首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decline in soil fertility accelerated by shorter fallow periods was expected to be a major constraint in slash-and-burn rice production systems in northern Laos. In this paper we describe relationships between fallow period, soil fertility parameters, weeds and rice yield. Soil infertility is not perceived a major yield constraint by the farmers. Of the various soil parameters observed only soil organic matter showed consistent association with rice yield (r=0.42, p<0.01). Fallow period and rice yield showed no association and the relationship between fallow and organic matter was very weak (r=0.16, p<0.01). Rice yield was negatively related to densities of Ageratum conyzoides and Lygodium flexuosum. Soil loss during the cropping period ranged from 300–29.300 kg ha–1. For the same period organic matter, total N, available P and available K content in the top 0–3 cm decreased by 11,12,17, and 17%, respectively, and loss of total N for the soil depth of 0–25 cm was estimated at 400 kg ha–1. Soil physical properties, moisture stress and available N are the most likely detriments to rice yields. Further attempts to relate soil properties to rice yield should include repeated measurements during the cropping season and observations on soil physical properties.The research presented was supported by the Provincial Agriculture Service, Luang Prabang, Laos, and the Swiss Development Cooperation.  相似文献   

2.
No‐tillage cropping systems with direct seeding into a mulch of plant residues from cover crops – the so‐called direct seeding mulch‐based cropping (DMC) systems – have been adopted widely over the last 10–15 years in the Cerrado region of Brazil. They are replacing the traditional soybean monoculture with bare fallow using conventional tillage (CT) practices. The objective of this study was to examine how DMC practices affect soil organic carbon (SOC) dynamics and to assess their potential for enhanced soil carbon (C) storage. The approach was to determine soil C stocks along a chronosequence of fields under DMC, and then to apply the generic decomposition and yield (G'DAY) plant–soil model to analyse the soil C storage potential for a number of cropping systems. Forty‐five fields were selected on a plateau of Ferralsols in the central Cerrado region to represent a chronosequence of 0–12 years under continuous DMC. Before DMC the fields had been under CT soybean monoculture following the clearing of the native savannah. An average increase in SOC stocks of 0.83 Mg C ha?1 yr?1 in the 0–20 cm topsoil was measured. The corresponding increase in total soil nitrogen was 79 kg N ha?1 yr?1. The G'DAY model predicted a net accumulation of 0.70–1.15 Mg C ha?1 yr?1 in the 0–40 cm topsoil for the first 12 years, depending on the type of soil and DMC system. Model predictions showed that less soil C was accumulated under DMC systems that commenced immediately after clearing the native savannah. Gains in soil C under DMC were primarily due to the introduction of a second crop that caused higher net primary productivity, leading to higher plant C inputs to soil. A rough estimation shows that the conversion of 6 million ha of CT soybean monoculture to DMC in the Cerrados would enhance soil C storage by 4.9 Tg C yr?1 during at least the first 12 years following the conversion to DMC.  相似文献   

3.

Purpose

Adoption of the carbon (C)-friendly and cleaner technology is an effective solution to offset some of the anthropogenic emissions. Conservation tillage is widely considered as an important sustainable technology and for the development of conservation agriculture (CA). Thus, the objective of this study was to assess the C sustainability of different tillage systems in a double rice (Oryza sativa L.) cropping system in southern China.

Methods

The experiment was established with no-till (NT), rotary tillage (RT), and conventional tillage (CT) treatments since 2005. Emission of greenhouse gasses (GHG), C footprint (CF), and ecosystem service through C sequestration in different tillage systems were compared.

Result and discussion

Emission of GHG from agricultural inputs (Mg CO2-eq ha?1 year?1) ranged from 1.81 to 1.97 for the early rice, 1.82 to 1.98 for the late rice, and 3.63 to 3.95 for the whole growing season, respectively. The CF (kg CO2-eq kg?1 of rice year?1) in the whole growing seasons were 1.27, 1.85, and 1.40 [excluding soil organic carbon (SOC) storage] and 0.54, 1.20, and 0.72 (including SOC storage) for NT, RT, and CT, respectively. The value of ecosystem services on C sequestration for the whole growing seasons ranged from ¥3,353 to 4,948 ha?1 year?1 and followed the order of NT > CT > RT. The C sustainability under NT was better than that under RT for the late, but reversed for the early rice. However, NT system had better C sustainability for the whole cropping system compared with CT.

