首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Drought can limit the growth and reduce the yield of crops, but the safe and effective bio-approach to improve the drought resistance of crops is very little. We conducted an experiment in which we monitored the effects of polysaccharide from the endophyte Bionectria sp. Fat6 on the growth of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) seedlings under control and drought-stressed conditions by determining gas exchange, photosynthesis parameters, photosynthetic pigment contents, and metabolite accumulation. Results indicated that the polysaccharide from endophyte stimulated plant growth and increased the aboveground biomass, root mass, and root/shoot ratio of Tartary buckwheat. Application of the polysaccharide to drought-stressed plants resulted in a significant increase in the net photosynthetic rate, stomatal conductance, and transpiration rate of Tartary buckwheat and decreased the intercellular CO2 concentration. The contents of chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoids in leaves were higher in polysaccharide-treated seedlings than that in control. Polysaccharide notably increased the soluble protein and proline content and decreased the malondialdehyde content in Tartary buckwheat leaves. The endophytic polysaccharide may protect Tartary buckwheat against drought by improving leaf gas exchange and photosynthetic capacity, and altering concentrations of protective metabolites. Together, these changes may compensate for the negative impacts of drought stress on the growth of Tartary buckwheat. Thus, the polysaccharide from the endophyte Bionectria sp. Fat6 may be an effective biotic elicitor and a promising bio-approach to improve Tartary buckwheat production worldwide.  相似文献   

2.
Genetic improvement for drought tolerance in chickpea requires a solid understanding of biochemical processes involved with different physiological mechanisms. The objective of this study is to demonstrate genetic variations in altered metabolic levels in chickpea varieties (tolerant and sensitive) grown under contrasting water regimes through ultrahigh‐performance liquid chromatography/high‐resolution mass spectrometry‐based untargeted metabolomic profiling. Chickpea plants were exposed to drought stress at the 3‐leaf stage for 25 days, and the leaves were harvested at 14 and 25 days after the imposition of drought stress. Stress produced significant reduction in chlorophyll content, Fv/Fm, relative water content, and shoot and root dry weight. Twenty known metabolites were identified as most important by 2 different methods including significant analysis of metabolites and partial least squares discriminant analysis. The most pronounced increase in accumulation due to drought stress was demonstrated for allantoin, l ‐proline, l ‐arginine, l ‐histidine, l ‐isoleucine, and tryptophan. Metabolites that showed a decreased level of accumulation under drought conditions were choline, phenylalanine, gamma‐aminobutyric acid, alanine, phenylalanine, tyrosine, glucosamine, guanine, and aspartic acid. Aminoacyl‐tRNA and plant secondary metabolite biosynthesis and amino acid metabolism or synthesis pathways were involved in producing genetic variation under drought conditions. Metabolic changes in light of drought conditions highlighted pools of metabolites that affect the metabolic and physiological adjustment in chickpea that reduced drought impacts.  相似文献   

3.
Xiong  Yan  Qu  Yanting  Han  Hui  Chen  Fei  Li  Li  Tang  Huanwei  Che  Daidi  Zhang  Xing 《Plant Molecular Biology Reporter》2021,39(1):98-111

Metabolic responses are important for plant adaptation to abiotic stress. To investigate the responses of Phlox subulata L. to drought stress, we analyzed its physiological and metabolic changes using gas chromatography-mass spectrometer. Based on the physiological indices, P. subulata L. has tolerance to drought to some degree. Our results showed that there were a total of 30 key metabolites induced by drought stress, including amino acids, organic acids, sugars and sugar alcohols, nucleic acid and its derivatives, and other organic compounds. The glutamic acid-mediated proline biosynthesis pathway is continuously upregulated under drought stress, which could regulate osmotic pressure and maintain intracellular environmental stability. More secondary metabolites are used to increase glycolysis and tricarboxylic acid cycle, to accelerate energy production and to enhance the glutamic acid-mediated proline biosynthesis pathway, which are necessary to increase osmotic regulation. Prolonged drought stress induced progressive accumulation of compatible osmolytes, such as proline and inositol, sugars, and amino acids. Therefore, drought caused systemic alterations in metabolic networks involving transamination, TCA cycle, gluconeogenesis/glycolysis, glutamate-mediated proline biosynthesis, shikimate-mediated secondary metabolisms, and the metabolism of pyrimidine. These data suggest that plants may utilize these physiological and metabolomic adjustments as adaptive responses in the early stages of drought stress. These results deepen our understanding of the mechanisms involved in P. subulata L. drought tolerance, which will help improve the understanding of drought’s effects on plant systems.

