首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phagocyte NADPH oxidase, dormant in resting cells, is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The membrane-integrated protein gp91phox serves as the catalytic core, because it contains a complete electron-transporting apparatus from NADPH to molecular oxygen for superoxide production. Activation of gp91phox requires the cytosolic proteins p67phox, p47phox, and Rac (a small GTPase). p67phox, comprising 526 amino acids, moves upon cell stimulation to the membrane together with p47phox and there interacts with Rac; these processes are prerequisite for gp91phox activation. Here we show that a region of p67phox (amino acids 190–200) C-terminal to the Rac-binding domain is evolutionarily well conserved and participates in oxidase activation at a later stage in conjunction with an activation domain. Alanine substitution for Tyr-198, Leu-199, or Val-204 abrogates the ability of p67phox to support superoxide production by gp91phox-based oxidase as well as its related oxidases Nox1 and Nox3; the activation also involves other invariant residues such as Leu-193, Asp-197, and Gly-200. Intriguingly, replacement of Gln-192 by alanine or that of Tyr-198 by phenylalanine or tryptophan rather enhances superoxide production by gp91phox-based oxidase, suggesting a tuning role for these residues. Furthermore, the Y198A/V204A or L199A/V204A substitution leads to not only a complete loss of the activity of the reconstituted oxidase system but also a significant decrease in p67phox interaction with the gp91phox NADPH-binding domain, although these mutations affect neither the protein integrity nor the Rac binding activity. Thus the extended activation domain of p67phox (amino acids 190–210) containing the D(Y/F)LGK motif plays an essential role in oxidase activation probably by interacting with gp91phox.  相似文献   

2.
NOX (NADPH oxidase) plays an important role during several pathologies because it produces the superoxide anion (O2•−), which reacts with NO (nitric oxide), diminishing its vasodilator effect. Although different isoforms of NOX are expressed in ECs (endothelial cells) of blood vessels, the NOX2 isoform has been considered the principal therapeutic target for vascular diseases because it can be up-regulated by inhibiting the interaction between its p47phox (cytosolic protein) and p22phox (transmembrane protein) subunits. In this research, two ethers, 4-(4-acetyl-2-methoxy-phenoxy)-acetic acid (1) and 4-(4-acetyl-2-methoxy-phenoxy)-butyric acid (2) and two esters, pentanedioic acid mono-(4-acetyl-2-methoxy-phenyl) ester (3) and heptanedioic acid mono-(4-acetyl-2-methoxy-phenyl) ester (4), which are apocynin derivatives were designed, synthesized and evaluated as NOX inhibitors by quantifying O2•− production using EPR (electron paramagnetic resonance) measurements. In addition, the antioxidant activity of apocynin and its derivatives were determined. A docking study was used to identify the interactions between the NOX2′s p47phox subunit and apocynin or its derivatives. The results showed that all of the compounds exhibit inhibitory activity on NOX, being 4 the best derivative. However, neither apocynin nor its derivatives were free radical scavengers. On the other hand, the in silico studies demonstrated that the apocynin and its derivatives were recognized by the polybasic SH3A and SH3B domains, which are regions of p47phox that interact with p22phox. Therefore this experimental and theoretical study suggests that compound 4 could prevent the formation of the complex between p47phox and p22phox without needing to be activated by MPO (myeloperoxidase), this being an advantage over apocynin.  相似文献   

