首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new three-finger toxin nakoroxin was isolated from the cobra Naja kaouthia venom, and its complete amino acid sequence was established. Nakoroxin belongs to the group of “orphan” toxins, data on the biological activity of which are practically absent. Nakoroxin shows no cytotoxicity and does not inhibit the binding of α-bungarotoxin to nicotinic acetylcholine receptors of muscle and α7 types. However, it potentiates the binding of α-bungarotoxin to the acetylcholine-binding protein from Lymnaea stagnalis. This is the first toxin with such an unusual property.  相似文献   

2.
Phospholipases A2 (PLA2s) are the most abundant family of snake venom proteins and play a significant role in prey envenomation. Their content in venoms is rather high. PLA2s not only have enzyme activity but exhibit other types of biological activities including neurotoxicity. We have earlier shown that a protein bitanarin from the venom of the puff adder Bitis arietans is capable to block the responses of Lymnaea stagnalis neurons to acetylcholine and represents an active PLA2 at the same time. Further investigation of PLA2s isolated from the venoms of snakes of two families revealed their capability to interact with nicotinic acetylcholine receptors (nAChRs): PLA2 from Vipera ursinii (Viperidae family), Naja kaouthia, and Bungarus fasciatus (Elapidae family) suppressed acetylcholine-induced current in identified neurons of L. staganlis. The effect was evident at PLA2 concentration in the range of tens micromoles. The data obtained suggest the presence in a PLA2 molecule of a site interacting with nAChR and a possible involvement of nAChR block in toxic action of PLA2s.  相似文献   

3.
Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1β3γ2 receptor; and at 10 μm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1β2γ2 ≈ α2β2γ2 > α5β2γ2 > α2β3γ2 and α1β3δ GABAARs. The α1β3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the β/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors.  相似文献   

4.
Snake venoms contain a vast array of toxic polypeptide components interacting with a variety of cell targets. Thus, Elapidae snake venoms contain α-neurotoxins with very high affinity for nicotinic acetylcholine receptors (nAChRs) and a few toxins able to suppress the activity of Ca2+ and K+ channels. Experimental evidence for the presence of nAChR antagonists and voltage-gated ionic channel blockers in venoms of Viperidae snakes is very scarce. In this study, effects of crude venoms of seven snake species (Vipera nikolskii, Echis multisquamatus, Gloydius saxatilis, Bitis arietans, Vipera renardi, Vipera lebetina, and Naja kaouthia) on nAChRs and voltage-gated Ca2+ channels were studied for the first time. The experiments were carried out on isolated identified neurons of the fresh-water mollusc Lymnaea stagnalis using voltage-clamp and intracellular perfusion techniques. All Viperidae snake venoms under study blocked nAChRs and voltage-gated Ca2+ channels. The potency of these venoms against nAChRs was significantly lower in comparison with N. kaouthia venom which is rich of α-neurotoxins; however, the extent of Ca2+ channel block by venoms of Viperidae snakes and N. kaouthia was similar. The data obtained suggest that Viperidae snake venoms tested in this study contain peptides with affinity both for nAChRs and for voltage-gated Ca2+ channels.  相似文献   

5.
Bungarus multicinctus is the most venomous snake distributed in China and neighboring countries of Myanmar, Laos, north Vietnam and Thailand. The high mortality rate of B. multicinctus envenomation is attributed to the lethal components of α-, β-, γ- and κ- bungarotoxins contained in the venom. Although anti-B. multicinctus sera were produced in Shanghai, Taiwan and Vietnam, the most widely clinic used product was term as B. multicinctus antivenin and manufactured by Shanghai Serum Bio-technology Co. Ltd. In the present investigation, high purity α-, β- and γ-bungarotoxins were separately isolated from B. multicinctus crude venom. Rabbit anti- α-, β- and γ-bungarotoxin antisera were prepared by common methods, respectively. LD50 values of α-, β- and γ-bungarotoxins were systematically determined via three administration pathways (intraperitoneal, intramuscular and intravenous injections) in Kunming mice. LD50 values of β-bungarotoxin were closely related with injection routines but those of both α- and γ-bungarotoxins were not dependent on the injection routines. Commercial B. multicinctus antivenin showed strong immunoreaction with high molecular weight fractions of the B. multicinctus but weakly recognized low molecular weight fractions like α- and γ-bungarotoxins. Although B. multicinctus antivenin showed immunoreaction with high molecular weight fractions of Bungarus fasciatus, Naja atra, Ophiophagus hannah venoms but the antivenin only demonstrated animal protection efficacy against O. hannah venom. These results indicated that the high molecular weight fractions of the O. hannah played an important role in venom lethality but those of B. fasciatus and N. atra did not have such a role.  相似文献   

