首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H+-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H+-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation.  相似文献   

2.
Melis A 《Planta》2007,226(5):1075-1086
Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis–respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature’s most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.  相似文献   

3.
The oxidation of cysteine in mammalian cells occurs by two routes: a highly regulated direct oxidation pathway in which the first step is catalyzed by cysteine dioxygenase (CDO) and by desulfhydration-oxidation pathways in which the sulfur is released in a reduced oxidation state. To assess the effect of a lack of CDO on production of hydrogen sulfide (H2S) and thiosulfate (an intermediate in the oxidation of H2S to sulfate) and to explore the roles of both cystathionine γ-lyase (CTH) and cystathionine β-synthase (CBS) in cysteine desulfhydration by liver, we investigated the metabolism of cysteine in hepatocytes isolated from Cdo1-null and wild-type mice. Hepatocytes from Cdo1-null mice produced more H2S and thiosulfate than did hepatocytes from wild-type mice. The greater flux of cysteine through the cysteine desulfhydration reactions catalyzed by CTH and CBS in hepatocytes from Cdo1-null mice appeared to be the consequence of their higher cysteine levels, which were due to the lack of CDO and hence lack of catabolism of cysteine by the cysteinesulfinate-dependent pathways. Both CBS and CTH appeared to contribute substantially to cysteine desulfhydration, with estimates of 56 % by CBS and 44 % by CTH in hepatocytes from wild-type mice, and 63 % by CBS and 37 % by CTH in hepatocytes from Cdo1-null mice.  相似文献   

4.
Hydrostatic pressure is a distinctive feature of deep-sea environments, and this thermodynamic parameter has potentially inhibitory effects on organisms adapted to living at atmospheric pressure. In the yeast Saccharomyces cerevisiae, hydrostatic pressure causes a delay in or cessation of growth. The vacuole is a large acidic organelle involved in degradation of cellular proteins or storage of ions and various metabolites. Vacuolar pH, as determined using the pH-sensitive fluorescent dye 6-carboxyfluorescein, was analyzed in a hydrostatic chamber with transparent windows under elevated hydrostatic pressure conditions. A pressure of 40–60 MPa transiently reduced the vacuolar pH by approximately 0.33. A vma3 mutant defective in vacuolar acidification showed no reduction of vacuolar pH after application of hydrostatic pressure, indicating that the transient acidification is mediated through the function of vacuolar H+-ATPase. The vacuolar acidification was observed only in the presence of fermentable sugars, and never observed in the presence of ethanol, glycerol, or 3-o-methyl-glucose as the carbon source. Analysis of a glycolysis-defective mutant suggested that glycolysis or CO2 production is involved in the pressure-induced acidification. Hydration and ionization of CO2 is facilitated by elevated hydrostatic pressure because a negative volume change (ΔV < 0) accompanies the chemical reaction. Moreover the glucose-induced cytoplasmic alkalization is inhibited by elevated hydrostatic pressure, probably because of inhibition of the plasma membrane H+-ATPase. Therefore, the cytoplasm tends to become acidic under elevated hydrostatic pressure conditions, and this could be crucial for cell survival. To maintain a favorable cytoplasmic pH, the yeast vacuoles may serve as proton sequestrants under hydrostatic pressure. We are investigating the physiological effects of hydrostatic pressure in the course of research in a new experimental field, baro- (piezo-) physiology. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

5.
6.

Hydrogen sulfide (H2S) has emerged as a novel gaseous signal molecule with multifarious effects on seed germination, plant growth, development, and physiological processes. Due to its dominant role in plant stress tolerance and cross-adaptation, it is getting more attention nowadays, although it has been largely referred as toxic and environmental hazardous gas. In this review work, we are highlighting the importance of H2S as an essential gaseous molecule to help in signaling, metabolism, and stress tolerance in plants. Firstly, production of H2S from different natural and artificial sources were discussed with its transformation from sulfur (S) to sulfate (SO42−) and then to sulfite (SO32−). The importance of different kinds of transporters that helps to take SO42− from the soil solution was presented. Mainly, these transporters are SULTRs (H+/SO42− cotransporters) and multigene family encodes them. Furthermore, these SULTRs have LAST (Low affinity transport proteins), HAST (High affinity transport proteins), vacuole transporters, and plastid transporters. Since it is well known that there is strong relationship between SO42− and synthesis of hydrogen sulfide or dihydrogen sulfide or sulfane in plant cells. Thus, cysteine (Cys) metabolism through which H2S could be generated in plant cell with the role of different enzymes has been presented. Furthermore, H2S in interaction with other molecules could help to mitigate biotic and abiotic stress. Based on this review work, it can be concluded that H2S has potential to induce cross-adaptation to biotic and abiotic stress; thus, it is recommended that it should be considered in future studies to answer the questions like what are the receptors of H2S in plant cell, where in plants the physiological concentration of H2S is high in response to multiple stress and how it induces cross-adaptation by interaction with other signal molecules.