3.
NADPH-oxidase activation and cognition in Alzheimer disease progression   总被引:1,自引:0,他引:1  
Superoxide production via NADPH-oxidase (NOX) has been shown to play a role in a variety of neurological disorders, including Alzheimer disease (AD). To improve our understanding of the NOX system and cognitive impairment, we studied the various protein components of the phagocytic isoform (gp91phox, or NOX2) in the frontal and temporal cortex of age- and postmortem-matched samples. Individuals underwent antemortem cognitive testing and postmortem histopathologic assessment to determine disease progression and assignment to one of the following groups: no cognitive impairment (NCI), preclinical AD, mild cognitive impairment (MCI), early AD, and mild-to-moderate AD. Biochemical methods were used to determine overall NOX activity as well as levels of the various subunits (gp91phox, p67phox, p47phox, p40phox, and p22phox). Overall enzyme activity was significantly elevated in the MCI cohort in both cortical regions compared to the NCI cohort. This activity level remained elevated in the AD groups. Only the NOX cytosolic subunit proteins (p67phox, p47phox, and p40phox ) were significantly elevated with disease progression; the membrane-bound subunits (gp91phox and p22phox) remained stable. In addition, there was a robust correlation between NOX activity and the individual's cognitive status such that as the enzyme activity increased, cognitive performance decreased. Collectively, these data show that upregulated NADPH-oxidase in frontal and temporal cortex suggests that increases in NOX-associated redox pathways might participate in early pathogenesis and contribute to AD progression.  相似文献   

4.
The phagocyte NADPH oxidase (NOX2) is a key enzyme of the innate immune system generating superoxide anions (O2?-), precursors of reactive oxygen species. The NOX2 protein complex is composed of six subunits: two membrane proteins (gp91phox and p22phox) forming the catalytic core, three cytosolic proteins (p67phox, p47phox and p40phox) and a small GTPase Rac. The sophisticated activation mechanism of the NADPH oxidase relies on the assembly of cytosolic subunits with the membrane-bound components. A chimeric protein, called ‘Trimera’, composed of the essential domains of the cytosolic proteins p47phox (aa 1–286), p67phox (aa 1–212) and full-length Rac1Q61L, enables a constitutive and robust NOX2 activity in cells without the need of any stimulus. We employed Trimera as a single activating protein of the phagocyte NADPH oxidase in living cells and examined the consequences on the cell physiology of this continuous and long-term NOX activity. We showed that the sustained high level of NOX activity causes acidification of the intracellular pH, triggers apoptosis and leads to local peroxidation of lipids in the membrane. These local damages to the membrane correlate with the strong tendency of the Trimera to clusterize in the plasma membrane observed by FRET-FLIM microscopy.  相似文献   

5.
Nitration of arachidonic acid (AA) to nitroarachidonic acid (AANO2) leads to anti-inflammatory intracellular activities during macrophage activation. However, less is known about the capacity of AANO2 to regulate the production of reactive oxygen species under proinflammatory conditions. One of the immediate responses upon macrophage activation involves the production of superoxide radical (O2•−) due to the NADPH-dependent univalent reduction of oxygen to O2•− by the phagocytic NADPH oxidase isoform (NOX2), the activity of NOX2 being the main source of O2•− in monocytes/macrophages. Because the NOX2 and AA pathways are connected, we propose that AANO2 can modulate macrophage activation by inhibiting O2•− formation by NOX2. When macrophages were activated in the presence of AANO2, a significant inhibition of NOX2 activity was observed as evaluated by cytochrome c reduction, luminol chemiluminescence, Amplex red fluorescence, and flow cytometry; this process also occurs under physiological mimic conditions within the phagosomes. AANO2 decreased O2•− production in a dose- (IC50=4.1±1.8 μM AANO2) and time-dependent manner. The observed inhibition was not due to a decreased phosphorylation of the cytosolic subunits (e.g., p40phox and p47phox), as analyzed by immunoprecipitation and Western blot. However, a reduction in the migration to the membrane of p47phox was obtained, suggesting that the protective actions involve the prevention of the correct assembly of the active enzyme in the membrane. Finally, the observed in vitro effects were confirmed in an in vivo inflammatory model, in which subcutaneous injection of AANO2 was able to decrease NOX2 activity in macrophages from thioglycolate-treated mice.  相似文献   