Conclusions

Therefore, NT is a preferred technology to reduce GHG emissions, increase ecosystem service functions of C sequestration, and improve C sustainability in a double rice cropping region of Southern China.  相似文献   

4.
耕作方式对紫色水稻土有机碳和微生物生物量碳的影响   总被引:8,自引:2,他引:8  
以位于西南大学的农业部紫色土生态环境重点野外科学观测试验站始于1990年的长期定位试验田为对象,研究了冬水田平作(DP)、水旱轮作(SH)、垄作免耕(LM)及垄作翻耕(LF)等4种耕作方式对紫色水稻土有机碳(SOC)和微生物生物量碳(SMBC)的影响。结果表明,4种耕作方式下SOC和SMBC均呈现出在土壤剖面垂直递减趋势,翻耕栽培下其降低较均匀,而免耕栽培下其富集在表层土壤中。同一土层不同耕作方式间SOC和SMBC的差异在表层最大,随着土壤深度的增加,各处理之间的差异逐渐减小。在0—60 cm剖面中,SOC含量依次为:LM(17.6 g/kg)>DP(13.9 g/kg)>LF(12.5 g/kg)>SH(11.3 g/kg),SOC储量也依次为:LM(158.52 Mg C/hm2)>DP(106.74 Mg C/hm2)>LF(93.11 Mg C/hm2)>SH(88.59 Mg C/hm2),而SMBC含量则依次为:LM(259 mg/kg)>SH(213 mg/kg)>LF(160 mg/kg)>DP(144 mg/kg)。与其它3种耕作方式比较,LM处理显著提高SOC含量和储量以及SMBC含量。对土壤微生物商(SMBC/SOC)进行分析发现,耕作方式对SOC和SMBC的影响程度并不一致。SMBC与SOC、全氮、全磷、全硫、碱解氮、有效磷均呈现极显著正相关(P<0.01),与有效硫呈显著正相关(P<0.05);表明SMBC可以作为表征紫色水稻土土壤肥力的敏感因子。  相似文献   

5.
The influence of conservation agriculture (CA) on weed ecology has been a concern to many researchers across the world and is the focus of this study in southern Africa. An experiment to look at the impacts of various tillage systems with different levels of crop residue on maize (Zea mays L.) was established in 2004/2005 season. The experiment was carried out at the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Matopos Research Station, Zimbabwe. Three main tillage systems were compared, ripping tillage (RT), planting basins (PB) and conventional tillage (CT), with three different crop residue levels: 0, 4 and 8 tons ha?1. In 2007 soil samples were collected in the inter-row and in-row positions prior to tillage at 0–50 mm, 50–100 mm and 100–200 mm depths. The objective was to determine the effect of the treatment factors on weed seed bank species after three cropping cycles using the germination method. Nine major weed species were identified, with all the weeds unaffected by either tillage or mulching level. Eleusine indica, Corchorus tridens and Setaria species were the dominant weed species across all treatments. Setaria spp. was the dominant weed in the inter-row position of ripped plots. Although there was no significant individual treatment effect, there were significant (p < 0.05) interactions, with CT having reduced seed banks of Setaria spp. and E. indica compared to RT and PB. Percentage increases point to E. indica and Setaria spp. increasing under PB and RT compared to CT. C. tridens was significantly higher in PB compared to RT and CT in the 0–50 mm depth in the in-row position. This study probably coincided with the transition period in the weed bank succession process and needs to be repeated at a later date in the rotation. The majority of the weed species were not affected by any of the treatment combinations, a response attributed to plasticity of weeds to the tillage and residue level selection pressure.  相似文献   

6.
This study evaluated the effects of agroecosystem diversification through no-tillage and strip intercropping on the abundance of natural enemies of soybean (Glycine max Merrill) herbivores. Twenty-four plots (289 m2 each) were arranged in a randomized complete block design for a 3 by 2 factorial experiment. Factors were cropping systems (corn monoculture, soybean monoculture, and strip intercropping of corn and soybean) and tillage systems (no-tillage and conventional tillage). Natural enemies were sampled during 1988, 1989 and 1990 by sweep net, suction net (D-Vac), pitfall traps and quadrat samples. Analyses of variance indicated that of 15 taxa analyzed, most foliage-inhabiting natural enemies were significantly more abundant in intercropping than in monoculture plots, whereas soil-inhabiting natural enemies had higher numbers in no-tillage plots than conventional tillage plots. Therefore, the results support the theory of greater abundance of natural enemies in more complex agroecosystems. Better environmental conditions in diversified treatments was the possible reason for these results. Corn in intercropping plots provided shade, reduced wind speed, alternate food, and possibly higher humidity and lower temperatures for soybean natural enemies. A similar effect was likely cuased by the stubble and weeds, in no-tillage plots.  相似文献   

7.