6.
γ-Bungarotoxin was isolated from Bungarus multicinctus (Taiwan banded krait) venom using a combination of chromatography on a SP-Sephadex C-25 column and a reverse-phase high-performance liquid chromatography column. Circular dichroism (CD) measurement revealed that its secondary structure was dominant with β-sheet structure as is that of snake venom α-neurotoxins and cardiotoxins. γ-Bungarotoxin exhibits activity on inhibiting the binding of [3H]quinuclidinyl benzilate to the M2 muscarinic acetylcholine receptor subtype, and competes weakly with radioiodinated α-bungarotoxin for binding to the Torpedo nicotinic acetylcholine receptor. Moreover, the toxin inhibits collagen-induced platelet aggregation, with an IC50 of approximately 200 nM. The genomic DNA encoding the γ-bungarotoxin precursor is amplified by polymerase chain reaction (PCR). The gene is organized with three exons separated by two introns, and shares virtually identical overall organization with those reported for α-neurotoxin and cardiotoxin genes, including similar intron insertions. The intron sequences of these genes share sequence identity up to 85%, but the exon sequences are highly variable. These observations suggest that γ-bungarotoxin, α-neurotoxins, and cardiotoxins originate from a common ancestor, and the evolution of these genes shows a tendency to diversify the functions of snake venom proteins.  相似文献   

7.
Crude extracts and three isolated alkaloids from Erythrina mulungu plants have shown anxiolytic effects in different animal models. We investigated whether these alkaloids could affect nicotinic acetylcholine receptors and if they are selective for different central nervous system (CNS) subtypes. Screening experiments were performed using a single concentration of the alkaloid co-applied with acetylcholine in whole cell patch-clamp recordings in three different cell models: (i) PC12 cells natively expressing α3* nicotinic acetylcholine receptors; (ii) cultured hippocampal neurons natively expressing α7* nicotinic acetylcholine receptors; and (iii) HEK 293 cells heterologoulsy expressing α4β2 nicotinic acetylcholine receptors. For all three receptors, the percent inhibition of acetylcholine-activated currents by (+)-11á-hydroxyerysotrine was the lowest, whereas (+)-erythravine and (+)-11á-hydroxyerythravine inhibited the currents to a greater extent. For the latter two substances, we obtained concentration-response curves with a pre-application protocol for the α7* and α4β2 nicotinic acetylcholine receptors. The IC50 obtained with (+)-erythravine and (+)-11á-hydroxyerythravine were 6 µM and 5 µM for the α7* receptors, and 13 nM and 4 nM for the α4β2 receptors, respectively. Our data suggest that these Erythrina alkaloids may exert their behavioral effects through inhibition of CNS nicotinic acetylcholine receptors, particularly the α4β2 subtype.  相似文献   

8.
Human LYNX1, belonging to the Ly6/neurotoxin family of three-finger proteins, is membrane-tethered with a glycosylphosphatidylinositol anchor and modulates the activity of nicotinic acetylcholine receptors (nAChR). Recent preparation of LYNX1 as an individual protein in the form of water-soluble domain lacking glycosylphosphatidylinositol anchor (ws-LYNX1; Lyukmanova, E. N., Shenkarev, Z. O., Shulepko, M. A., Mineev, K. S., D''Hoedt, D., Kasheverov, I. E., Filkin, S. Y., Krivolapova, A. P., Janickova, H., Dolezal, V., Dolgikh, D. A., Arseniev, A. S., Bertrand, D., Tsetlin, V. I., and Kirpichnikov, M. P. (2011) NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1. J. Biol. Chem. 286, 10618–10627) revealed the attachment at the agonist-binding site in the acetylcholine-binding protein (AChBP) and muscle nAChR but outside it, in the neuronal nAChRs. Here, we obtained a series of ws-LYNX1 mutants (T35A, P36A, T37A, R38A, K40A, Y54A, Y57A, K59A) and examined by radioligand analysis or patch clamp technique their interaction with the AChBP, Torpedo californica nAChR and chimeric receptor composed of the α7 nAChR extracellular ligand-binding domain and the transmembrane domain of α1 glycine receptor (α7-GlyR). Against AChBP, there was either no change in activity (T35A, T37A), slight decrease (K40A, K59A), and even enhancement for the rest mutants (most pronounced for P36A and R38A). With both receptors, many mutants lost inhibitory activity, but the increased inhibition was observed for P36A at α7-GlyR. Thus, there are subtype-specific and common ws-LYNX1 residues recognizing distinct targets. Because ws-LYNX1 was inactive against glycine receptor, its “non-classical” binding sites on α7 nAChR should be within the extracellular domain. Micromolar affinities and fast washout rates measured for ws-LYNX1 and its mutants are in contrast to nanomolar affinities and irreversibility of binding for α-bungarotoxin and similar snake α-neurotoxins also targeting α7 nAChR. This distinction may underlie their different actions, i.e. nAChRs modulation versus irreversible inhibition, for these two types of three-finger proteins.  相似文献   