6.
Reactive oxygen species (ROS) appear to play an important role in regulating growth and survival of prostate cancer. However, the sources for ROS production in prostate cancer cells have not been determined. We report that ROS are generated by intact American Type Culture Collection DU 145 cells and by their membranes through a mechanism blocked by NAD(P)H oxidase inhibitors. ROS are critical for growth in these cells, because NAD(P)H oxidase inhibitors and antioxidants blocked proliferation. Components of the human phagocyte NAD(P)H oxidase, p22phox and gp91phox, as well as the Ca2+ concentration-responsive gp91phox homolog NOX5 were demonstrated in DU 145 cells by RT-PCR and sequencing. Although the protein product for p22phox was not detectable, both gp91phox and NOX5 were identified throughout the cell by immunostaining and confocal microscopy and NOX5 immunostaining was enhanced in a perinuclear location, corresponding to enhanced ROS production adjacent to the nuclear membrane imaged by 2',7'-dichlorofluorescin diacetate oxidation. The calcium ionophore ionomycin dramatically stimulated ferricytochrome c reduction in cell media, further supporting the importance of NOX5 for ROS production. Antisense oligonucleotides for NOX5 inhibited ROS production and cell proliferation in DU 145 cells. In contrast, antisense oligonucleotides to p22phox or gp91phox did not impair cell growth. Inhibition of ROS generation with antioxidants or NAD(P)H oxidase inhibitors increased apoptosis in cells. These results indicate that ROS generated by the newly described NOX5 oxidase are essential for prostate cancer growth, possibly by providing trophic intracellular oxidant tone that retards programmed cell death. superoxide anion; diphenylene iodonium; p22phox; gp91phox; adenosine 3',5'-cyclic monophosphate response element; caspases  相似文献   

7.

Background

Nicorandil, an anti-angina agent, reportedly improves outcomes even in angina patients with diabetes. However, the precise mechanism underlying the beneficial effect of nicorandil on diabetic patients has not been examined. We investigated the protective effect of nicorandil on endothelial function in diabetic rats because endothelial dysfunction is a major risk factor for cardiovascular disease in diabetes.

Methods

Male Sprague-Dawley rats (6 weeks old) were intraperitoneally injected with streptozotocin (STZ, 40 mg/kg, once a day for 3 days) to induce diabetes. Nicorandil (15 mg/kg/day) and tempol (20 mg/kg/day, superoxide dismutase mimetic) were administered in drinking water for one week, starting 3 weeks after STZ injection. Endothelial function was evaluated by measuring flow-mediated dilation (FMD) in the femoral arteries of anaesthetised rats. Cultured human coronary artery endothelial cells (HCAECs) were treated with high glucose (35.6 mM, 24 h) and reactive oxygen species (ROS) production with or without L-NAME (300 μM), apocynin (100 μM) or nicorandil (100 μM) was measured using fluorescent probes.

Results

Endothelial function as evaluated by FMD was significantly reduced in diabetic as compared with normal rats (diabetes, 9.7 ± 1.4%; normal, 19.5 ± 1.7%; n = 6-7). There was a 2.4-fold increase in p47phox expression, a subunit of NADPH oxidase, and a 1.8-fold increase in total eNOS expression in diabetic rat femoral arteries. Nicorandil and tempol significantly improved FMD in diabetic rats (nicorandil, 17.7 ± 2.6%; tempol, 13.3 ± 1.4%; n = 6). Nicorandil significantly inhibited the increased expressions of p47phox and total eNOS in diabetic rat femoral arteries. Furthermore, nicorandil significantly inhibited the decreased expression of GTP cyclohydrolase I and the decreased dimer/monomer ratio of eNOS. ROS production in HCAECs was increased by high-glucose treatment, which was prevented by L-NAME and nicorandil suggesting that eNOS itself might serve as a superoxide source under high-glucose conditions and that nicorandil might prevent ROS production from eNOS.