  相似文献   

7.
Plant vacuolar Na+/H+ antiporters play important roles in maintaining cellular ion homeostasis and mediating the transport of Na+ out of the cytosol and into the vacuole. Vacuolar antiporters have been shown to play significant roles in salt tolerance; however the relatively low Vmax of the Na+/H+ exchange of the Na+/H+ antiporters identified could limit its application in the molecular breeding of salt tolerant crops. In this study, we applied DNA shuffling methodology to generate and recombine the mutations of Arabidopsis thaliana vacuolar Na+/H+ antiporter gene AtNHX1. Screening using a large scale yeast complementation system identified AtNHXS1, a novel Na+/H+ antiporter. Expression of AtNHXS1 in yeast showed that the antiporter localized to the vacuolar membrane and that its expression improved the tolerance of yeast to NaCl, KCl, LiCl, and hygromycin B. Measurements of the ion transport activity across the intact yeast vacuole demonstrated that the AtNHXS1 protein showed higher Na+/H+ exchange activity and a slightly improved K+/H+ exchange activity.  相似文献   

8.
9.
Hydrogen sulfide (H2S), generated through various endogenous enzymatic and nonenzymatic pathways, is emerging as a regulator of physiological and pathological events throughout the body. Bacteria in the gastrointestinal tract also produce significant amounts of H2S that regulates microflora growth and virulence responses. However, the impact of the microbiota on host global H2S bioavailability and metabolism remains unknown. To address this question, we examined H2S bioavailability in its various forms (free, acid labile, or bound sulfane sulfur), cystathionine γ-lyase (CSE) activity, and cysteine levels in tissues from germ-free versus conventionally housed mice. Free H2S levels were significantly reduced in plasma and gastrointestinal tissues of germ-free mice. Bound sulfane sulfur levels were decreased by 50–80% in germ-free mouse plasma and adipose and lung tissues. Tissue CSE activity was significantly reduced in many organs from germ-free mice, whereas tissue cysteine levels were significantly elevated compared to conventional mice. These data reveal that the microbiota profoundly regulates systemic bioavailability and metabolism of H2S.  相似文献   

10.
11.
Agu Laisk  Hardy Pfanz  Ulrich Heber 《Planta》1988,173(2):241-252
A computer model is used to analyze fluxes of SO2 from polluted air into leaves and the intracellular distribution of sulfur species derived from SO2. The analysis considers only effects of acidification and of anion accumulation. (i) The SO2 flux into leaves is practically exclusively controlled by the boundary-layer resistance of leaves to gas diffusion and by stomatal opening. At constant stomatal opening, flux is proportional to the concentration of SO2 in air. (ii) The sink capacity of cellular compartments for SO2 depends on intracellular pH and the intracellular localization of reactions capable of oxidizing or reducing SO2. In the mesophyll of illuminated leaves, the chloroplasts possess the highest trapping potential for SO2. (iii) If intracellular ion transport were insignificant, and if bisulfite and sulfite could not be oxidized or reduced, leaves with opened stomata would rapidly be killed both by the accumulation of sulfites and by acidification of chloroplasts and cytosol even if SO2 levels in air did not exceed concentrations thought to be permissible. Acidification and sulfite accumulation would remain confined largely to the chloroplasts and to the cytosol under these conditions. (iv) Transport of bisulfite and protons produced by hydration of SO2 into the vacuole cannot solve the problem of cytoplasmic accumulation of bisulfite and sulfite and of cytoplasmic acidification, because SO2 generated in the acidic vacuole from the bisulfite anion would diffuse back into the cytoplasm. (v) Oxidation to sulfate which is known to occur mainly in the chloroplasts can solve the problem of cytoplasmic sulfite and bisulfite accumulation, but aggravates the problem of chloroplastic and cytosolic acidification. (vi) A temporary solution to the problem of acidification requires the transfer of H+ and sulfate into the vacuole. This transport needs to be energized. The storage capacity of the vacuole for protons and sulfate defines the extent to which SO2 can be detoxified by oxidation and removal of the resulting protons and sulfate anions from the cytoplasm. Calculations show that even at atmospheric levels of SO2 thought to be tolerable, known vacuolar buffer capacities are insufficient to cope with proton production during oxidation of SO2 to sulfate within a vegetation period. (vii) A permanent solution to the problem of acidification is the removal of protons. Protons are consumed during the reduction of sulfate to sulfide. Proteins and peptides contain sulfur at the level of sulfide. During photosynthesis in the presence of the permissible concentration of 0.05l·l-1 SO2, sulfur may be deposited in plants at a ratio not far from 1/500 in relation to carbon. The content of reduced sulfur to carbon is similar to that ratio only in fast-growing, protein-rich plants. Such plants may experience little difficulty in detoxifying SO2. In contrast, many trees may contain reduced sulfur at a ratio as low as 1/10 000 in relation to carbon. Excess sulfur deposited in such trees during photosynthesis in polluted air gives rise to sulfate and protons. If detoxification of SO2 by reduction is inadequate, and if the storage capacity of the vacuoles for protons and sulfate is exhausted, damage is unavoidable. Calculations indicate that trees with a low ratio of reduced S to C cannot tolerate long-term exposure to concentrations of SO2 as low as 0.02 or 0.03 l·l-1 which so far have been considered to be non-toxic to sensitive plant species.  相似文献   