Background and aims

Aggregate formation and stability of soil organic carbon (SOC) differ in different farming systems, probably due to differences in effects of tillage and residue management. This study used a 24-year field experiment to compare the effects of continuous maize cropping and natural fallow on aggregate formation and SOC storage in various aggregate-size classes and density fractions of a Chinese Mollisol.

Methods

Soils collected from the upper 0.2-m layer were wet-sieved into four aggregate-size classes (>2, 0.25–2, 0.053–0.25 and <0.053 mm) which were then fractionated into light, occluded and mineral C fractions. The concentrations of SOC and natural 13C abundance of each fraction in bulk soil and the aggregate classes were determined.

Results

Continuous maize cropping decreased the proportion of macro-aggregates (>0.25 mm) and increased that of micro-aggregates (<0.25 mm) compared to the initial value while the opposite was observed in the natural fallow system. The fallow system generally had greater SOC concentration in the occluded fraction, higher proportion of newly-derived C as % total SOC in the light fraction and greater contribution of total residue C to new C in macro-aggregates and light fractions compared to the continuous maize system. Furthermore, the fallow system resulted in shorter turnover time of SOC than the continuous maize system.

Conclusions

Natural fallow associated with autumn-plough improved soil structural stability and SOC storage while continuous maize cropping with residue removal decreased SOC sequestration and soil aggregate stability.
  相似文献   

8.
An understanding of the dynamics of carbon (C) stock in soils, as impacted by management strategies, is necessary to identify the pathways of C sequestration in soils and for maintaining soil organic C (SOC) at a level critical for upkeeping soil health and also for restraining global warming. This is more important in tropical and subtropical region where soils are inherently low in organic C content and the production system is fragile. We evaluated the long‐term role of crop residue C inputs to soil in SOC sequestration and also the critical value of C inputs for maintenance of SOC across five different rice‐based cropping systems and four soil management practices including a fallow (no cultivation since initiation of the experiments) using five long‐term (7–36 years) fertility experiments in subtropical India. Cropping per se always caused a net depletion of SOC. Such depletion was inversely proportional to the amount of crop residue C incorporated into the soils (r=−0.92, P=0.001). Balanced fertilization with NPK, however, caused an enrichment (9.3–51.8% over the control) of SOC, its extent being influenced by the cropping systems. Long‐term application of organic amendments (5–10 Mg ha−1 yr−1) through farmyard manure (FYM) or compost could increase SOC hardly by 10.7% constituting only 18% of the applied C, the rest getting lost through oxidation. The total quantity of soil C sequestered varied from −11.5 to 14.5 Mg C ha−1 and was linearly related (r2=0.40, P=0.005) with cumulative crop residue C inputs to the soils. On an average, the rate of its conversion to SOC came out to be 6.4%. This was more in presence of added organics (6.9%) than in its absence (4.2%). For sustenance of SOC level (zero change due to cropping) we found that a minimum quantity of 2.9 Mg C is required to be added per hectare per annum as inputs. The cropping systems and the management practices that could provide C input higher than the above critical level are likely to sustain the SOC level and maintain good soil health in the subtropical regions of the Indian subcontinent.  相似文献   

