首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In some species, such as songbirds, much is known about how the brain regulates vocal learning, production, and perception. What remains a mystery is what regulates the motivation to communicate. European starlings (Sturnus vulgaris) sing throughout most of the year, but the social and environmental factors that motivate singing behavior differ seasonally. Male song is highly sexually motivated during, but not outside of, the breeding season. Brain areas outside the song control system, such as the medial preoptic nucleus (POM) and ventral tegmental area (VTA), have been implicated in regulating sexually motivated behaviors in birds, including song. The present study was designed to explore whether these regions, as well as three song control nuclei [area X, the high vocal center (HVC), and the robust nucleus of the arcopallium (RA)], might be involved differentially in song produced within compared to outside of a breeding context. We recorded the behavioral responses of breeding and nonbreeding condition male starlings to the introduction of a female conspecific. Males did not show context-dependent differences in the overall amount of song sung. However, immunocytochemistry for the protein product of the immediate early gene cFOS revealed a positive linear relationship between the total amount of songs sung and number of cFOS-labeled cells in POM, VTA, HVC, and RA for birds singing during, but not outside of, a breeding context. These results suggest that these regions differentially regulate male song production depending on reproductive context. Overall the data support the hypothesis that the POM and VTA interact with the song control system, specifically HVC and RA, to regulate sexually motivated vocal communication in songbirds.  相似文献   

2.
Vocalizations convey information about an individual's motivational, internal, and social status. As circumstances change, individuals respond by adjusting vocal behavior accordingly. In European starlings, a male that acquires a nest site socially dominates other males and dramatically increases courtship song. Although circulating testosterone is associated with social status and vocal production it is possible that steroid receptors fine-tune status-appropriate changes in behavior. Here we explored a possible role for androgen receptors. Male starlings that acquired nest sites produced high rates of courtship song. For a subset of males this occurred even in the absence of elevated circulating testosterone. Immunolabeling for androgen receptors (ARir) was highest in the medial preoptic nucleus (POM) in males with both a nest site and elevated testosterone. For HVC, ARir was higher in dominant males with high testosterone (males that sang longer songs) than dominant males with low testosterone (males that sang shorter songs). ARir in the dorsal medial portion of the nucleus intercollicularis (DM) was elevated in males with high testosterone irrespective of dominance status. Song bout length related positively to ARir in POM, HVC and DM, and testosterone concentrations related positively to ARir in POM and DM. Results suggest that the role of testosterone in vocal behavior differs across brain regions and support the hypothesis that testosterone in POM underlies motivation, testosterone in HVC relates to song quality, and testosterone in DM stimulates vocalizations. Our data also suggest that singing may influence AR independent of testosterone and that alternative androgen-independent pathways regulate status-appropriate singing behavior.  相似文献   

3.
In male starlings (Sturnus vulgaris) courtship song plays a critical role in mate attraction. During the breeding season courtship song occurs prior to copulation and appears to reflect male sexual arousal. Outside the breeding season starlings sing, but song appears unrelated to reproduction. The aromatization of testosterone (T), likely within the medial preoptic nucleus (POM), is critical for the expression of male sexual arousal. The present study was performed to determine whether seasonal changes in the POM might relate to seasonal changes in courtship singing behavior in male starlings. T concentrations, the volume of the POM, and aromatase within the POM were examined both during and outside of the breeding season in male starlings. Song was also recorded at these times both with and without a female present. The POM was largest and contained dense aromatase immunostaining only during the spring breeding season, when T concentrations were highest and males responded to a female with an increase in courtship song. Outside the breeding season the volume of the POM was small, T concentrations were low, and males displayed no changes in song expression in response to female conspecifics. Song bout length was positively related to POM volume, and males sang longer songs in spring. Only males with nestboxes in spring responded to a female, and the POM tended to be larger in these males, suggesting that nestbox possession might influence neuroplasticity within the POM. Overall, the findings suggest that T-dependent plasticity and aromatase activity within the POM might regulate courtship singing in a wild songbird.  相似文献   