12.
Autophagy is a catabolic process conserved among eukaryotes. Under nutrient starvation, a portion of the cytoplasm is non‐selectively sequestered into autophagosomes. Consequently, ribosomes are delivered to the vacuole/lysosome for destruction, but the precise mechanism of autophagic RNA degradation and its physiological implications for cellular metabolism remain unknown. We characterized autophagy‐dependent RNA catabolism using a combination of metabolome and molecular biological analyses in yeast. RNA delivered to the vacuole was processed by Rny1, a T2‐type ribonuclease, generating 3′‐NMPs that were immediately converted to nucleosides by the vacuolar non‐specific phosphatase Pho8. In the cytoplasm, these nucleosides were broken down by the nucleosidases Pnp1 and Urh1. Most of the resultant bases were not re‐assimilated, but excreted from the cell. Bulk non‐selective autophagy causes drastic perturbation of metabolism, which must be minimized to maintain intracellular homeostasis.  相似文献   

13.
The H2-splitting active site of [NiFe] hydrogenases is tightly bound to the protein matrix via four conserved cysteine residues. In this study, the nickel-binding cysteine residues of HoxC, the large subunit of the H2-sensing regulatory hydrogenase (RH) from Ralstonia eutropha, were replaced by serine. All four mutant proteins, C60S, C63S, C479S, and C482S, were inactive both in H2 sensing and H2 oxidation and did not adopt the native oligomeric structure of the RH. Nickel was bound only to the C482S derivative. The assembly of the [NiFe] active site is a complex process that requires the function of at least six accessory proteins. Among these proteins, HypC has been shown to act as a chaperone for the large subunit during the maturation process. Immunoblot analysis revealed the presence of a strong RH-dependent HypC-specific complex in extracts containing the C60S, C63S, and C482S derivatives, pointing to a block in maturation for these mutant proteins. The lack of this complex in the extract containing C479S indicates that this specific cysteine residue might be crucial for the interaction between HoxC and HypC.This work is dedicated to Prof. H.G. Schlegel on the occasion of his 80th birthday.  相似文献   

14.
Hydrogen sulfide (H2S) is a recently described endogenously produced gaseous signaling molecule that influences various cellular processes in the central nervous system, cardiovascular system, and gastrointestinal tract. The biogenesis of H2S involves the cytoplasmic transsulfuration enzymes, cystathionine β-synthase and γ-cystathionase, whereas its catabolism occurs in the mitochondrion and couples to the energy-yielding electron transfer chain. Low steady-state levels of H2S appear to be controlled primarily by efficient oxygen-dependent catabolism via sulfide quinone oxidoreductase, persulfide dioxygenase (ETHE1), rhodanese, and sulfite oxidase. Mutations in the persulfide dioxgenase, i.e. ETHE1, result in ethylmalonic encephalopathy, an inborn error of metabolism. In this study, we report the biochemical characterization and kinetic properties of human persulfide dioxygenase and describe the biochemical penalties associated with two patient mutations, T152I and D196N. Steady-state kinetic analysis reveals that the T152I mutation results in a 3-fold lower activity, which is correlated with a 3-fold lower iron content compared with the wild-type enzyme. The D196N mutation results in a 2-fold higher Km for the substrate, glutathione persulfide.  相似文献   