  相似文献   

4.
拔节孕穗期小麦干旱胁迫下生长代谢变化规律   总被引:1,自引:0,他引:1       下载免费PDF全文
郭瑞  周际  杨帆  李峰  李昊如  夏旭  刘琪 《植物生态学报》2016,40(12):1319-1327
采用盆栽试验模拟干旱胁迫(土壤相对含水量40%-45%)在小麦(Triticum aestivum)拔节孕穗期胁迫12天, 测定其生长速率、光合特征及关键代谢产物含量, 以探讨干旱胁迫对拔节孕穗期小麦叶片初生及次生代谢产物的影响及其涉及的代谢途径, 讨论小麦生长代谢变化规律及应答机制。研究表明: 干旱胁迫使小麦叶片气孔受限制导致光合速率下降; 使叶绿素含量下降直接影响光系统II活性, 最终导致生长率降低。检测出的初级代谢产物组包括有机酸、氨基酸、碳水化合物、嘧啶和嘌呤等64个代谢产物, 其中29个代谢产物在干旱胁迫下发生明显的变化。主成分分析(PCA)结果显示全部样本均分布在95%的置信区间内, 两个主成分得分为64%。单因素方差分析结果表明, 干旱胁迫导致苹果酸、柠檬酸、乌头酸等参与三羧酸(TCA)循环的代谢产物消耗明显, 且引起大部分氨基酸(如脯氨酸、丝氨酸、缬氨酸)和碳水化合物(肌醇、果糖、葡萄糖)大量积累的同时转氨基代谢(天冬酰胺、谷氨酰胺和γ氨基丁酸)产物消耗, 研究证明干旱胁迫明显地促进小麦叶片的糖酵解和氨基酸合成途径, 但抑制了TCA循环和转氨基反应, 加速氨基酸代谢网络向脯氨酸合成转变过程。这些结果表明干旱胁迫引起了转氨基反应、TCA循环、糖酵解/糖异生、谷氨酸介导的脯氨酸合成, 以及嘧啶和嘌呤等代谢网络系统广泛的变化, 说明小麦在合成大量的氨基酸和碳水化合物类物质的同时也消耗了大量的能量, 暗示了糖异生到脯氨酸合成的转变。  相似文献   

5.
《植物生态学报》2016,40(12):1319
AimsThe aim of this study was to investigate the effects of drought stress on primary, secondary metabolites and metabolic pathways in the leaves of wheat, these parameters were evaluated to determine the physiological adaptive mechanisms by which wheat tolerates drought stress at the jointing-booting stage.MethodsA pot experiment was carried out in rain-proof shelter. The relative growth rate, photosynthetic characteristics and metabolism seedlings exposed to stresses lasting 12 days at jointing-booting stage were measured.Important findings The results displayed that the photosynthesis decreased under drought stress, causing the decreases of relative growth rate and dry matter mass. Profiles of 64 key metabolites produced by wheat including organic acids, amino acids, carbohydrates, purine, etc. were examined, 29 of them were changed significantly under drought stress. Principal component analysis (PCA) showed that 64% variations can be explained by the two principal components. One-way ANOVA analysis results revealed that long term drought stress decreased malic acid, citric acid and aconitic acid significantly, indicating inhibited tricarboxylic acid cycle. We further found that prolonged drought stress led to accumulation of progressive amino acids (proline, serine, valine) and carbohydrates (myo-inositol, fructose, clucose) in wheat leaves and depletion of transamination products (asparagine, glutamine, γ-aminobutyric acid). These results imply wheat may enhance its drought tolerance mainly by increasing amino acid biosynthesis and glycolysis under water-deficit conditions. Our findings suggest that drought condition altered metabolic networks including transamination, the tricarboxylic cycle, gluconeogenesis/glycolysis, glutamate-mediated proline biosynthesis, and the metabolisms of choline, pyrimidine and purine. This study provides new insights into the metabolic adaptation of wheat to drought stress and important information for developing drought-tolerant wheat cultivars.  相似文献   