4.
In male starlings (Sturnus vulgaris) courtship song plays a critical role in mate attraction. During the breeding season courtship song occurs prior to copulation and appears to reflect male sexual arousal. Outside the breeding season starlings sing, but song appears unrelated to reproduction. The aromatization of testosterone (T), likely within the medial preoptic nucleus (POM), is critical for the expression of male sexual arousal. The present study was performed to determine whether seasonal changes in the POM might relate to seasonal changes in courtship singing behavior in male starlings. T concentrations, the volume of the POM, and aromatase within the POM were examined both during and outside of the breeding season in male starlings. Song was also recorded at these times both with and without a female present. The POM was largest and contained dense aromatase immunostaining only during the spring breeding season, when T concentrations were highest and males responded to a female with an increase in courtship song. Outside the breeding season the volume of the POM was small, T concentrations were low, and males displayed no changes in song expression in response to female conspecifics. Song bout length was positively related to POM volume, and males sang longer songs in spring. Only males with nestboxes in spring responded to a female, and the POM tended to be larger in these males, suggesting that nestbox possession might influence neuroplasticity within the POM. Overall, the findings suggest that T-dependent plasticity and aromatase activity within the POM might regulate courtship singing in a wild songbird.  相似文献   

5.
The aromatization of testosterone (T) in the medial preoptic nucleus (POM) is known to regulate male courtship and sexual behaviors expressed prior to, and in anticipation of, copulation. Singing in male European starlings is used to attract mates prior to physical sexual contact, suggesting that the POM might be involved. The present study was performed to examine the effects of lesions targeting the POM on singing and courtship behavior in reproductively active male starlings. A significant decrease in song output and the gathering of green nest materials was observed in males with lesions to the POM compared to males with damage to brain areas outside of the POM. Lesions did not affect a male's tendency to remain near a female or to occupy a nestbox, suggesting that the effects of POM lesions were specific to courtship behaviors. Behavioral differences were not related to testis mass or volume, and GnRH immunoreactivity was observed within the hypothalamus and median eminence for each male, suggesting that the effects of POM lesions were related specifically to POM involvement in song expression rather than to a disruption of the GnRH axis. These results suggest a general role for the POM in the expression of behaviors related to sexual arousal or anticipation, including song.  相似文献   

6.
The aromatization of testosterone (T) in the medial preoptic nucleus (POM) is known to regulate male courtship and sexual behaviors expressed prior to, and in anticipation of, copulation. Singing in male European starlings is used to attract mates prior to physical sexual contact, suggesting that the POM might be involved. The present study was performed to examine the effects of lesions targeting the POM on singing and courtship behavior in reproductively active male starlings. A significant decrease in song output and the gathering of green nest materials was observed in males with lesions to the POM compared to males with damage to brain areas outside of the POM. Lesions did not affect a male's tendency to remain near a female or to occupy a nestbox, suggesting that the effects of POM lesions were specific to courtship behaviors. Behavioral differences were not related to testis mass or volume, and GnRH immunoreactivity was observed within the hypothalamus and median eminence for each male, suggesting that the effects of POM lesions were related specifically to POM involvement in song expression rather than to a disruption of the GnRH axis. These results suggest a general role for the POM in the expression of behaviors related to sexual arousal or anticipation, including song.  相似文献   

7.
Learned motor behaviors require descending forebrain control to be coordinated with midbrain and brainstem motor systems. In songbirds, such as the zebra finch, regular breathing is controlled by brainstem centers, but when the adult songbird begins to sing, its breathing becomes tightly coordinated with forebrain-controlled vocalizations. The periods of silence (gaps) between song syllables are typically filled with brief breaths, allowing the bird to sing uninterrupted for many seconds. While substantial progress has been made in identifying the brain areas and pathways involved in vocal and respiratory control, it is not understood how respiratory and vocal control is coordinated by forebrain motor circuits. Here we combine a recently developed technique for localized brain cooling, together with recordings of thoracic air sac pressure, to examine the role of cortical premotor nucleus HVC (proper name) in respiratory-vocal coordination. We found that HVC cooling, in addition to slowing all song timescales as previously reported, also increased the duration of expiratory pulses (EPs) and inspiratory pulses (IPs). Expiratory pulses, like song syllables, were stretched uniformly by HVC cooling, but most inspiratory pulses exhibited non-uniform stretch of pressure waveform such that the majority of stretch occurred late in the IP. Indeed, some IPs appeared to change duration by the earlier or later truncation of an underlying inspiratory event. These findings are consistent with the idea that during singing the temporal structure of EPs is under the direct control of forebrain circuits, whereas that of IPs can be strongly influenced by circuits downstream of HVC, likely in the brainstem. An analysis of the temporal jitter of respiratory and vocal structure suggests that IPs may be initiated by HVC at the end of each syllable and terminated by HVC immediately before the onset of the next syllable.  相似文献   

