1 and HO-2 are protective against glutamate cytotoxicity. In cerebral endothelial cells, glutamate (0.1–2.0 mM) increased formation of reactive oxygen species, including superoxide radicals, and induced major keystone events of apoptosis, such as NF-B nuclear translocation, caspase-3 activation, DNA fragmentation, and cell detachment. Glutamate-induced apoptosis was greatly exacerbated in HO-2 gene-deleted murine cerebrovascular endothelial cells and in porcine cells with pharmacologically inhibited HO-2 activity. Glutamate toxicity was prevented by superoxide dismutase, suggesting apoptotic changes are oxidative stress related. When HO-1 was pharmacologically upregulated by cobalt protoporphyrin, apoptotic effects of glutamate in cerebral endothelial cells were completely prevented. Glutamate-induced reactive oxygen species production and apoptosis were blocked by a CO-releasing compound, CORM-A1 (50 µM), and by bilirubin (1 µM), consistent with the antioxidant and cytoprotective roles of the end products of HO activity. We conclude that both HO-1 and HO-2 have anti-apoptotic effects against oxidative stress-related glutamate toxicity in cerebral vascular endothelium. Although HO-1, when induced, provides powerful protection, HO-2 is an essential endogenous anti-apoptotic factor against glutamate toxicity in the cerebral vascular endothelium. endothelium; carbon monoxide; bilirubin; injury; reactive oxygen species; heme oxygenase  相似文献   

18.
Vascular complications associated with diabetes mellitus (DM) have been linked to activation of PKC-dependent signaling pathways in both human and animal models of DM. To determine whether aberrant PKC signaling mechanisms specifically impact the coronary circulation, we assessed isolated coronary artery (CA) responses after the induction of Type 1 DM. Male Sprague-Dawley rats were subjected to partial pancreatectomy (DM; n = 23) and compared with age-matched controls (CTL; n = 19). Vasoreactivity was assessed in single CAs ( approximately 250 microm internal diameter) after abluminal administration of the Gq-dependent vasoconstrictors endothelin (ET)-1 (10(-10)-10(-9) M) and U-44619 (10(-9)-10(-5) M) or the voltage-gated Ca2+ channel agonist BAY K 8644 (10(-9)-10(-5) M) with and without the PKC inhibitor bisindolylmaleimide (Bis; 10(-6) M). Dilator responses to ACh (10(-9)-10(-5) M) were also assessed. ET-1 resulted in significantly greater constriction in the DM versus CTL group (50 +/- 4% vs. 33 +/- 5%, P < 0.0001), whereas responses to U-44619 and BAY K 8644 were similar between groups. Importantly, inhibition of ET-1 and U-44619 constriction by Bis occurred in the DM but not CTL group (P < 0.05). Western blotting on isolated CAs revealed greater levels of PKC-alpha, PKC-beta I, and PKC-beta II by 22%, 15.3%, and 17.6%, respectively, in the DM versus CTL group (P < 0.05), whereas PKC-delta and PKC-epsilon protein levels were unchanged. DM was also associated with attenuated CA dilation after ACh treatment (P < 0.0566) and reductions in endothelial nitric oxide synthase protein levels versus CTL (P < 0.03). These data suggest that Ca2+-dependent PKC signaling pathways, particularly for ET-1, play a greater role in modulating CA vasoconstrictor responses in DM versus CTL. These data further suggest that aberrant CA constrictor and dilator responses are likely to contribute to the coronary vascular pathology associated with DM.  相似文献   

19.
The endothelial cell has a unique intrinsic feature: it produces a most potent vasopressor peptide hormone, endothelin (ET-1), yet it also contains a signaling system of an equally potent hypotensive hormone, atrial natriuretic factor (ANF). This raises two related curious questions: does the endothelial cell also contain an ET-1 signaling system? If yes, how do the two systems interact with each other? The present investigation was undertaken to determine such a possibility. Bovine pulmonary artery endothelial (BPAE) cells were chosen as a model system. Identity of the ANF receptor guanylate cyclase was probed with a specific polyclonal antibody to the 180 kDa membrane guanylate cyclase (mGC) ANF receptor. A Western-blot analysis of GTP-affinity-purified endothelial cell membrane proteins recognized a 180 kDa band; the same antibody inhibited the ANF-stimulated guanylate cyclase activity; the ANF-dependent rise of cyclic GMP in the intact cells was dose-dependent. By affinity cross-linking technique, a predominant 55 kDa membrane protein band was specifically labeled with [125I]ET-1. ET-1 treatment of the cells showed a migration of the protein kinase C (PKC) activity from cytosol to the plasma membrane; ET-1 inhibited the ANF-dependent production of cyclic GMP in a dose-dependent fashion with an EC50 of 100 nM. This inhibitory effect was duplicated by phorbol 12-myristate 13-acetate (PMA), a known PKC-activator. The EC50 of PMA was 5 nM. A PKC inhibitor, 1-(5-isoquinolinyl-sulfonyl)-2-methyl piperazine (H-7), blocked the PMA-dependent attenuation of ANF-dependent cyclic GMP formation. These results demonstrate that the 180 kDa mGC-coupled ANF and ET-1 signaling systems coexist in endothelial cells and that the ET-1 signal negates the ANF-dependent guanylate cyclase activity and cyclic GMP formation. Furthermore, these results support the paracrine and/or autocrine role of ET-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号