6.
盐碱地高盐分会降低种子活力、抑制萌发出苗,严重制约盐碱地区花生生产和产业发展。种子萌发过程中物质代谢对种子发芽及植株形态建成至关重要,逐渐成为评价种子活力和品质的重要指标。以不同萌发期花生种子为研究对象,利用生理指标和高效液相色谱串联质谱(LC-MS/MS)分析方法,研究了盐胁迫下花生种子不同萌发期主要营养物质含量和差异代谢物的变化。种子吸水萌发促进了脂肪、蛋白质、可溶性糖代谢,随萌发时间延长,脂肪和可溶性糖含量逐渐降低,可溶性蛋白质含量呈先降后升的变化趋势。主成分分析和偏最小二乘法判别分析表明盐胁迫与对照组间代谢物差异较大,暗示盐胁迫对花生种子萌发期物质代谢影响较大。利用VIP值分析和KEGG pathway预测分析显示:正常条件下,花生种子吸水膨胀期的差异代谢物较少,未鉴定到富集的KEGG pathway;而胚根伸长期差异代谢物主要富集于12个KEGG pathway,表明萌发后期物质代谢较前期旺盛。盐处理显著提高多种差异代谢物表达水平,其中渗透保护物甜菜碱和脯氨酸差异明显;另外,盐胁迫下吸水膨胀和胚根伸长两时段的差异代谢物显著增多,分别富集到26和31个KEGG pathway。盐胁迫显著促进了能量代谢、甘油磷脂代谢、谷胱甘肽代谢以及芥子油苷生物合成途径等相关通路,推测其与盐胁迫下花生种子萌发期抗逆有关。甜菜碱和脯氨酸可能是花生种子萌发期适应盐胁迫的关键代谢物,甘油磷脂代谢、谷胱甘肽代谢以及芥子油苷生物合成等途径可能是重要的代谢调控通路。试验结果可为促进盐胁迫下花生种子萌发出苗探索新途径、新方法,以及提高盐碱地花生出苗率提供理论依据和参考价值。  相似文献   

7.
以来源于不同地区的12个西瓜基因型为试材,采用盆栽控水的方式进行持续干旱处理,研究干旱胁迫对西瓜幼苗株高、根长、鲜质量及干物质积累等生长状况的影响,比较不同基因型材料对干旱胁迫的生理响应差异,同时依据旱害指数对其抗旱性进行直接评价,并采用隶属函数法进一步验证和综合评价.结果表明: 干旱处理下,12个西瓜基因型对干旱胁迫的耐受能力存在明显差异,各基因型开始出现旱害症状的时间和发生旱害的程度各不相同.干旱胁迫降低了西瓜幼苗的株高、地上、地下鲜质量和地上干物质积累量,普遍提高了根冠比,而对根长和地下干质量存在正向和负向两种不同的影响.干旱处理后,西瓜叶片的相对含水量和叶绿素含量均不同程度降低,丙二醛、过氧化氢和超氧阴离子含量增加,脯氨酸大量积累,而可溶性蛋白含量以及抗氧化酶活性则因基因型的不同而表现出不同的结果.分析认为,3个野生型材料M20、KY-3和Y-2为抗旱性强的西瓜种质,Y34、金美人和04-1-2为敏感种质,而其余基因型为中抗种质.  相似文献   

8.
9.
Tao Zhang  Hongbing Yang 《Phyton》2022,91(8):1643-1658
Salt stress is one of the most serious abiotic stresses limiting plant growth and development. Calcium as an essential nutrient element and important signaling molecule plays an important role in ameliorating the adverse effect of salinity on plants. This study aimed to investigate the impact of exogenous calcium on improving salt tolerance in Tartary buckwheat cultivars, cv. Xinong9920 (salt-tolerant) and cv. Xinong9909 (salt-sensitive). Four-week-old Tartary buckwheat seedlings under 100 mM NaCl stress were treated with and without exogenous calcium chloride (CaCl2), Ca2+ chelator ethylene glycol tetraacetic acid (EGTA) and Ca2+-channel blocker lanthanum chloride (LaCl3) for 10 days. Then, some important physiological and biochemical indexes were determined. The results showed that salt stress significantly reduced seedling growth, decreased photosynthetic pigments, inhibited antioxidants and antioxidant enzyme activities. However, it increased the reactive oxygen species (ROS) levels in the two Tartary buckwheat cultivars. Exogenous 10 mM CaCl2 application on salt-stressed Tartary buckwheat seedlings obviously mitigated the negative effects of NaCl stress and partially restored seedlings growth. Ca2+-treated salt-stressed seedlings diplayed a suppressed accumulation of ROS, increased the contents of total chlorophyll, soluble protein, proline and antioxidants, and elevated the activities of antioxidant enzymes compared with salt stress alone. On the contrary, the addition of 0.5 mM LaCl3 and 5 mM EGTA on salt-stressed Tartary buckwheat seedlings exhibited the opposite effects to those with CaCl2 treatment. These results indicate that exogenous Ca2+ can enhance salt stress tolerance and Ca2+ supplementation may be an effective practice to cultivate Tartary buckwheat in saline soils.  相似文献   