8.
Male zebra finches learn to sing during a restricted phase of juvenile development. Song learning is characterized by the progressive modification of unstable song vocalizations by juvenile birds during development, a process that leads to the production of stereotyped vocal patterns as birds reach adulthood. The medial magnocellular nucleus of the anterior neostriatum (mMAN) is a small cortical region that has been implicated in song behavior based on its neuronal projection to the High Vocal Center (HVC), a nucleus that is critical for adult vocal production and presumably also plays a role in song learning. To assess the function of mMAN in song, ibotenic acid lesions of this brain region were made in juvenile male zebra finches during the period of vocal learning (40-50 days of age) and in adult males that were producing stable song (>90 days of age). Birds lesioned as juveniles produced highly abnormal, poor quality song as adults. Although the overall song quality of birds lesioned as adults was not highly disrupted or abnormal, the postoperative song behavior of these birds was discernibly different due to slight increases in variability of vocal production, particularly at the onset of singing. These results demonstrate that mMAN plays some important role in vocal production during the sensitive period for song learning, and is also important for consistent initiation and stereotyped production of adult song behavior.  相似文献   

9.
白腰文鸟发声行为的性别差异及其机制   总被引:3,自引:1,他引:2  
通过声谱分析,研究了5-120日龄雌、雄白腰文鸟(Lonchura striata swinhoei)的声谱变化,及该时段3个主要发声控制核团)HVC、RA、Area X)体积、睾丸(睾酮)的相应改变。结果如下:①45日龄以前,雌雄鸟只能发出简单鸣叫(call),鸣声基本不会鸣唱。②雄性HVC,RA,AreaX体积均比雌性大2-6部。3个核团的大小发育不完全一致。各核团的快速生长期与鸣唱学习的主要时段(60-120日龄)不同步,说明核团的个体发育可能不完全受发声行为的影响。③睾丸的充分发育(120日龄后)及血液中具有较高的睾酮水平是雄鸟发出成熟鸣唱语句的重要条件。  相似文献   

10.
In European starlings (Sturnus vulgaris) as in other seasonally breeding songbirds, a major function of song during the breeding season is mate attraction, and song in this context is highly sexually motivated. Song learning, perception, and production are regulated by nuclei of the song control system, but there is no evidence that these nuclei participate in the motivation to sing. Evidence suggests that the medial preoptic nucleus (POM), a diencephalic nucleus outside of the song control system, might regulate the motivation to sing, at least in a sexual context. If the POM is involved in the regulation of sexually motivated song, then this structure must interact with the song control system. To examine possible neuroanatomical connections between the POM and song control nuclei a tract-tracing study was performed in male starlings using the antero- and retrograde tract tracer, biotinylated dextran amine (BDA). No direct connections were identified between the POM and song control nuclei; however, labeled fibers were found to terminate in a region bordering dorsal-medial portions of the robust nucleus of the archistriatum (RA). Additionally, several indirect routes via which the POM might communicate with the song control system were identified. Specifically, POM projected to dorsomedial nucleus intercollicularis (DM), mesencephalic central gray (GCt), area ventralis of Tsai (AVT), and locus ceruleus (LoC), structures projecting directly to nuclei involved in song production (DM vocal-patterning and respiratory nuclei; GCt, AVT, LoC RA and HVC, and the context in which song is sung (AVT area X). These results are consistent with the possibility that the POM regulates sexually motivated song through interactions with brain regions involved in vocal production.We gratefully acknowledge grant sponsors NIMH (R01-MH 65645) to LVR and NSF for a graduate research fellowship to SJA  相似文献   