9.
Phospholipases A2 may exist in solution both as monomers and dimers, but enzymes that form strong dimers (K D approximately 10?9 M) have been found, thus far, only in venoms of the snake family Crotilidae. The complete amino acid sequences of a basic monomeric and an acidic dimeric phospholipase A2 fromAgkistrodon piscivorus piscivorus (American cotton-mouth water moccasin) venom have been determined by protein sequencing methods as part of a search for aspects of structure contributing to formation of stable dimers. Both the monomeric and dimeric phospholipases A2 are highly homologous to the dimeric phospholipases A2 fromCrotalus atrox andCrotalus adamanteus venoms, and both have the seven residue carboxy-terminal extension characteristic of the crotalid and viperid enzymes. Thus, it is clear that the extension is not a prerequisite for dimerization. Studies to date have revealed two characteristic features of phosphilipases A2 that exist in solution as strong dimers. One is the presence in the dimers of a Pro-Pro sequence at position 112 and 113 which just precedes the seven residue carboxy-terminal extension (residues 116–122). The other is a low isoelectric point; only the acidic phospholipases A2 have been observed, thus far, to form stable dimers. These, alone or together, may be necessary, though not sufficient conditions for phospholipase A2 dimer formation. Ideas regarding subunit interactions based upon crystallographic data are evaluated relative to the new sequence information on the monomeric and dimeric phospholipases A2 fromA. p. piscivorus venom.  相似文献   

10.
In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted.  相似文献   

11.
Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner.  相似文献   

12.
Rapid advances in microscopy and genetic labeling strategies have created new opportunities for time-lapse imaging of embryonic development. However, methods for immobilizing embryos for long periods while maintaining normal development have changed little. In zebrafish, current immobilization techniques rely on the anesthetic tricaine. Unfortunately, prolonged tricaine treatment at concentrations high enough to immobilize the embryo produces undesirable side effects on development. We evaluate three alternative immobilization strategies: combinatorial soaking in tricaine and isoeugenol, injection of α-bungarotoxin protein, and injection of α-bungarotoxin mRNA. We find evidence for co-operation between tricaine and isoeugenol to give immobility with improved health. However, even in combination these anesthetics negatively affect long-term development. α-bungarotoxin is a small protein from snake venom that irreversibly binds and inactivates acetylcholine receptors. We find that α-bungarotoxin either as purified protein from snakes or endogenously expressed in zebrafish from a codon-optimized synthetic gene can immobilize embryos for extended periods of time with few health effects or developmental delays. Using α-bungarotoxin mRNA injection we obtain complete movies of zebrafish embryogenesis from the 1-cell stage to 3 days post fertilization, with normal health and no twitching. These results demonstrate that endogenously expressed α-bungarotoxin provides unprecedented immobility and health for time-lapse microscopy.  相似文献   

13.
Snake venoms are complex mixtures of proteins among which both basic and acidic phospholipases A2 (PLA2s) can be found. Basic PLA2s are usually responsible for major toxic effects induced by snake venoms, while acidic PLA2s tend to have a lower toxicity. A novel PLA2, here named PnPLA2, was purified from the venom of Porthidium nasutum by means of RP-HPLC on a C18 column. PnPLA2 is an acidic protein with a pI of 4.6, which migrates as a single band under both non-reducing and reducing conditions in SDS-PAGE. PnPLA2 had a molecular mass of 15,802.6 Da, determined by ESI-MS. Three tryptic peptides of this protein were characterized by HPLC-nESI-MS/MS, and N-terminal sequencing by direct Edman degradation showing homology to other acidic PLA2s from viperid venoms. PnPLA2 displayed indirect hemolytic activity in agarose erythrocyte-egg yolk gels and bactericidal activity against Staphylococcus aureus in a dose-dependent manner, with a MIC and MBC of 32 μg/mL. In addition, PnPLA2 showed a potent inhibitory effect on platelet aggregation with doses up to 40 μg/mL. This acidic PLA2, in contrast to basic enzymes isolated from other viperid snake venoms, was not cytotoxic to murine skeletal muscle myoblasts C2C12. This is the first report on a bactericidal protein of Porthidium nasutum venom.  相似文献   