10.
Common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (Fagopyrum tataricum), the two most widely cultivated buckwheat species, differ greatly in flavonoid content and reproductive mode. Here, we report the first high-quality and chromosome-level genome assembly of common buckwheat with 1.2 Gb. Comparative genomic analysis revealed that common buckwheat underwent a burst of long terminal repeat retrotransposons insertion accompanied by numerous large chromosome rearrangements after divergence from Tartary buckwheat. Moreover, multiple gene families involved in stress tolerance and flavonoid biosynthesis such as multidrug and toxic compound extrusion (MATE) and chalcone synthase (CHS) underwent significant expansion in buckwheat, especially in common buckwheat. Integrated multi-omics analysis identified high expression of catechin biosynthesis-related genes in flower and seed in common buckwheat and high expression of rutin biosynthesis-related genes in seed in Tartary buckwheat as being important for the differences in flavonoid type and content between these buckwheat species. We also identified a candidate key rutin-degrading enzyme gene (Ft8.2377) that was highly expressed in Tartary buckwheat seed. In addition, we identified a haplotype-resolved candidate locus containing many genes reportedly associated with the development of flower and pollen, which was potentially related to self-incompatibility in common buckwheat. Our study provides important resources facilitating future functional genomics-related research of flavonoid biosynthesis and self-incompatibility in buckwheat.  相似文献   

11.
Drought and submergence are the main adverse factors affecting plant growth and yield formation in parts of China, especially in the Yangtze River region. In this study, T1 (drought duration: 10 d), T2 (submergence duration: 8 d) and CK (control) treatments were applied. This work aimed to study the changes in metabolic pathways of rice under drought and submergence stress during the panicle differentiation stage. The identification and analysis of differential metabolites and differentially expressed proteins functions indicate that drought and submergence mainly promoted the energy metabolism pathway, carbon fixation in photosynthetic organism pathway, carbohydrate metabolic process, and reactive oxygen species (ROS) metabolic process functions. Under drought stress, the inhibition of photosynthetic rate is mainly through stomatal conductance restriction, and flavonoid pathway regulates the metabolic process of ROS. Under submergence stress, the electron transfer chain was destroyed to inhibit the photosynthetic rate, and the antioxidant system was activated to regulate the metabolism of ROS. The changes in related enzymes or proteins in metabolic regulatory networks are analyzed, which will be conducive to understanding the response mechanism of rice drought and submergence more deeply and provide a scientific basis for rice drought and submergence prevention and mitigation, and the breeding of drought- and submergence-resistant varieties.  相似文献   

12.
13.
Drought is one of the critical factors limiting tree growth and survival. Clarifying the adaptation to drought will facilitate the cultivation of drought-tolerant varieties. Metabolites, as direct signatures of biochemical functions, can uncover the biochemical pathways involved in drought responses. Here, we investigated the physiological and metabolic responses of drought-tolerant Populus simonii and drought-susceptible Populus deltoides cv. ‘Danhong’ to drought. Under drought conditions, P. simonii grew better and had a higher photosynthetic rate than P. deltoides cv. ‘Danhong’. Global untargeted metabolite profiling was analyzed using gas chromatography time-of-flight mass spectrometry system. A total of 69 and 53 differentially accumulated metabolites were identified in drought-stressed P. simonii and P. deltoides cv. ‘Danhong’, respectively. The metabolisms of carbohydrate, amino acid, lipid and energy were involved in the drought responses common to both poplar species. The citric acid cycle was significantly inhibited to conserve energy, whereas multiple carbohydrates acting as osmolytes and osmoprotectants were induced to alleviate the adverse effects of drought stress. Unlike P. deltoides cv. ‘Danhong’, P. simonii underwent a specific metabolic reprogramming that enhanced non-enzymatic antioxidants, coordinated the cellular carbon/nitrogen balance and regulated wax biosynthesis. These results provide a reference for characterizing the mechanisms involved in poplar response to drought and for enhancing the drought tolerance of forest trees.  相似文献   