11.
《Journal of Physiology》2013,107(3):193-202
Songbirds constitute a powerful model system for the investigation of how complex vocal communication sounds are represented and generated, offering a neural system in which the brain areas involved in auditory, motor and auditory–motor integration are well known. One brain area of considerable interest is the nucleus HVC. Neurons in the HVC respond vigorously to the presentation of the bird’s own song and display song-related motor activity. In the present paper, we present a synthesis of neurophysiological studies performed in the HVC of one songbird species, the canary (Serinus canaria). These studies, by taking advantage of the singing behavior and song characteristics of the canary, have examined the neuronal representation of the bird’s own song in the HVC. They suggest that breeding cues influence the degree of auditory selectivity of HVC neurons for the bird’s own song over its time-reversed version, without affecting the contribution of spike timing to the information carried by these two song stimuli. Also, while HVC neurons are collectively more responsive to forward playback of the bird’s own song than to its temporally or spectrally modified versions, some are more broadly tuned, with an auditory responsiveness that extends beyond the bird’s own song. Lastly, because the HVC is also involved in song production, we discuss the peripheral control of song production, and suggest that interspecific variations in song production mechanisms could be exploited to improve our understanding of the functional role of the HVC in respiratory–vocal coordination.  相似文献   

12.
白腰文鸟发声行为的神经发育   总被引:5,自引:0,他引:5  
本文研究了 5~ 15 0日龄雄性白腰文鸟 (Lonchurastriataswinhoei)不同年龄段的声谱变化以及这种变化的神经调制机制。结果如下 :(1)HVC、RA和AreaX三个发声核团的神经联系基本接近成年鸟的水平后 ,幼鸟才开始学习鸣叫 (约 45日龄 ) ;(2 )HVC、RA和AreaX达到成年核团体积时 (约 80日龄 ) ,幼鸟才具有成年雄鸟的鸣叫模式 ;(3)发声控制核团的发育与核团间的神经支配有关 ,而基本不受鸣唱行为的影响 ,HVC、RA和AreaX的最快增长时间段各不相同 ,三个核团随年龄增长而呈现体积增长的显著变化 (one wayANOVA ,P <0 0 5 ) ,但各核团在任意两个时间段的体积差异并不都显著。结果提示 :发声行为产生的时间和发展与发声控制核团的发育、核团间的神经联系有关 ,最终的体积发育程度受内在遗传力的作用 ,同时可能还受神经核团建立正常神经联系时间的影响  相似文献   

13.
There is considerable interindividual variation in the volumes of song control nuclei. Sex and physiological condition appear to contribute to these differences; however, these factors alone do not account for all of the variation. Studies have attempted to relate differences in song behavior (i.e., song repertoire size) to variation in song nucleus volume, but have met with mixed success. In this article, two studies are presented that used male European starlings (Sturnus vulgaris) to explore the relationship between song nuclei volumes and age-related differences in song behavior and interindividual variation in song behavior in adults. The results of the first study showed that song repertoire size and song bout length were significantly greater in older adult than in yearling males. In addition, the volumes of the high vocal center (HVC) and nucleus robustus archistriatalis (RA) were significantly larger in older adults than yearlings. Area X of the parolfactory lobe did not differ significantly in volume between the two age classes. In the second study, both HVC and RA volume correlated positively with song bout length but not repertoire size among adult birds. Based on these results a new hypothesis is presented that states that variation in song nuclei volumes in starlings relates more to the amount of song produced than to the number of song types stored in memory. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Stereotyped sequences of neural activity underlie learned vocal behavior in songbirds; principle neurons in the cortical motor nucleus HVC fire in stereotyped sequences with millisecond precision across multiple renditions of a song. The geometry of neural connections underlying these sequences is not known in detail though feed-forward chains are commonly assumed in theoretical models of sequential neural activity. In songbirds, a well-defined cortical-thalamic motor circuit exists but little is known the fine-grain structure of connections within each song nucleus. To examine whether the structure of song is critically dependent on long-range connections within HVC, we bilaterally transected the nucleus along the anterior-posterior axis in normal-hearing and deafened birds. The disruption leads to a slowing of song as well as an increase in acoustic variability. These effects are reversed on a time-scale of days even in deafened birds or in birds that are prevented from singing post-transection. The stereotyped song of zebra finches includes acoustic details that span from milliseconds to seconds--one of the most precise learned behaviors in the animal kingdom. This detailed motor pattern is resilient to disruption of connections at the cortical level, and the details of song variability and duration are maintained by offline homeostasis of the song circuit.  相似文献   

