首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) reverses dopamine and serotonin transporters to produce efflux of dopamine and serotonin, respectively, in regions of the brain that have been implicated in reward. However, the role of serotonin/dopamine interactions in the behavioral effects of MDMA remains unclear. We previously showed that MDMA-induced locomotion, serotonin and dopamine release are 5-HT2B receptor-dependent. The aim of the present study was to determine the contribution of serotonin and 5-HT2B receptors to the reinforcing properties of MDMA.We show here that 5-HT2B −/− mice do not exhibit behavioral sensitization or conditioned place preference following MDMA (10 mg/kg) injections. In addition, MDMA-induced reinstatement of conditioned place preference after extinction and locomotor sensitization development are each abolished by a 5-HT2B receptor antagonist (RS127445) in wild type mice. Accordingly, MDMA-induced dopamine D1 receptor-dependent phosphorylation of extracellular regulated kinase in nucleus accumbens is abolished in mice lacking functional 5-HT2B receptors. Nevertheless, high doses (30 mg/kg) of MDMA induce dopamine-dependent but serotonin and 5-HT2B receptor-independent behavioral effects.These results underpin the importance of 5-HT2B receptors in the reinforcing properties of MDMA and illustrate the importance of dose-dependent effects of MDMA on serotonin/dopamine interactions.  相似文献   

2.
3.
Compounds that are both norepinephrine reuptake inhibitors (NRI) and 5-HT1A partial agonists may have the potential to treat neuropsychiatric disorders including attention deficit hyperactivity disorder (ADHD) and depression. Targeted screening of NRI-active compounds for binding to the 5-HT1A receptor provided a series of thiomorpholinone hits with this dual activity profile. Several iterations of design, synthesis, and testing led to substituted piperidine diphenyl ethers which are potent NRIs with 5-HT1A partial agonist properties. In addition, optimization of these molecules provided compounds which exhibit selectivity for NRI over the dopamine (DAT) and serotonin (SERT) reuptake transporters. Monoamine and 5-HT1A in vitro functional activities for select compounds from the developed piperidine diphenyl ether series are also presented.  相似文献   

4.
The pro-opiomelanocortin (POMC)-expressing neurons of the hypothalamic arcuate nucleus (ARC) are involved in the control of food intake and metabolic processes. It is assumed that, in addition to leptin, the activity of these neurons is regulated by serotonin and dopamine, but only subtype 2C serotonin receptors (5-HT2CR) was identified earlier on the POMC-neurons. The aim of this work was a comparative study of the localization and number of leptin receptors (LepR), types 1 and 2 dopamine receptors (D1R, D2R), 5-HT1BR and 5-HT2CR on the POMC-neurons and the expression of the genes encoding them in the ARC of the normal and diet-induced obese (DIO) rodents and the agouti mice (A y /a) with the melanocortin obesity. As shown by immunohistochemistry (IHC), all the studied receptors were located on the POMC-immunopositive neurons, and their IHC-content was in agreement with the expression of their genes. In DIO rats the number of D1R and D2R in the POMC-neurons and their expression in the ARC were reduced. In DIO mice the number of D1R and D2R did not change, while the number of LepR and 5-HT2CR was increased, although to a small extent. In the POMC-neurons of agouti mice the number of LepR, D2R, 5-HT1BR and 5-HT2CR was increased, and the D1R number was reduced. Thus, our data demonstrates for the first time the localization of different types of the serotonin and dopamine receptors on the POMC-neurons and a specific pattern of the changes of their number and expression in the DIO and melanocortin obesity.  相似文献   

5.
Over the last several years the use of molecular cloning technology has revealed a vast diversity among serotonin (5-HT)receptors, where by what was previously thought to be a family of three pharmacologically defined classes of 5-HT receptors is actually composed of seven distinct subfamilies designated 5-HT1–7. The 5-HT1, 5-HT2, and 5-HT5 subfamilies currently consist of five, three and two subtypes respectively while the 5-HT3,5-HT4, 5-HT6, and 5-HT7 “subfamilies” have at present one subtype each. Fourteen separate genes encode 13 receptors which fall in the superfamily of G protein-coupled receptors and one ligand-gated ion channel receptor. Our lab has contributed to the elucidation of this subtype diversity by cloning the cDNAs from both rat and human encoding the 5-HT2B receptor. This receptor subtype is equally homologous (approximately 70%) to the 5-HT2A and 5-HT2C receptors when amino acids comprising the transmembrane domains are compared and is clearly the third member of the 5-HT2 subfamily. The 5-HT2B receptor has been shown to couple to phosphoinositide hydrolysis as do the other two members of this subfamily when expressed in AV12-664 cells. Limited pharmacological analyses indicated that both rat and human 5-HT2B receptors are similar but distinguishable. With one tantalizing exception, the mRNAs for these receptors appear to be similarly distributed within rat and human. The 5-HT2B receptor mRNA is not found in rat brain, whereas in human brain it has been identified in multiple regions. This later finding suggests that the 5-HT2B receptor may be serving a unique CNS function in man that is absent in rat.  相似文献   