14.
Drought stress conditions decrease maize growth and yield, and aggravate preharvest aflatoxin contamination. While several studies have been performed on mature kernels responding to drought stress, the metabolic profiles of developing kernels are not as well characterized, particularly in germplasm with contrasting resistance to both drought and mycotoxin contamination. Here, following screening for drought tolerance, a drought‐sensitive line, B73, and a drought‐tolerant line, Lo964, were selected and stressed beginning at 14 days after pollination. Developing kernels were sampled 7 and 14 days after drought induction (DAI) from both stressed and irrigated plants. Comparative biochemical and metabolomic analyses profiled 409 differentially accumulated metabolites. Multivariate statistics and pathway analyses showed that drought stress induced an accumulation of simple sugars and polyunsaturated fatty acids and a decrease in amines, polyamines and dipeptides in B73. Conversely, sphingolipid, sterol, phenylpropanoid and dipeptide metabolites accumulated in Lo964 under drought stress. Drought stress also resulted in the greater accumulation of reactive oxygen species (ROS) and aflatoxin in kernels of B73 in comparison with Lo964 implying a correlation in their production. Overall, field drought treatments disordered a cascade of normal metabolic programming during development of maize kernels and subsequently caused oxidative stress. The glutathione and urea cycles along with the metabolism of carbohydrates and lipids for osmoprotection, membrane maintenance and antioxidant protection were central among the drought stress responses observed in developing kernels. These results also provide novel targets to enhance host drought tolerance and disease resistance through the use of biotechnologies such as transgenics and genome editing.  相似文献   

15.
Drought is the primary limitation to plant growth and yield in agricultural systems. Cucumber (Cucumis sativus) is one of the most important vegetables worldwide and has little tolerance for water deficit. To understand the drought stress response strategy of this plant, the responses of cucumber to short‐term drought and rewatering were determined in this study by morphological structure and proteomic analyses. The leaf relative water content was significantly decreased under drought, and the cell structure was altered, while rewatering obviously alleviated the symptoms of water shortage and cell damage. A total of 320 and 246 proteins exhibiting significant abundance changes in response to drought and recovery, respectively, were identified. Our proteome analysis showed that 63 co‐regulated proteins were shared between drought and rewatering, whereas most of the responsive proteins were unique. The proteome is adjusted through a sequence of regulatory processes including the biosynthesis of secondary metabolites and the glutathione metabolism pathway, which showed a high correlation between protein abundance profile and corresponding enzyme activity. Drought and recovery regulated different types of proteins, allowing plants to adapt to environmental stress or restore growth, respectively, which suggests that short‐term drought and recovery are almost fully uncoupled processes. As an important component of the antioxidant system in plants, glutathione metabolism may be one of the main strategies for regulating antioxidant capacity during drought recovery. Our results provide useful information for further analyses of drought adaptability in cucumber plants.  相似文献   

16.
Salt-tolerant variety Chuanqiao No. 1 and salt-sensitive variety Chuanqiao No. 2 of Tartary buckwheat were used as experimental materials. The effect of aspartic acid on seed germination, physiological characteristics of seedlings and gene expression of salt exclusion in Tartary buckwheat were studied under NaCl stress of 150 mM. The results showed that the aspartic acid treatment could restore the seed germination rate and root vigor of seedlings to the control with non-damage level in salt-tolerant Tartary buckwheat variety under salt stress, and the salt-sensitive variety was increased greatly. Spraying aspartic acid had some protective effects on cell membrane of leaves in Tartary buckwheat under salt stress, and the protective effects were more obviously on salt-sensitive variety, and that could restore the activity of SOD and CAT of leaves to the control level in salt-tolerant Tartary buckwheat variety under salt stress, and the activity of antioxidant enzymes in salt-sensitive variety was increased significantly. The relative expression of FtNHX1 and FtSOS1 genes was increased significantly under salt stress, and that of FtNHX1 gene in salt-tolerant and salt-sensitive varieties was reached the maximum expression level at 12 h and 24 h respectively, while that of FtSOS1 gene in salt-tolerant and salt-sensitive varieties was reached the maximum expression level at 12 h, and the salt-tolerant variety was increased greatly. After spraying aspartic acid, the relative expression of FtNHX1 and FtSOS1 genes was increased more obviously. The relative expression of FtNHX1 gene in salt-tolerant and salt-sensitive varieties was reached the maximum expression level at 12 h, while that of FtSOS1 gene was reached the maximum expression level at 12 h and 24 h respectively, and that in salt-tolerant variety was increased especially more, indicating that spraying aspartic acid on gene expression of salt exclusion in salt-tolerant variety of Tartary buckwheat has a better effect under salt stress.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号