9.
In the Great Plains of North America potential evaporation exceeds precipitation during most months of the year. About 75% of the annual precipitation is received from April through September, and is accompanied by high temperatures and low relative humidity. Dryland agriculture in the Great Plains has depended on wheat production in a wheat-fallow agroecosystem (one crop year followed by a fallow year). Historically this system has used mechanical weed control practices during the fallow period, which leaves essentially no crop residue cover for protection against soil erosion and greatly accelerates soil organic carbon oxidation. This paper reviews the progress made in precipitation management in the North American Great Plains and synthesises data from an existing long-term experiment to demonstrate the management principles involved. The long-term experiment was established in 1985 to identify dryland crop and soil management systems that would maximize precipitation use efficiency (maximization of biomass production per unit of precipitation received), improve soil productivity, and increase economic return to the farmers in the West Central portion of the Great Plains. Embedded within the primary objective are sub-objectives that focus on reducing the amount of summer fallow time and reversing the soil degradation that has occurred in the wheat-fallow cropping system. The experiment consists of four variables: 1) Climate regime; 2) Soils; 3) Management systems; and 4) Time. The climate variable is based on three levels of potential evapotranspiration (ET), which are represented by three sites in eastern Colorado. All sites have annual long-term precipitation averages of approximately 400–450 mm, but vary in growing season open pan evaporation from 1600 mm in the north to 1975 mm in the south. The soil variable is represented by a catenary sequence of soils at each site. Management systems, the third variable, differ in the amount of summer fallow time and emphasize increased crop diversity. All systems are managed with no-till techniques. The fourth variable is time, and the results presented in this paper are for the first 12 yr (3 cycles of the 4-yr system). Comparing yields of cropping systems that differ in cycle length and systems that contain fallow periods, when no crop is produced, is done with a technique called “annualisation”. Yields are “annualised” by summing yields for all crops in the system and dividing by the total number of years in the system cycle. For example in a wheat-fallow system the wheat yield is divided by two because it takes 2 yr to produce one crop. Cropping system intensification increased annualised grain and crop residue yields by 75 to 100% compared to wheat-fallow. Net return to farmers increased by 25% to 45% compared to wheat-fallow. Intensified cropping systems increased soil organic C content by 875 and 1400 kg ha−1, respectively, after 12 yr compared to the wheat-fallow system. All cropping system effects were independent of climate and soil gradients, meaning that the potential for C sequestration exists in all combinations of climates and soils. Soil C gains were directly correlated to the amount of crop residue C returned to the soil. Improved macroaggregation was also associated with increases in the C content of the aggregates. Soil bulk density was reduced by 0.01g cm−3 for each 1000 kg ha−1 of residue addition over the 12-yr period, and each 1000 kg ha−1 of residue addition increased effective porosity by 0.3%. No-till practices have made it possible to increase cropping intensification beyond the traditional wheat-fallow system and in turn water-use efficiency has increased by 30% in West Central Great Plains agroecosystems. Cropping intensification has also provided positive feedbacks to soil productivity via the increased amounts of crop residue being returned to the soil.  相似文献   

10.
Increasing population density and food needs in the Sahel are major drivers behind the conversion of land under natural vegetation to arable land. Intensification of agriculture is a necessity for farmers to produce enough food. As manure is scarce and fertilizers expensive, this study looks into the potential role of cowpea (Vigna unguiculata L.) and short duration fallow in maintaining soil fertility and productivity and in reducing the major weed problem Striga hermonthica (Del.) Benth. The research was carried out ‘on-farm’ in a traditional millet (Pennisetum glaucum (L.) R.Br.) growing area in the Malian Sahel, near Bankass. The four year experiment combined 0, 2, 5, and 7 years of preceding fallow with (i) 4 years of millet, (ii) 1 year of cowpea + 3 years of millet, and (iii) 1 year of cowpea + 3 years of millet/cowpea inter-cropping. Total millet production (4 years) was 1440 kg ha−1 for all systems with 2, 5 or 7 years of preceding fallow against 1180 kg ha−1 for systems without fallow. Cowpea grain production showed no significant differences between fallow treatments. Over 4 years, all cropping systems produced similar total amounts of millet grain, implying that the millet ‘lost’ during the year with a pure cowpea crop in treatments (ii) and (iii) was compensated within three years, while the cowpea grain production was an additional benefit. Such compensation was however not observed for increasing number of preceding fallow years, showing that there is no additional production benefit in 5–7 years of fallow as compared to 2 years.The soil organic carbon content decreased more slowly in treatments with a cowpea pure crop in 1998 than in the millet pure crop, while overall higher contents were observed after preceding fallow also after four years of cropping. Striga hermonthica infestation decreased linearly with duration of preceding fallow, but also after seven years of fallow and one year of cowpea the hemi-parasitic weed still re-appeared. Overall the intensification through a cowpea pure crop and cowpea intercrop in these millet-based systems improved production and a number of other characteristics of the system, making it more viable.Treatments used in the experiments reported here are indicated by the following abbreviations, for further details see text below.  相似文献   