Conclusions

These results suggest that nicorandil improved diabetes-induced endothelial dysfunction through antioxidative effects by inhibiting NADPH oxidase and eNOS uncoupling.  相似文献   

8.
Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01–2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47phox expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨ m). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨ m. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47phox, and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47phox in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47phox was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells.  相似文献   

9.
Internal tandem duplication of the FMS-like tyrosine kinase (FLT3-ITD) receptor is present in 20% of acute myeloid leukemia (AML) patients and it has been associated with an aggressive AML phenotype. FLT3-ITD expressing cell lines have been shown to generate increased levels of reactive oxygen species (ROS) and DNA double strand breaks (DSBs). However, the molecular basis of how FLT3-ITD-driven ROS leads to the aggressive form of AML is not clearly understood. Our group has previously reported that inhibition of FLT3-ITD signaling results in post-translational down-regulation of p22phox, a small membrane-bound subunit of the NADPH oxidase (NOX) complex. Here we demonstrated that 32D cells, a myeloblast-like cell line transfected with FLT3-ITD, have a higher protein level of p22phox and p22phox-interacting NOX isoforms than 32D cells transfected with the wild type FLT3 receptor (FLT3-WT). The inhibition of NOX proteins, p22phox, and NOX protein knockdowns caused a reduction in ROS, as measured with a hydrogen peroxide (H2O2)-specific dye, peroxy orange 1 (PO1), and nuclear H2O2, as measured with nuclear peroxy emerald 1 (NucPE1). These reductions in the level of H2O2 following the NOX knockdowns were accompanied by a decrease in the number of DNA DSBs. We showed that 32D cells that express FLT3-ITD have a higher level of both oxidized DNA and DNA DSBs than their wild type counterparts. We also observed that NOX4 and p22phox localize to the nuclear membrane in MV4–11 cells expressing FLT3-ITD. Taken together these data indicate that NOX and p22phox mediate the ROS production from FLT3-ITD that signal to the nucleus causing genomic instability.  相似文献   

10.
Bao JX  Chang H  Lv YG  Yu JW  Bai YG  Liu H  Cai Y  Wang L  Ma J  Chang YM 《PloS one》2012,7(1):e30387
Lysosomal exocytosis and fusion to cellular membrane is critical in the oxidative stress formation of endothelium under apoptotic stimulus. We investigated the role therein of it in hyperglycaemia-induced endothelial dysfunction. The lysosome-membrane fusion was shown by the expression of lamp1, the lysosomal membrane marker, on cellular membrane and the transportation of lysosomal symbolic enzymes into cultural medium. We also examined the ceramide production, lipid rafts (LRs) clustering, colocalization of gp91phox, a NADPH oxidase subunit (NOX) to LRs clusters, superoxide (O2 . -) formation and nitric oxide (NO) content in human umbilical vein endothelial cells (HUVEC) and the endothelium-dependent NO-mediated vasodilation in isolated rat aorta. As compared to normal glucose (5.6 mmol/l, Ctrl) incubation, high glucose (22 mmol/l, HG) exposure facilitated the lysosome-membrane fusion in HUVEC shown by significantly increased quantity of lamp1 protein on cellular membrane and enhanced activity of lysosomal symbolized enzymes in cultural medium. HG incubation also elicited ceramide generation, LRs clustering and gp91phox colocalization to LRs clusters which were proved to mediate the HG induced O2 . - formation and NO depletion in HUVEC. Functionally, the endothelium-dependent NO-mediated vasodilation in aorta was blunted substantially after HG incubation. Moreover, the HG-induced effect including ceramide production, LRs clustering, gp91phox colocalization to LRs clusters, O2 . - formation and endothelial dysfunction could be blocked significantly by the inhibition of lysosome-membrane fusion. We propose that hyperglycaemia-induced endothelial impairment is closely related to the lysosome-membrane fusion and the following LRs clustering, LRs-NOX platforms formation and O2 . - production.  相似文献   