15.
The higher vocal center (HVC) of adult male canries undergoes a seasonal change in volume that corresponds to seasonal modifications of vocal behavior: HVC is large when birds produce stereotyped song (spring) and is small when birds produce plastic song and add new song syllables into their vocal repertoires (fall). We reported previously that systemic exposure to testosterone (T) produces an increase in the volume of HVC similar to that observed with long-day photoperiods. T-induced growth of HVC occured regardless of wheter the borders of HVC were defined by Nissl-staining, the distribution of androgen-concentrating cells, or the distribution of projection neurons [separate neuronal populations within HVC project to the robust nucleus of the archistriatum (RA) and to Area X of the avian striatum (X)]. In the present study we used steroid autoradiography to determine whether T can influence the distribution of HVC cells that bind estrogen, and we combined estrogen autoradiography with retrograde labeling to determine whether HVC neurons that project to RA versus X differ in their ability to accumulate estrogen. Results showed that T increased the volume of Nissl-defined HVC and although HVC contained a low density of estrogen-concentrating cells, T increased the spatial distribution of these cells to match the Nissl borders of HVC. We also identified a region containing a high density of estrogenconcentrating cells located medial to HVC [we call this region paraHVC (pHVC)], and T also increased the volume of pHVC. pHVC also contained numerous X-projecting neurons, but few if any RA-projecting neurons. Double-labeling analysis revealed the RA-projecting neurons did not accumulate estrogen, a small percentage of X-projecting neurons in HVC accumulated estrogen, and the majority of X-projecting neurons in pHVC showed heavy accumulation of estrogen. The data reported here and in our previous article suggest distinct roles for gonadal steroids within the HVC-pHVC complex: estrogens are concentrated by neurons that project to a striatal region that influences vocal production during song learning (X), whereas androgens are concentrated primarily by neurons that project to a motor region that is involved in vocal production during both song learning and the recitation of already-learned song (RA). © 1995 John Wiley & Sons, Inc.  相似文献   

16.
10种鸣禽控制鸣啭神经核团大小与鸣唱复杂性的相关性   总被引:8,自引:0,他引:8  
为进一步揭示鸣禽鸣唱行为的神经生物学机制 ,本实验先对 8个科 10种鸣禽的鸣唱行为进行了观察和录音 ,并借助声谱软件分析了每种鸣禽的鸣唱复杂性。鸣唱语句复杂性的评价指标包括 :短语总数、每个短语中所含的平均音节数及音节种类数、所有短语的总音节数及音节种类数、最长短语的音节数及音节种类数。然后 ,测定了前脑三个鸣啭学习控制核团和一个与发声无关的视觉参考核团体积 ,分析了鸣唱语句复杂性和这些核团大小间的相关关系。结果表明 :1)HVC和HVC/Rt与 7种鸣唱语句复杂性指标无关 ;RA和RA/Rt与总音节种类数相关 ;AreaX与总音节数及音节种类数相关 ;2 )HVC/RA和HVC/X比值与多个鸣唱语句复杂性指标相关。结果提示 :鸣禽鸣唱复杂性不同特征可能受不同神经控制  相似文献   

17.
Studies on singing behavior in Oscine focus essentially on males and are carried out during the breeding season. Singing in females appears rare and is not well documented. However, females of several species can produce a complex song. Does this lack of data correspond to a real difference in males and females or to a non appropriate context of observation? We studied the vocal and social behavior of captive male and female European starlings during two periods: breeding and non-breeding periods. Our results indicated that females sang mostly in a non-breeding context: their singing behavior was strongly diminished when nestboxes were present in the aviary. Moreover, females sang more frequently when their closest neighbor was a female whereas males sang mostly when they had no immediate neighbor. These results indicate a difference between males and females for the context of song production.  相似文献   

