首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Biogenesis of respiratory chain complexes depends on the expression of mitochondrial-encoded subunits. Their synthesis occurs on membrane-associated ribosomes and is probably coupled to their membrane insertion. Defects in expression of mitochondrial translation products are among the major causes of mitochondrial disorders. Mdm38 is related to Letm1, a protein affected in Wolf-Hirschhorn syndrome patients. Like Mba1 and Oxa1, Mdm38 is an inner membrane protein that interacts with ribosomes and is involved in respiratory chain biogenesis. We find that simultaneous loss of Mba1 and Mdm38 causes severe synthetic defects in the biogenesis of cytochrome reductase and cytochrome oxidase. These defects are not due to a compromised membrane binding of ribosomes but the consequence of a mis-regulation in the synthesis of Cox1 and cytochrome b. Cox1 expression is restored by replacing Cox1-specific regulatory regions in the mRNA. We conclude, that Mdm38 and Mba1 exhibit overlapping regulatory functions in translation of selected mitochondrial mRNAs.  相似文献   

6.
7.
8.
Mitochondrial ribosomes synthesize core subunits of the inner membrane respiratory chain complexes. In mitochondria, translation is regulated by mRNA‐specific activator proteins and occurs on membrane‐associated ribosomes. Mdm38/Letm1 is a conserved membrane receptor for mitochondrial ribosomes and specifically involved in respiratory chain biogenesis. In addition, Mdm38 and its higher eukaryotic homolog Letm1, function as K+/H+ or Ca2+/H+ antiporters in the inner membrane. Here, we identify the conserved ribosome‐binding domain (RBD) of Mdm38 and determine the crystal structure at 2.1 Å resolution. Surprisingly, Mdm38RBD displays a 14‐3‐3‐like fold despite any similarity to 14‐3‐3‐proteins at the primary sequence level and thus represents the first 14‐3‐3‐like protein in mitochondria. The 14‐3‐3‐like domain is critical for respiratory chain assembly through regulation of Cox1 and Cytb translation. We show that this function can be spatially separated from the ion transport activity of the membrane integrated portion of Mdm38. On the basis of the phenotypes observed for mdm38Δ as compared to Mdm38 lacking the RBD, we suggest a model that combining ion transport and translational regulation into one molecule allows for direct coupling of ion flux across the inner membrane, and serves as a signal for the translation of mitochondrial membrane proteins via its direct association with the protein synthesis machinery.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
The evolutionary divergence of mitochondrial ribosomes from their bacterial and cytoplasmic ancestors has resulted in reduced RNA content and the acquisition of mitochondria-specific proteins. The mitochondrial ribosomal protein of the small subunit 34 (MRPS34) is a mitochondria-specific ribosomal protein found only in chordates, whose function we investigated in mice carrying a homozygous mutation in the nuclear gene encoding this protein. The Mrps34 mutation causes a significant decrease of this protein, which we show is required for the stability of the 12S rRNA, the small ribosomal subunit and actively translating ribosomes. The synthesis of all 13 mitochondrially-encoded polypeptides is compromised in the mutant mice, resulting in reduced levels of mitochondrial proteins and complexes, which leads to decreased oxygen consumption and respiratory complex activity. The Mrps34 mutation causes tissue-specific molecular changes that result in heterogeneous pathology involving alterations in fractional shortening of the heart and pronounced liver dysfunction that is exacerbated with age. The defects in mitochondrial protein synthesis in the mutant mice are caused by destabilization of the small ribosomal subunit that affects the stability of the mitochondrial ribosome with age.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号