11.
The chemotherapeutic drug cisplatin has some side effects including nephrotoxicity that has been associated with reactive oxygen species production, particularly superoxide anion. The major source of superoxide anion is nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase. However, the specific segment of the nephron in which superoxide anion is produced has not been identified. Rats were sacrificed 72 h after cisplatin injection (7.5 mg/kg), and kidneys were obtained to isolate glomeruli and proximal and distal tubules. Cisplatin induced superoxide anion production in glomeruli and proximal tubules but not in distal tubules. This enhanced superoxide anion production was prevented by diphenylene iodonium, an inhibitor of NADPH oxidase. Consistently, this effect was associated with the increased expression of gp91phox and p47phox, subunits of NADPH oxidase. The enhanced superoxide anion production in glomeruli and proximal tubules, associated with the increased expression of gp91phox and p47phox, is involved in the oxidative stress in cisplatin‐induced nephrotoxicity.  相似文献   

12.
Apocynin has been extensively used as an inhibitor of NADPH oxidase (NOX) in many experimental models using phagocytic and non-phagocytic cells. Currently, there is some controversy about the efficacy of apocynin in non-phagocytic cells, but in phagocytes the reported results are consistent, which could be due to the presence of myeloperoxidase in these cells. This enzyme has been proposed as responsible for activating apocynin by generating its dimer, diapocynin, which is supposed to be the active compound that prevents NADPH oxidase complex assembly and activation.Here, we synthesized diapocynin and studied its effect on inhibition of gp91phox RNA expression. We found that diapocynin strongly inhibited the expression of gp91phoxmRNA in peripheral blood mononuclear cells (PBMC). Only at a higher concentration, apocynin was able to exert the same effect. We also compared the apocynin and diapocynin efficacy as inhibitors of tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10) production in response to lipopolysaccharide (LPS)-activated PBMC. Although apocynin did inhibit TNF-α production, diapocynin had a much more pronounced effect, on both TNF-α and IL-10 production. In conclusion, these findings suggest that the bioconversion of apocynin to diapocynin is an important issue not limited to enzymatic activity inhibition, but also for other biological effects as gp91phox mRNA expression and cytokine production. Hence, as diapocynin can be easily prepared from apocynin, a one-step synthesis, we recommend its use in studies where the biological effects of apocynin are searched.  相似文献   

13.
The membrane-bound NADPH oxidase in phagocytes, gp91phox (a.k.a. Nox2), produces superoxide, a precursor of microbicidal oxidants, thereby playing a crucial role in host defense. Activation of gp91phox/Nox2 requires assembly with the cytosolic proteins p67phox and p47phox, each containing two SH3 domains. Although the C-terminal SH3 domain of p67phox is responsible for binding to p47phox, little is known about the role for the first (N-terminal) SH3 domain [SH3(N)]. Here we show that truncation of p67phox-SH3(N), but not substitution of arginine for the invariant residue Trp-277 in SH3(N), results in an impaired activation of gp91phox/Nox2. The impairment is overcome by higher expression of an SH3(N)-defective p67phox in cells, suggesting that SH3(N) primarily increases the affinity of p67phox for the oxidase complex. On the other hand, p67phox-SH3(N) is not involved in activation of Nox1 and Nox3, closely-related homologues of gp91phox/Nox2. Thus p67phox-SH3(N) specifically functions in gp91phox/Nox2 activation probably via facilitating oxidase assembly.  相似文献   

14.
NADPH oxidases are important for neuronal function but detailed subcellular localization studies have not been performed. Here, we provide the first evidence for the presence of functional NADPH oxidase 2 (NOX2)‐type complex in neuronal growth cones and its bidirectional relationship with the actin cytoskeleton. NADPH oxidase inhibition resulted in reduced F‐actin content, retrograde F‐actin flow, and neurite outgrowth. Stimulation of NADPH oxidase via protein kinase C activation increased levels of hydrogen peroxide in the growth cone periphery. The main enzymatic NADPH oxidase subunit NOX2/gp91phox localized to the growth cone plasma membrane and showed little overlap with the regulatory subunit p40phox. p40phox itself exhibited colocalization with filopodial actin bundles. Differential subcellular fractionation revealed preferential association of NOX2/gp91phox and p40phox with the membrane and the cytoskeletal fraction, respectively. When neurite growth was evoked with beads coated with the cell adhesion molecule apCAM, we observed a significant increase in colocalization of p40phox with NOX2/gp91phox at apCAM adhesion sites. Together, these findings suggest a bidirectional functional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones, which contributes to the control of neurite outgrowth.