11.
Nitrogen contribution of cowpea green manure and residue to upland rice   总被引:1,自引:0,他引:1  
Cowpea, Vigna unguiculata (L.) Walp., is well adapted to acid upland soil and can be grown for seed, green manure, and fodder production. A 2-yr field experiment was conducted on an Aeric Tropaqualf in the Philippines to determine the effect of cowpea management practice on the response of a subsequent upland rice crop to applied urea. Cowpea was grown to flowering and incorporated as a green manure or grown to maturity with either grain and pods removed or all aboveground vegetation removed before sowing rice. Cowpea green manure accumulated on average 68 kg N ha−1, and aboveground residue after harvest of dry pods contained on average 46 kg N ha−1. Compared with a pre-rice fallow, cowpea green manure and residue increased grain yield of upland rice by 0.7 Mg ha−1 when no urea was applied to rice. Green manure and residue substituted for 66 and 70 kg urea-N ha−1 on upland rice, respectively. In the absence of urea, green manure and residue increased total aboveground N in mature rice by 12 and 14 kg N ha−1, respectively. These increases corresponded to plant recoveries of 13% for applied green manure N and 24% for applied residue N. At 15 d after sowing rice (DAS), 33% of the added green manure N and 16% of the added residue N was recovered as soil (nitrate + ammonium)-N. At 30 DAS, the corresponding recoveries were 20 and 37% for green manure N and residue N, respectively. Cowpea cropping with removal of all aboveground cowpea vegetation slightly increased (p<0.05) soil (nitrate + ammonium)-N at 15 DAS as compared with the pre-rice fallow, but it did not increase rice yield. Cowpea residue remaining after harvest of dry pods can be an effective N source for a subsequent upland rice crop.  相似文献   

12.
Management options for reducing CO2 emissions from agricultural soils   总被引:18,自引:0,他引:18  
Crop-based agriculture occupies 1.7 billion hectares, globally, with a soil C stock of about 170 Pg. Of the past anthropogenic CO2 additions to the atmosphere, about 50 Pg C came from the loss of soil organic matter (SOM) in cultivated soils. Improved management practices, however, can rebuild C stocks in agricultural soils and help mitigate CO2 emissions.Increasing soil C stocks requires increasing C inputs and/or reducing soil heterotrophic respiration. Management options that contribute to reduced soil respiration include reduced tillage practices (especially no-till) and increased cropping intensity. Physical disturbance associated with intensive soil tillage increases the turnover of soil aggregates and accelerates the decomposition of aggregate-associated SOM. No-till increases aggregate stability and promotes the formation of recalcitrant SOM fractions within stabilized micro- and macroaggregate structures. Experiments using13 C natural abundance show up to a two-fold increase in mean residence time of SOM under no-till vs intensive tillage. Greater cropping intensity, i.e., by reducing the frequency of bare fallow in crop rotations and increasing the use of perennial vegetation, can increase water and nutrient use efficiency by plants, thereby increasing C inputs to soil and reducing organic matter decomposition rates.Management and policies to sequester C in soils need to consider that: soils have a finite capacity to store C, gains in soil C can be reversed if proper management is not maintained, and fossil fuel inputs for different management practices need to be factored into a total agricultural CO2 balance.  相似文献   

13.
黄土高原半干旱区轮作休耕模式对土壤真菌的影响   总被引:5,自引:0,他引:5  
南丽丽  谭杰辉  郭全恩 《生态学报》2020,40(23):8582-8592
通过田间试验,研究休耕(CK)、残膜覆盖、伏天深耕、施有机肥、秸秆还田和绿肥还田对土壤微生物量碳氮、酶活性及真菌群落的影响。结果表明,除过氧化氢酶外,不同处理对土壤微生物量碳氮、脲酶、碱性磷酸酶、脱氢酶、pH及有机质均有显著影响。从门水平上看,土壤真菌群落主要由子囊菌门、担子菌门和被孢霉门构成。其中伏天深耕、玉米秸秆粉碎还田+施牛羊粪+深翻耕后连续休耕3年处理的子囊菌相对丰度分别为43.23%和69.38%,显著高于CK (33.71%);从纲水平上看,座囊菌纲、粪壳菌纲、伞菌纲和被孢霉纲为优势菌纲,其中玉米秸秆粉碎还田+施牛羊粪+深翻耕后连续休耕3年处理以座囊菌纲为主(60.69%),其余处理以粪壳菌纲为主(4.11%-24.79%);真菌多样性指数施牛羊粪+深翻耕+连续3年种植豌豆(拌根瘤菌粉8.5 g/kg种子)并在盛花期翻压还田、玉米秸秆粉碎还田+施牛羊粪+深翻耕后连续休耕3年、玉米秸秆粉碎还田+施牛羊粪+深翻耕+连续3年种植箭筈豌豆并在盛花期翻压还田处理显著低于CK和其他处理,丰富度指数玉米秸秆粉碎还田+施牛羊粪+深翻耕+连续3年种植毛苕子并在盛花期翻压还田处理显著高于CK和其他处理;真菌营养类型玉米秸秆粉碎还田+施牛羊粪+深翻耕后连续休耕3年处理以腐生营养型为主(62.9%),其他处理以病理营养型和腐生营养型为主。冗余分析和Monte Carlo置换检验结果显示,土壤微生物量碳、微生物量氮、pH和有机质含量对土壤真菌群落结构影响显著(P<0.05)。与休耕(CK)、残膜覆盖、伏天深耕相比,施有机肥、秸秆还田、绿肥还田结合深耕均降低了土壤中病理营养型真菌的相对丰度,利于保持农田土壤生态系统健康。  相似文献   