14.
Antibody-based technology is the main method for diagnosis and treatment of snake bite envenoming currently. However, the development of an antibody, polyclonal or monoclonal, is a complicated and costly procedure. Aptamers are single stranded oligonucleotides that recognize specific targets such as proteins and have shown great potential over the years as diagnostic and therapeutic agents. In contrast to antibodies, aptamers can be selected in vitro without immunization of animals, and synthesized chemically with extreme accuracy, low cost and high degree of purity. In this study we firstly report on the identification of DNA aptamers that bind to β-bungarotoxin (β-BuTx), a neurotoxin from the venom of Bungarus multicinctus. A plate-SELEX method was used for the selection of β-BuTx specific aptamers. After 10 rounds of selection, four aptamer candidates were obtained, with the dissociation constant ranged from 65.9 nM to 995 nM measured by fluorescence spectroscopy. Competitive binding assays using both the fluorescently labeled and unlabeled aptamers revealed that the four aptamers bound to the same binding site of β-BuTx. The best binder, βB-1, bound specifically to β-BuTx, but not to BSA, casein or α-Bungarotoxin. Moreover, electrophoretic mobility shift assay and enzyme-linked aptamer assay demonstrated that βB-1 could discriminate B. multicinctus venom from other snake venoms tested. The results suggest that aptamer βB-1 can serve as a useful tool for the design and development of drugs and diagnostic tests for β-BuTx poisoning and B. multicinctus bites.  相似文献   

15.
The time-course of the pathological effects induced by the venom of the snake Bothrops asper in muscle tissue was investigated by a combination of histology, proteomic analysis of exudates collected in the vicinity of damaged muscle, and immunodetection of extracellular matrix proteins in exudates. Proteomic assay of exudates has become an excellent new methodological tool to detect key biomarkers of tissue alterations for a more integrative perspective of snake venom-induced pathology. The time-course analysis of the intracellular proteins showed an early presence of cytosolic and mitochondrial proteins in exudates, while cytoskeletal proteins increased later on. This underscores the rapid cytotoxic effect of venom, especially in muscle fibers, due to the action of myotoxic phospholipases A2, followed by the action of proteinases in the cytoskeleton of damaged muscle fibers. Similarly, the early presence of basement membrane (BM) and other extracellular matrix (ECM) proteins in exudates reflects the rapid microvascular damage and hemorrhage induced by snake venom metalloproteinases. The presence of fragments of type IV collagen and perlecan one hour after envenoming suggests that hydrolysis of these mechanically/structurally-relevant BM components plays a key role in the genesis of hemorrhage. On the other hand, the increment of some ECM proteins in the exudate at later time intervals is likely a consequence of the action of endogenous matrix metalloproteinases (MMPs) or of de novo synthesis of ECM proteins during tissue remodeling as part of the inflammatory reaction. Our results offer relevant insights for a more integrative and systematic understanding of the time-course dynamics of muscle tissue damage induced by B. asper venom and possibly other viperid venoms.  相似文献   

16.
α7 nicotinic acetylcholine receptors (nAChRs) play an important role in synaptic transmission and inflammation. In response to ligands, this receptor channel opens to conduct cations into the cell but desensitizes rapidly. In recent studies we show that α7 nAChRs bind signaling proteins such as heterotrimeric GTP-binding proteins (G proteins). Here, we demonstrate that direct coupling of α7 nAChRs to G proteins enables a downstream calcium signaling response that can persist beyond the expected time course of channel activation. This process depends on a G protein-binding cluster (GPBC) in the M3-M4 loop of the receptor. A mutation of the GPBC in the α7 nAChR (α7345–348A) abolishes interaction with Gαq as well as Gβγ while having no effect on receptor synthesis, cell-surface trafficking, or α-bungarotoxin binding. Expression of α7345–348A, however, did significantly attenuate the α7 nAChR-induced Gαq calcium signaling response as evidenced by a decrease in PLC-β activation and IP3R-mediated calcium store release in the presence of the α7 selective agonist choline. Taken together, the data provides new evidence for the existence of a GPBC in nAChRs serving to promote intracellular signaling.  相似文献   