15.
Hydrogen sulfide improves drought resistance in Arabidopsis thaliana   总被引:6,自引:0,他引:6  
Hydrogen sulfide (H2S) plays a crucial role in human and animal physiology. Its ubiquity and versatile properties have recently caught the attention of plant physiologists and biochemists. Two cysteine desulfhydrases (CDes), l-cysteine desulfhydrase and d-cysteine desulfhydrase, were identified as being mainly responsible for the degradation of cysteine in order to generate H2S. This study investigated the expression regulation of these genes and their relationship to drought tolerance in Arabidopsis. First, the expression pattern of CDes in Arabidopsis was investigated. The expression levels of CDes gradually increased in an age-dependent manner. The expression of CDes was significantly higher in stems and cauline leaves than in roots, rosette leaves and flowers. Second, the protective effect of H2S against drought was evaluated. The expression pattern of CDes was similar to the drought associated genes induced by dehydration, and H2S fumigation was found to stimulate further the expression of drought associated genes. Drought also significantly induced increased H2S production, a process that was reversed by re-watering. In addition, seedlings after treatment with NaHS (a H2S donor) showed a higher survival rate and displayed a significant reduction in the size of the stomatal aperture compared to the control. These findings provide evidence that H2S, as a gasotransmitter, improves drought resistance in Arabidopsis.  相似文献   

16.
17.
18.
Aims: For this study, we performed a genetic screen of S. cerevisiae’s deletion library for mutants sensitive to dehydration stress, with which we aimed to discover cell dehydration–tolerant genes. Methods and Results: We used a yeast gene deletion set (YGDS) of 4850 viable mutant haploid strains to perform a genome‐wide screen for the identification of desiccation stress modifiers. SIP18 is among the genes identified as essential for cells surviving to drying/rehydration process. Deletion of SIP18 promotes the accumulation of reactive oxygen species and enhances apoptotic and necrotic cell death in response to dehydration/rehydration process. Conclusions: SIP18p acts as an inhibitor of apoptosis in yeast under dehydration stress, as suggested by its antioxidative capacity through the ROS accumulation reduction after an H2O2 attack. Significance and Impact of the Study: To our knowledge, this is the first systematic screen for the identification of putative genes essential to overcoming cell dehydration process. A broad range of identified genes could help to understand why some strains of high biotechnological interest cannot cope with the drying and rehydration treatments. Dehydration sensitivity makes these strains not suitable to be commercialized by yeast manufactures.  相似文献   

19.
《Autophagy》2013,9(4):371-373
The toxicity associated with accumulation of reactive oxygen species (ROS) has led to the evolution of various defense strategies to overcome oxidative stress, including autophagy. This pathway is involved in the removal and degradation of damaged mitochondria and oxidized proteins. At low levels, however, ROS act as signal transducers in various intracellular pathways. In a recent study we described the role of ROS as signaling molecules in starvation-induced autophagy. We showed that starvation stimulates formation of ROS, specifically H2O2, in the mitochondria. Furthermore, we identified the cysteine protease HsAtg4 as a direct target for oxidation by H2O2, and specified a cysteine residue located near the HsAtg4 catalytic site as critical for this regulation. Here we focus on Atg4, the target of regulation, and discuss possible mechanisms for the regulation of this enzyme in the autophagic process.

Addendum to:

Reactive Oxygen Species Are Essential for Autophagy and Specifically Regulate the Activity of Atg4

R. Scherz-Shouval, E. Shvets, E. Fass, H. Shorer, L. Gil and Z. Elazar

EMBO J 2007; doi: 10.1038/sj.emboj.7601623  相似文献   

20.
Polysulfides formed through the breakdown of elemental sulfur or other sulfur compounds were found to be reduced to H2S by the hyperthermophilic archaebacterium Pyrococcus furiosus during growth. Metabolism of polysulfides by the organism was dissimilatory, as no incorporation of 35S-labeled elemental sulfur was detected. However, [35S]cysteine and [35S]methionine were incorporated into cellular protein. Contact between the organism and elemental sulfur is not necessary for metabolism. The sulfide generated from metabolic reduction of polysulfides dissociates to a strong nucleophile, HS, which in turn opens up the S8 elemental sulfur ring. In addition to H2S, P. furiosus cultures produced methyl mercaptan in a growth-associated fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号