14.
The expanding agriculture in the Brazilian savanna, the Cerrado, changes C and nutrient storages of the savanna ecosystems thereby affecting the global C budget and the sustainability of the local land use. We examined the biomass and the C, N, P, and S storages in above- and belowground biomass, in the organic layer, and in the top 2 m of the mineral soil (Anionic Acrustoxes) of three replicate plots of each of native Cerrado, Pinus caribaea Morelet plantations, productive and degraded Bracchiaria decumbens Stapf. pastures, and of conventional and no-tillage soybean cultivation. Aboveground biomass – in the cropping systems shortly before harvest – decreased in the order, Pinus (15 kg m–2) > Cerrado (2.3) > conventional tillage (1.9) > no tillage (1.5) > productive pasture (0.64) > degraded pasture (0.37) and belowground biomass in the order, Pinus (9.1) > Cerrado (3.0) > productive pasture (2.2) > degraded pasture (1.5) > conventional tillage (0.60) > no tillage (0.41). The aboveground biomass contained 1.1 (degraded pasture) to 19% (Pinus) of the total C storage, 0.3 (productive pasture, degraded pasture) to 3.5% of the total N storage, 0.3 (degraded pasture) to 2.1% (no tillage, conventional tillage) of the total P storage, and 0.3 (degraded pasture) to 3.7% (Pinus) of the total S storage of the ecosystems. Total C storage in the ecosystems was significantly larger in the Pinus stands (36 kg m–2) than in all other systems; differences among Cerrado (20), degraded pasture (19), productive pasture (20), no tillage (19), and conventional tillage (19) were small and not significant. All land-use systems had larger N (Pinus, 1.5; degraded pasture, 1.3; productive pasture, 1.4; no tillage, 1.4; conventional tillage, 1.4 kg m–2) and S storage (PI, 28; degraded pasture, 33; productive pasture, 34; no tillage, 36; conventional tillage, 38 g m–2) than the Cerrado (N, 1.2 kg; S, 26 g m–2). The P storages varied between 17 and 29 g m–2 and were not significantly different among the studied ecosystems. The N and S accumulations in the 12–20-year-old land-use systems were larger than the cumulative known fertilizer inputs indicating that there were unknown inputs possibly including the exploration of the deeper subsoil by deep-reaching roots and transfer of nutrients to the topsoil. Our results indicate that afforestation with Pinus trees has the potential to sequester large amounts of C while pasture degradation, no tillage, and conventional tillage tended to result in small C losses. Land use resulted in a marked accumulation of N and S relative to the Cerrado.  相似文献   

15.
Sunn hemp (SH), Crotolaria juncea, is known to suppress Rotylenchulus reniformis and weeds while enhancing free-living nematodes involved in nutrient cycling. Field trials were conducted in 2009 (Trial I) and 2010 (Trial II) to examine if SH cover cropping could suppress R. reniformis and weeds while enhancing free-living nematodes if integrated with soil solarization (SOL). Cover cropping of SH, soil solarization, and SH followed by SOL (SHSOL) were compared to weedy fallow control (C). Rotylenchulus reniformis population was suppressed by SHSOL at the end of cover cropping or solarization period (Pi) in Trial I, but not in Trial II. However, SOL and SHSOL did not suppress R. reniformis compared to SH in either trial. SH enhanced abundance of bacterivores and suppressed the % herbivores only at Pi in Trial II. At termination of the experiment, SH resulted in a higher enrichment index indicating greater soil nutrient availability, and a higher structure index indicating a less disturbed nematode community compared to C. SOL suppressed bacterivores and fungivores only in Trial II but not in Trial I. On the other hand, SHSOL enhanced bacterivores and fungivores only at Pi in Trial I. Weeds were suppressed by SH, SOL and SHSOL throughout the experiment. SHSOL suppressed R. reniformis and enhanced free-living nematodes better than SOL, and suppressed weeds better than SH.  相似文献   