  相似文献   


15.
Trypanosoma cruzi is an intracellular protozoan parasite that predominantly invades mononuclear phagocytes and is able to establish a persistent infection. The production of reactive oxygen species (ROS) by phagocytes is an innate defence mechanism against microorganisms. It has been postulated that ROS such as superoxide anion (O2), hydrogen peroxide and peroxynitrite, may play a crucial role in the control of pathogen growth. However, information on parasite molecules able to trigger ROS production is scarce. In this work, we investigated whether cruzipain, an immunogenic glycoprotein from T. cruzi, was able to trigger the oxidative burst by murine cells. By employing chemiluminiscense and flow-cytometric analysis, we demonstrated that cruzipain induced ROS production in splenocytes from non-immune and cruzipain immune C57BL/6 mice and in a Raw 264.7 macrophage cell line. We also identified an O2 molecule as one of the ROS produced after antigen stimulation. Cruzipain stimulation induced NOX2 (gp91phox) and p47phox expression, as well as the co-localisation of both NADPH oxidase enzyme subunits. In the current study, we provide evidence that cruzipain not only increased ROS production but also promoted IL-6 and IL-1β cytokine production. Taken together, we believe these results demonstrate for the first time that cruzipain, a single parasite molecule, in the absence of infection, favors oxidative burst in murine cells. This represents an important advance in the knowledge of parasite molecules that interact with the phagocyte defence mechanism.  相似文献   

16.
NO is considered to be a key macrophage-derived cytotoxic effector during Trypanosoma cruzi infection. On the other hand, the microbicidal properties of reactive oxygen species (ROS) are well recognized, but little importance has been attributed to them during in vivo infection with T. cruzi. In order to investigate the role of ROS in T. cruzi infection, mice deficient in NADPH phagocyte oxidase (gp91phox −/− or phox KO) were infected with Y strain of T. cruzi and the course of infection was followed. phox KO mice had similar parasitemia, similar tissue parasitism and similar levels of IFN-γ and TNF in serum and spleen cell culture supernatants, when compared to wild-type controls. However, all phox KO mice succumbed to infection between day 15 and 21 after inoculation with the parasite, while 60% of wild-type mice were alive 50 days after infection. Further investigation demonstrated increased serum levels of nitrite and nitrate (NOx) at day 15 of infection in phox KO animals, associated with a drop in blood pressure. Treatment with a NOS2 inhibitor corrected the blood pressure, implicating NOS2 in this phenomenon. We postulate that superoxide reacts with NO in vivo, preventing blood pressure drops in wild type mice. Hence, whilst superoxide from phagocytes did not play a critical role in parasite control in the phox KO animals, its production would have an important protective effect against blood pressure decline during infection with T. cruzi.  相似文献   