6.
Pregnenolone belongs to a class of endogenous neurosteroids in the central nervous system (CNS), which has been suggested to enhance cognitive functions through GABAA receptor signaling by its metabolites. It has been shown that the level of pregnenolone is altered in certain brain areas of schizophrenic patients, and clozapine enhances pregnenolone in the CNS in rats, suggesting that pregnenolone could be used to treat certain symptoms of schizophrenia. In addition, early phase proof-of-concept clinical trials have indicated that pregnenolone is effective in reducing the negative symptoms and cognitive deficits of schizophrenia patients. Here, we evaluate the actions of pregnenolone on a mouse model for schizophrenia, the dopamine transporter knockout mouse (DAT KO). DAT KO mice mirror certain symptoms evident in patients with schizophrenia, such as the psychomotor agitation, stereotypy, deficits of prepulse inhibition and cognitive impairments. Following acute treatment, pregnenolone was found to reduce the hyperlocomotion, stereotypic bouts and pre-pulse inhibition (PPI) deficits in DAT KO mice in a dose-dependent manner. At 60 mg/kg of pregnenolone, there were no significant differences in locomotor activities and stereotypy between wild-type and DAT KO mice. Similarly, acute treatment of 60 mg/kg of pregnenolone fully rescued PPI deficits of DAT KO mice. Following chronic treatment with pregnenolone at 60 mg/kg, the cognitive deficits of DAT KO mice were rescued in the paradigms of novel object recognition test and social transmission of food preference test. Pregnenolone thus holds promise as a therapeutic candidate in schizophrenia.  相似文献   

7.
Attention deficit hyperactivity disorder (ADHD) is a neuropsychiatric disorder characterized by a developmentally inappropriate, pervasive and persistent pattern of severe inattention, hyperactivity and impulsivity. Despite onset in early childhood, ADHD may continue into adulthood with substantial impairment in social, academic and occupational functioning. A new animal model of this disorder was developed in rats with genetic deletion of the dopamine transporter (DAT) gene (dopamine transporter knockout rats; DAT‐KO rats). We analyzed the behavior of DAT‐KO rats for a deeper phenotypical characterization of this model. We first tested rats of the 3 genotypes at different ages (preadolescent, adolescent and adult), in a novelty‐seeking test using a black/white box (Experiment 1). After that, we tested adult rats in a novelty‐preference test using a 3‐chamber apparatus with different shapes (Experiment 2). Experiment 1: as evidenced by analysis of time spent in the novel environment, adult DAT heterozygous (DAT‐HET) rats show an increased curiosity‐driven exploration compared with wild‐type (WT) controls while DAT‐KO rats did not recognize novelty. The locomotor activity data show a minimal difference between genotypes at adolescent age while the preadolescent and adult DAT‐KO rats have significantly increased activity rate compared with WT and DAT‐HET subjects. Experiment 2: in this case, due to more clearly evident spatial differences, time spent in novel environment was not significantly different among genotypes. During first 10 minutes, DAT‐KO rats showed a decreased hyperactivity, apparently related to curiosity and attention to the new environments. In conclusion, DAT‐KO rats may show some inattention while more novelty‐seeking traits appear in DAT‐HET rats.  相似文献   