16.
冬水田-水稻是川中丘陵区传统的稻田种植模式,冬水田种植模式转变是实现多熟种植及机械化的重要途径。为探究冬水田-水稻种植模式转旱作过程中作物季及休闲期土壤呼吸速率及其组分构成,试验设置冬水田-水稻转旱作(FTD)、冬水田-水稻(FR)和冬闲田-玉米(FM)3种不同种植模式,采用根排除法和静态明箱-气相色谱法原位取样测定作物季及季后休闲期土壤呼吸及其组分,并通过测算净生态系统生产力(NEP)进而判断冬水田-水稻转旱作过程的农田系统碳汇强度。结果表明:(1)FTD显著提高了土壤总呼吸速率及其自养和异养呼吸速率,从而提高了其累积排放量(P<0.05)。与FR相比,FTD的土壤总呼吸及其自养和异养呼吸的累积排放量分别提高了13.14倍、11.32倍和15.56倍(P<0.05);与FM相比,FTD的土壤总呼吸及其自养和异养呼吸的累积排放量分别提高了70.56%、40.83%和115.47%(P<0.05)。(2)与FR和FM相比,FTD均降低了土壤呼吸及其组分的温度敏感性(Q10),且土壤总呼吸的温度敏感性介于异养呼吸和自养呼吸之间。(3)FR,FM和FTD的净生态系统生产力(NEP)均为正值,其数值分别为7911.66 kg/hm2,5667.89 kg/hm2和1583.46 kg/hm2,均表现为大气CO2的碳汇,但与FR与FM相比,FTD显著降低了其净生态系统生产力,呈现出较弱的碳汇。  相似文献   

17.
A long-term field experiment was established on a kaolinitic Alfisol in Ibadan, Nigeria, in 1972. The land was cleared manually from secondary forest and used for (i) continuous no-till cropping with maize (Zea mays L.) and maize/cassava (Manihot esculenta Crantz) intercropping, (ii) planted fallow of guinea grass (Panicum maximum Jacq.), leucaena (Leucaena leucocephala de Wit), and pigeon pea (Cajanus cajan Millsp.), and (iii) natural bush regrowth in a randomized complete block design with three replications. At the end of 15 years, the fallow plots were cleared manually and cropped with maize for three years. The chemical and physical soil properties and crop performance of the newly-cleared plots were compared with those under 15 years of continuous cultivation. A total of 26 woody species were identified on the bush regrowth plots. Above-ground biomass accumulation of the bush plots was 157 Mg ha-1 containing 1316 kg N ha-1. Guinea grass, leucaena and natural bush regrowth plots had comparable organic C concentrations (approximately 20 g kg-1) in the surface soil (0 to 10 cm) after 15 years. The organic C concentration in the surface soil under pigeon pea was the lowest (9.5 g kg-1) among the four fallow treatments. Soil under 15 years of continuous no-till maize with and without residue mulch, respectively, contained approximately half (10 g kg-1) and a quarter (5.7 g kg-1) of the organic C under natural bush or guinea grass fallow. The levels of exchangeable Ca, K, Mg and effective cation exchange capacity (ECEC) were lower in the soils under continuous cultivation than in those under natural bush and planted fallow. Soil acidification occurred in soils under continuous cropping as depicted by the lower pH values and greater exchangeable Al and Mn concentrations compared to the fallow plots. Grain yield of maize (3 to 5 Mg ha-1) without fertilizer application in the plots newly cleared from natural bush, guinea grass and leucaena fallow was comparable with that of continuous no-till maize with residue mulch and chemical fertilizer (N, P, K, Mg, Zn) applications. Among the four fallow treatments, maize grain and stover yields were the lowest in plots cleared from pigeon pea fallow.  相似文献   