17.
The superoxide-generating NADPH oxidase complex of resting phagocytes includes cytochrome b559, a membrane-associated heterodimer composed of two subunits (Nox2 and p22phox), and four cytosolic proteins (p47phox, p67phox, Rac, and p40phox). Upon stimulation, the cytosolic components translocate to the membrane, as the result of a series of interactions among the cytosolic components and among the cytosolic components and cytochrome b559 and its phospholipid environment. We described the construction of a tripartite chimera (trimera) consisting of strategic domains of p47phox, p67phox, and Rac1, in which interactions among cytosolic components were replaced by fusion (Berdichevsky, Y., Mizrahi, A., Ugolev, Y., Molshanski-Mor, S., and Pick, E. (2007) J. Biol. Chem. 282, 22122–22139). We now fused green fluorescent protein (GFP) to the N terminus of the trimera and found the following. 1) The GFP-p47phox-p67phox-Rac1 trimera activates the oxidase in amphiphile-dependent and -independent (anionic phospholipid-enriched membrane) cell-free systems. 2) Geranylgeranylation of the GFP-trimera makes it a potent oxidase activator in unmodified (native) membranes and in the absence of amphiphile. 3) Prenylated GFP-trimera binds spontaneously to native membranes (as assessed by gel filtration and in-line fluorometry), forming a tight complex capable of NADPH-dependent, activator-independent superoxide production at rates similar to those measured in canonical cell-free systems. 4) Prenylation of the GFP-trimera supersedes completely the dependence of oxidase activation on the p47phox phox homology domain and, partially, on the Rac1 polybasic domain, but the requirement for Trp193 in p47phox persists. Prenylated GFP-p47phox-p67phox-Rac1 trimera acts as a quintessential single molecule oxidase activator of potential use in high throughput screening of inhibitors.  相似文献   

18.
NADPH oxidase comprises both cytosolic and membrane-bound subunits, which, when assembled and activated, initiate the transfer of electrons from NADPH to molecular oxygen to form superoxide. This activity, known as the respiratory burst, is extremely important in the innate immune response as indicated by the disorder chronic granulomatous disease. The regulation of this enzyme complex involves protein-protein and protein-lipid interactions as well as phosphorylation events. Previously, our laboratory demonstrated that the small membrane subunit of the oxidase complex, p22phox, is phosphorylated in neutrophils and that its phosphorylation correlates with NADPH oxidase activity. In this study, we utilized site-directed mutagenesis in a Chinese hamster ovarian cell system to determine the phosphorylation sites within p22phox. We also explored the mechanism by which p22phox phosphorylation affects NADPH oxidase activity. We found that mutation of threonine 147 to alanine inhibited superoxide production in vivo by more than 70%. This mutation also blocked phosphorylation of p22phox in vitro by both protein kinase C-α and -δ. Moreover, this mutation blocked the p22phox-p47phox interaction in intact cells. When phosphorylation was mimicked in vivo through mutation of Thr-147 to an aspartyl residue, NADPH oxidase activity was recovered, and the p22phox-p47phox interaction in the membrane was restored. Maturation of gp91phox was not affected by the alanine mutation, and phosphorylation of the cytosolic component p47phox still occurred. This study directly implicates threonine 147 of p22phox as a critical residue for efficient NADPH oxidase complex formation and resultant enzyme activity.  相似文献   

19.
20.
Human phagocyte flavocytochrome b558 (Cyt b), the catalytic center of nicotinamide adenine dinucleotide phosphate oxidase, consists of a heavily glycosylated large subunit (gp91phox; Nox2) and a small subunit (p22phox). Cyt b is a membrane‐spanning complex enzyme. Chronic granulomatous disease (CGD) is predominantly caused by a mutation in the CYBB gene encoding gp91phox on the X‐chromosome. Because the phagocytes of patients with CGD are not able to generate the superoxide anion, these patients are susceptible to severe infections that can be fatal. It has been suggested that the extracellular region of gp91phox is necessary for and critical to forming the epitope of mAb 7D5 and that 7D5 provides a useful tool for rapid screening of X‐linked CGD by FACS. To further elucidate the mAb 7D5 epitope on human gp91phox, chimeric DNA expressed human and mouse gp91phox recombinant protein were constructed. The fusion proteins were immunostained for mAb 7D5 and analyzed by FACS and western blot analysis. The 143ELGDRQNES151 region was found to reside at the extracellular surface on human gp91phox and to be an important epitope for the interaction with mAb 7D5, as analyzed by FACS analysis. In particular, amino acid R147 is a unique epitope on the membrane‐associated Cyt b for mAb 7D5. In conclusion, it is proposed that FACS analysis using mAb 7D5 is a valuable tool for early diagnosis of CGD.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号