8.
9.
Human and rat hepatic tissue express many serotonin (5-HT) receptor subtypes, such as 5-HT1B, 5-HT2A, 5-HT2B and 5-HT7 receptors, which mediate diverse effects. 5-HT is known to regulate several key aspects of liver biology including hepatic blood flow, innervations and wound healing. 5-HT is also known to enhance net glucose uptake during glucose infusion in fasted dogs, but little is known about the ability of 5-HT to control hepatic glucose metabolism, especially glycolysis. This study addresses the potential of 5-HT to regulate PFK activity and the mechanisms related to the enzyme activity. Based on our results, we are the first to provide evidence that 5-HT up-regulates PFK in mouse hepatic tissue. Activation of the enzyme occurs through the 5-HT2A receptor and phospholipase C (PLC), resulting in PFK intracellular redistribution and favoring PFK association to the cytoskeletal f-actin-enriched fractions. Interestingly, 5-HT and insulin act in a synergistic manner, likely because of the ability of insulin to increase fructose-2,6-bisphosphate because the presence of this PFK allosteric regulator enhances the 5-HT effect on the enzyme activity. Together, these data demonstrate the ability of 5-HT to control hepatic glycolysis and present clues about the mechanisms involved in these processes, which may be important in understanding the action of 5-HT during the hepatic wound healing process.  相似文献   

10.
Dewar  Karen M. 《Neurochemical research》1999,24(11):1449-1454
Mice that carry the autosomal recessive gene weaver show a distinctive loss of nigrostriatal dopamine innervation, with the greatest deficits in the dorsal caudate-putamen and almost complete sparing in the nucleus accumbens and ventral caudate. In addition to loss of dopamine in this model, it has recently been shown that markers of serotonin (5-hydroxytryptamine, 5-HT) innervation including 5-HT content, synaptosomal uptake of [3H]5-HT and [3H]citalopram binding were elevated in the dorsal neostriatum of the weaver mutant mouse. Using quantitative autoradiography of specific ligands for dopamine and 5-HT uptake sites as well as serotonin 5-HT1 and 5-HT2A receptors, we found an increased density of 5-HT uptake sites and 5-HT1 receptors restricted to the dorsal portion of the neostriatum of the weaver mouse. In contrast, 5-HT2A receptors were increased in both the dorsal and ventral portions of the rostral neostriatum as well as the nucleus accumbens. The behavioural and functional relevance of these receptor changes is unclear, although, adaptations in 5-HT may play a role in certain aspects of spontaneous behaviour in the weaver mutant mouse.  相似文献   

11.
The effects of chronic 5-HT1A receptor activation on the behavior, functional activity of 5-HT1A receptors, and expression of key genes of the brain 5-HT system were studied in mice of the catalepsy-prone CBA strain and the catalepsy-resistant C57BL/6 strain. Chronic treatment with 8-Hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) (1.0 mg/kg i.p., 14 days) led to a significant decrease in the hypothermic response to acute administration of 8-OH-DPAT in CBA and C57BL/6 mice, which indicates the desensitization of 5-HT1A receptors in both strains. Pretreatment with the 5-HT7 receptor agonist SB 269970 did not affect the hypothermic response to the acute administration of 8-OH-DPAT, which suggests an independent functional response of 5-HT1A receptors. The treatment did not induce any changes in the behavior in the open field paradigm in CBA mice, but significantly increased the total path, the time spent in the center, and the number of rearings in C57BL/6 mice, which indicates the enhancement of locomotor and exploratory activity in C57BL/6 mice. The chronic activation of 5-HT1A receptor downregulated 5-HT1A gene expression, as well as the expression of the gene that encodes tryptophan hydroxylase 2, a key enzyme of 5-HT biosynthesis, in the midbrain and the expression of the gene that encodes the 5-HT2A receptor in the frontal cortex of CBA, but not C57BL/6 mice. The obtained data provide a new evidence on the receptor–gene cross talk in the brain 5-HT system that may underlie the loss of pharmacological efficacy of 5-HT1A receptor agonists. In turn, the loss of the behavioral response and compensatory alterations in key genes of the brain 5- HT system in CBA mice suggests that catalepsy-prone and -resistant genotypes demonstrate different sensibility to the effects of drugs.  相似文献   