18.
A 2‐year capture–mark–recapture study was conducted to estimate home ranges and weekly travel distance of Mastomys natalensis (Smith 1834) in an irrigated rice ecosystem and fallow fields. We found that adults have larger home ranges than subadults in fallow fields but not in rice fields, indicating that fallow fields are more suitable for breeding. Travel distances were larger in rice fields, especially in the transplanting stage, during which rice fields are flooded and provide less food, causing movements into neighbouring fallow fields that then temporarily experience higher population density. A decrease in travel distance was observed in rice fields during the maturity stage, which can be explained by higher food availability and a more suitable, nonflooded situation. Movement of M. natalensis in rice‐fallow mosaic landscapes thus seems to be driven by food availability and flooding status of the rice fields, which can be attributed to land use practices.  相似文献   

19.
Increasing atmospheric CO2 concentration has led to concerns about potential effects on production agriculture as well as agriculture's role in sequestering C. In the fall of 1997, a study was initiated to compare the response of two crop management systems (conventional and conservation) to elevated CO2. The study used a split‐plot design replicated three times with two management systems as main plots and two CO2 levels (ambient=375 μL L?1 and elevated CO2=683 μL L?1) as split‐plots using open‐top chambers on a Decatur silt loam (clayey, kaolinitic, thermic Rhodic Paleudults). The conventional system was a grain sorghum (Sorghum bicolor (L.) Moench.) and soybean (Glycine max (L.) Merr.) rotation with winter fallow and spring tillage practices. In the conservation system, sorghum and soybean were rotated and three cover crops were used (crimson clover (Trifolium incarnatum L.), sunn hemp (Crotalaria juncea L.), and wheat (Triticum aestivum L.)) under no‐tillage practices. The effect of management on soil C and biomass responses over two cropping cycles (4 years) were evaluated. In the conservation system, cover crop residue (clover, sunn hemp, and wheat) was increased by elevated CO2, but CO2 effects on weed residue were variable in the conventional system. Elevated CO2 had a greater effect on increasing soybean residue as compared with sorghum, and grain yield increases were greater for soybean followed by wheat and sorghum. Differences in sorghum and soybean residue production within the different management systems were small and variable. Cumulative residue inputs were increased by elevated CO2 and conservation management. Greater inputs resulted in a substantial increase in soil C concentration at the 0–5 cm depth increment in the conservation system under CO2‐enriched conditions. Smaller shifts in soil C were noted at greater depths (5–10 and 15–30 cm) because of management or CO2 level. Results suggest that with conservation management in an elevated CO2 environment, greater residue amounts could increase soil C storage as well as increase ground cover.  相似文献   

20.
Little is known about whether the high N losses from inorganic N fertilizers applied to lowland rice (Oryza sativa L.) are affected by the combined use of either legume green manure or residue with N fertilizers. Field experiments were conducted in 1986 and 1987 on an Andaqueptic Haplaquoll in the Philippines to determine the effect of cowpea [Vigna unguiculata (L.) Walp.] cropping systems before rice on the fate and use efficiency of15N-labeled, urea and neem cake (Azadirachta indica Juss.) coated urea (NCU) applied to the subsequent transplanted lowland rice crop. The pre-rice cropping systems were fallow, cowpea incorporated at the flowering stage as a green manure, and cowpea grown to maturity with subsequent incorporation of residue remaining after grain and pod removal. The incorporated green manure contained 70 and 67 kg N ha−1 in 1986 and 1987, respectively. The incorporated residue contained 54 and 49 kg N ha−1 in 1986 and 1987, respectively. The unrecovered15N in the15N balances for 58 kg N ha−1 applied as urea or NCU ranged from 23 to 34% but was not affected by pre-rice cropping system. The partial pressure of ammoniapNH3, and floodwater (nitrate + nitrite)-N following application of 29 kg N ha−1 as urea or NCU to 0.05-m-deep floodwater at 14 days after transplanting was not affected by pre-rice cropping system. In plots not fertilized with urea or NCU, green manure contributed an extra 12 and 26 kg N ha−1, to mature rice plants in 1986 and 1987, respectively. The corresponding contributions from residue were 19 and 23 kg N ha−1, respectively. Coating urea with 0.2g neem cake per g urea had no effect on loss of urea-N in either year; however, it significantly increased grain yield (0.4 Mg ha−1) and total plant N (11 kg ha−1) in 1987 but not in 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号