18.
Little is known about the neural mechanisms that ensure appropriate vocal behaviors within specific social contexts. Male songbirds produce spontaneous (undirected) songs as well as female-directed courtship songs. Opioid neuropeptide activity in specific brain regions is rewarding, at least in mammals, and past studies suggest that the opioid met-enkephalin in such areas is more tightly linked to undirected than female-directed song. Recent data using a song-associated place preference paradigm further suggest that production of undirected but not directed song is tightly linked to intrinsic reward. Opioids have analgesic properties. Therefore, if production of undirected song is closely linked to opioid-mediated reward, the production of undirected but not directed song should be associated with analgesia. Consistent with this prediction, in male starlings we identified a positive correlation between analgesia (decreased reactivity to a hot water bath) and undirected song (in non-breeding season condition males in affiliative flocks) but not female-directed song (in breeding season condition males presented with females). When breeding condition males were divided according to social status, a negative correlation was found in subordinate males (i.e. males that failed to acquire a nest box). These data are consistent with the hypotheses 1) that the production of undirected song is facilitated or maintained by opioids (and/or other neuromodulators that also induce analgesia) and 2) that production of female-directed song is not linked in the same way to release of the same neuromodulators. Results also demonstrate a link between analgesia and song in subordinate individuals lacking a nesting territory within the breeding season. Overall, the findings indicate that distinct neural mechanisms regulate communication in different social contexts and support the working hypothesis that undirected but not directed song is tightly linked to opioid release.  相似文献   

19.
The bellbird (Anthornis melanura) is a honeyeater endemic to New Zealand, which uses song to defend breeding territories and/or food resources year round. Both sexes sing and the song structure and singing behavior have not yet been quantified. The number of song types, spectral structure, repertoire size, and singing behavior of male and female bellbirds was investigated for a large island population. Song types differed between the sexes with males singing a number of structurally distinct song types and females producing song types that overlapped in structure. Singing behavior also differed between the sexes; males often sung long series of songs while females sung each song at relatively long and variable intervals. Singing by both sexes occurred year round but the frequency of male and female singing bouts showed contrasting seasonal patterns. The frequency of female singing bouts increased as the breeding season progressed, whereas male singing bouts decreased. In contrast to almost all studied passerines, female bellbirds exhibited significant singing behavior and sung songs of complex structure and variety that parallel male song. These results provide a quantitative foundation for further research of song in bellbirds and in particular the function of female vocal behavior.  相似文献   

20.
The contribution of social factors to seasonal plasticity in singing behavior and forebrain nuclei controlling song, and their interplay with gonadal steroid hormones are still poorly understood. In many songbird species, testosterone (T) enhances singing behavior but elevated plasma T concentrations are not absolutely required for singing to occur. Singing is generally produced either to defend a territory or to attract a mate and it is therefore not surprising that singing rate can be influenced by the sex and behavior of the social partner. We investigated, based on two independent experiments, the effect of the presence of a male or female partner on the rate of song produced by male canaries. In the first experiment, song rate was measured in dyads composed of one male and one female (M-F) or two males (M-M). Birds were implanted with T-filled Silastic capsules or with empty capsules as control. The number of complete song bouts produced by all males was recorded during 240 min on week 1, 2, 4, and 8 after implantation. On the day following each recording session, brains from approximately one-fourth of the birds were collected and the volumes of the song control nuclei HVC and RA were measured. T increased the singing rate and volume of HVC and RA but these effects were affected by the social context. Singing rates were higher in the M-M than in the M-F dyads. Also, in the M-M dyads a dominance-subordination relationship soon became established and dominant males sang at higher rates than subordinates in T-treated but not in control pairs. The differences in song production were not reflected in the size of the song control nuclei: HVC was larger in M-F than in M-M males and within the M-M dyads, no difference in HVC or RA size could be detected between dominant and subordinate males. At the individual level, the song rate with was positively correlated with RA and to a lower degree HVC volume, but this relationship was observed only in M-M dyads, specifically in dominant males. A second experiment, carried out with castrated males that were all treated with T and exposed either to another T-treated castrate or to an estradiol-implanted female, confirmed that song rate was higher in the M-M than in the M-F condition and that HVC volume was larger in heterosexual than in same-sex dyads. The effects of T on singing rate and on the volume of the song control nuclei are thus modulated by the social environment, including the presence/absence of a potential mate and dominance status among males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号