12.
We have investigated the pharmacology underlying locomotor system responses to serotonin (5-HT) in embryos of the frog, Rana temporaria, to provide a comparison to studies in embryos of its close relative, Xenopus laevis. Our findings suggest that two divergent mechanisms underlie the modulation of locomotion by 5-HT in Rana. Bath-applied 5-HT or 5-carboxamidotyptamine, a 5-HT1,5A,7 receptor agonist, can modulate fictive swimming in a dose-dependent manner, increasing burst durations and cycle periods. However, activation of 5-HT1,7 receptors with R8-OHDPAT or 8-OHDPAT fails to mimic 5-HT, and in some cases exerts exactly the opposite response; decreasing burst durations and cycle periods. Elevating endogenous 5-HT levels by blocking re-uptake with clomipramine transiently increases burst durations. The receptors involved in this endogenous response include 5-HT1A receptors, as in Xenopus, but also 5-HT7 receptors. However, like the 8-OHDPAT enantiomers, prolonged re-uptake inhibition can result in a motor response in the opposite direction to exogenous 5-HT. This effect is not reversed by 5-HT1A and/or 5-HT7 receptor antagonism, implicating 5-HT1B/1D receptors. Remarkably, antagonism of these receptors using methiothepin unmasks a dose-dependent response to clomipramine, reminiscent of exogenous 5-HT. Our data suggest that 5-HT1A,7 and 5-HT1B/1D receptors act as gain-setters of burst durations, whilst 5-HT5A receptors are involved in the effects of bath-applied 5-HT on locomotion.  相似文献   

13.
It has been suggested that drugs combining activities of selective serotonin reuptake inhibitor and 5-HT1A receptor agonist may form a novel strategy for higher therapeutic efficacy of antidepressant. The present study aimed to examine the pharmacology of YL-0919, a novel synthetic compound with combined high affinity and selectivity for serotonin transporter and 5-HT1A receptors. We performed in vitro binding and function assays and in vivo behavioral tests to assess the pharmacological properties and antidepressant-like efficacy of YL-0919. YL-0919 displayed high affinity in vitro to both 5-HT1A receptor and 5-HT transporter prepared from rat cortical tissue. It exerted an inhibitory effect on forskolin-stimulated cAMP formation and potently inhibited 5-HT uptake in both rat cortical synaptosomes and recombinant cells. After acute p.o. administration, very low doses of YL-0919 reduced the immobility time in tail suspension test and forced swimming test in mice and rats, with no significant effect on locomotor activity in open field test. Furthermore, WAY-100635 (a selective 5-HT1A receptor antagonist, 0.3 mg/kg) significantly blocked the effect of YL-0919 in tail suspension test and forced swimming test. In addition, chronic YL-0919 treatment significantly reversed the depressive-like behaviors in chronically stressed rats. These findings suggest that YL-0919, a novel structure compound, exerts dual effect on the serotonergic system, as both 5-HT1A receptor agonist and 5-HT uptake blocker, showing remarkable antidepressant effects in animal models. Therefore, YL-0919 may be used as a new option for the treatment of major depressive disorder.  相似文献   

14.
Understanding serotonergic (5-HT) signaling is critical for understanding human physiology, behavior, and neuropsychiatric disease. 5-HT mediates its actions via ionotropic and metabotropic 5-HT receptors. The 5-HT1A receptor is a metabotropic G protein-coupled receptor linked to the Gi/o signaling pathway and has been specifically implicated in the pathogenesis of depression and anxiety. To understand and precisely control 5-HT1A signaling, we created a light-activated G protein-coupled receptor that targets into 5-HT1A receptor domains and substitutes for endogenous 5-HT1A receptors. To induce 5-HT1A-like targeting, vertebrate rhodopsin was tagged with the C-terminal domain (CT) of 5-HT1A (Rh-CT5-HT1A). Rh-CT5-HT1A activates G protein-coupled inward rectifying K+ channels in response to light and causes membrane hyperpolarization in hippocampal neurons, similar to the agonist-induced responses of the 5-HT1A receptor. The intracellular distribution of Rh-CT5-HT1A resembles that of the 5-HT1A receptor; Rh-CT5-HT1A localizes to somatodendritic sites and is efficiently trafficked to distal dendritic processes. Additionally, neuronal expression of Rh-CT5-HT1A, but not Rh, decreases 5-HT1A agonist sensitivity, suggesting that Rh-CT5-HT1A and 5-HT1A receptors compete to interact with the same trafficking machinery. Finally, Rh-CT5-HT1A is able to rescue 5-HT1A signaling of 5-HT1A KO mice in cultured neurons and in slices of the dorsal raphe showing that Rh-CT5-HT1A is able to functionally compensate for native 5-HT1A. Thus, as an optogenetic tool, Rh-CT5-HT1A has the potential to directly correlate in vivo 5-HT1A signaling with 5-HT neuron activity and behavior in both normal animals and animal models of neuropsychiatric disease.  相似文献   