17.
Snake venoms contain a variety of protein and peptide toxins, and the three-finger toxins (3FTxs) are among the best characterized family of venom proteins. The compact nature and highly conserved molecular fold of 3FTxs, together with their abundance in many venoms, has contributed to their utility in structure-function studies. Although many target the nicotinic acetylcholine receptor of vertebrate skeletal muscle, often binding with nanomolar Kds, several non-conventional 3FTxs show pronounced taxon-specific neurotoxic effects. Here we describe the purification and characterization of fulgimotoxin, a monomeric 3FTx from the venom of Oxybelis fulgidus, a neotropical rear-fanged snake. Fulgimotoxin retains the canonical 5 disulfides of the non-conventional 3FTxs and is highly neurotoxic to lizards; however, mice are unaffected, demonstrating that this toxin is taxon-specific in its effects. Analysis of structural features of fulgimotoxin and other colubrid venom 3FTxs indicate the presence of a “colubrid toxin motif” (CYTLY) and a second conserved segment (WAVK) found in Boiga and Oxybelis taxon-specific 3FTxs, both in loop II. Because specific residues in loop II conventional α-neurotoxic 3FTxs are intimately associated with receptor binding, we hypothesize that this loop, with its highly conserved substitutions, confers taxon-specific neurotoxicity. These findings underscore the importance of rear-fanged snake venoms for understanding the evolution of toxin molecules and demonstrate that even among well-characterized toxin families, novel structural and functional motifs may be found.  相似文献   

18.
Snake venom alpha-neurotoxins and other 'three-finger' proteins.   总被引:4,自引:0,他引:4  
The review is mainly devoted to snake venom alpha-neurotoxins which target different muscle-type and neuronal nicotinic acetylcholine receptors. The primary and spatial structures of other snake venom proteins as well as mammalian proteins of the Ly-6 family, which structurally resemble the 'three-finger' snake proteins, are also briefly discussed. The main emphasis is placed on recent data characterizing the alpha-neurotoxin interactions with nicotinic acetylcholine receptors.  相似文献   

19.
Phospholipases A2 may exist in solution both as monomers and dimers, but enzymes that form strong dimers (K D approximately 10–9 M) have been found, thus far, only in venoms of the snake family Crotilidae. The complete amino acid sequences of a basic monomeric and an acidic dimeric phospholipase A2 fromAgkistrodon piscivorus piscivorus (American cotton-mouth water moccasin) venom have been determined by protein sequencing methods as part of a search for aspects of structure contributing to formation of stable dimers. Both the monomeric and dimeric phospholipases A2 are highly homologous to the dimeric phospholipases A2 fromCrotalus atrox andCrotalus adamanteus venoms, and both have the seven residue carboxy-terminal extension characteristic of the crotalid and viperid enzymes. Thus, it is clear that the extension is not a prerequisite for dimerization. Studies to date have revealed two characteristic features of phosphilipases A2 that exist in solution as strong dimers. One is the presence in the dimers of a Pro-Pro sequence at position 112 and 113 which just precedes the seven residue carboxy-terminal extension (residues 116–122). The other is a low isoelectric point; only the acidic phospholipases A2 have been observed, thus far, to form stable dimers. These, alone or together, may be necessary, though not sufficient conditions for phospholipase A2 dimer formation. Ideas regarding subunit interactions based upon crystallographic data are evaluated relative to the new sequence information on the monomeric and dimeric phospholipases A2 fromA. p. piscivorus venom.  相似文献   

20.
With the use of surface plasmon resonance (SPR) it was shown that ws-Lynx1, a water-soluble analog of the three-finger membrane-bound protein Lynx1, that modulates the activity of brain nicotinic acetylcholine receptors (nAChRs), interacts with the acetylcholine-binding protein (AChBP) with high affinity, KD = 62 nM. This result agrees with the earlier demonstrated competition of ws-Lynx1 with radioiodinated α-bungarotoxin for binding to AChBP. For the first time it was shown that ws-Lynx1 binds to GLIC, prokaryotic Cys-loop receptor (KD = 1.3 μM). On the contrary, SPR revealed that α-cobratoxin, a three-finger protein from cobra venom, does not bind to GLIC. Obtained results indicate that SPR is a promising method for analysis of topography of ws-Lynx1 binding sites using its mutants and those of AChBP and GLIC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号