15.
The 5-HT3 receptor is a ligand-gated ion channel activated by serotonin (5-HT). Although originally identified in the peripheral nervous system, the 5-HT3 receptor is also ubiquitously expressed in the central nervous system. Sites of expression include several brain stem nuclei and higher cortical areas such as the amygdala, hippocampus, and cortex. On the subcellular level, both presynaptic and postsynaptic 5-HT3 receptors can be found. Presynaptic 5-HT3 receptors are involved in mediating or modulating neurotransmitter release. Postsynaptic 5-HT3 receptors are preferentially expressed on interneurons. In view of this specific expression pattern and of the well-established role of 5-HT as a neurotransmitter shaping development, we speculate that 5-HT3 receptors play a role in the formation and function of cortical circuits.  相似文献   

16.
Abstract: We investigated changes in the extracellular levels of acetylcholine (ACh) following local application of serotonergic agents to the dorsal hippocampus of freely moving rats by means of perfusion using a microdialysis technique. Perfusion of serotonin (5-HT; 10 μM, for 30 min at a rate of 3 μl/min), dissolved in Ringer's solution containing 10 μM eserine, showed no marked effect on the extracellular levels of ACh. 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 20 μM), a 5-HT1A agonist, increased ACh levels, whereas 7-trifluoromethyl-4-(4-methyl-1 -piperazinyl)-pymoto[1,2-a]quinoxaline (CGS-12066B; 100 μM), a 5-HT1B agonist, decreased it. Clomipramine (2 μM), an uptake inhibitor of 5-HT, had no effect on ACh levels. Following perfusion of 1-(2-methoxyphenyl)-4-[4- (2-phthalimido)butyl]piperazine (NAN-190; 10 μM), which is a selective 5-HT1A antagonist, the effect of 8-OH-DPAT was totally abolished, whereas CGS-12066B decreased extracellular ACh levels. 5-HT, as well as Clomipramine, had a decreasing effect on ACh levels after pretreatment with NAN-190. These results indicate that the 5-HT1A receptor, which exists in the dorsal hippocampus, enhances the spontaneous ACh release, and that the mechanism of serotonergic modulation of ACh release partly depends on both the stimulatory control via the 5-HT1A receptor and the suppressive one via the 5-HT1B receptor in the dorsal hippocampus of rats.  相似文献   

17.
In this review, we describe six lines of evidence that reveal a modulatory role for serotonin (5-HT) in the regulation of the response of suprachiasmatic nucleus (SCN) neurons to retinal illumination in the Syrian hamster. Electrical stimulation of the median raphe nucleus, sufficient to elicit the release of 5-HT in the SCN, inhibits light-induced phase shifts of the hamster circadian activity rhythm. Two 5-HT receptors capable of mediating the effects of 5-HT on photic responses, the 5-HT7 receptor and the 5-HT1B receptor, are present in the hamster SCN. Light-induced phase shifts are attenuated by systemic and local administration of two 5-HT receptor agonists, 8-OH-DPAT, and TFMPP, and these agents attenuate photic phase shifts by acting on pharmacologically distinct receptors. Furthermore, both compounds also attenuate light-induced Fos expression and photic suppression of pineal melatonin content, indicating that serotonergic modulation of photic signal transduction in the SCN is not limited to the regulation of circadian phase. Finally, both 8-OH-DPAT and TFMPP inhibit RHT neurotransmission in the hypothalamic slice preparation. Further, TFMPP fails to attenuate responses to exogenous glutamate on retinorecipient SCN neurons, consistent with a presynaptic site of action for the drug. Based on these data, we propose that 5-HT modulates RHT neurotransmission in the SCN through at least two distinct mechanisms: (1) via activation of 5-HT7 receptors probably located on retinorecipient neurons; and (2) via activation of presynaptic 5-HT1B receptors leading to reduced release of glutamate from RHT terminals in the SCN.  相似文献   

18.
19.
20.
Repeated administration to rats of the 5-HT -selective agonist 5-methoxy-N, N-dimethyltryptamine (5-MeODMT)1A produced tolerance to the ability of a test dose of 5-MeODMT to produce the serotonin behavioral syndrome, but not to the ability of a test dose of the 5-HT1B -selective agonist m-chlorophenylpiperazine (mCPP) to decrease locomotor activity. Conversely, repeated administration of mCPP produced tolerance to the ability of a test dose of mCPP to decrease locomotor activity, but not to the ability of a test dose of 5-MeODMT to elicit the serotonin behavioral syndrome. The lack of cross-tolerance between these two selective agonists is consistent with the idea that the serotonin behavioral syndrome and suppression of locomotor activity are mediated by different subtypes of the 5-HT1 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号