首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PrPSc is formed from a normal glycosylphosphatidylinositol (GPI)-anchored prion protein (PrPC) by a posttranslational modification. Most GPI-anchored proteins have been shown to be cleaved by GPI phospholipases. Recently, GPI-phospholipase D (GPI-PLD) was shown to be a strictly specific enzyme for GPI anchors. To investigate the involvement of GPI-PLD in the processes of neurodegeneration in prion diseases, we examined the mRNA and protein expression levels of GPI-PLD in the brains of a prion animal model (scrapie), and in both the brains and cerebrospinal fluids (CSF) of sporadic and familial Creutzfeldt-Jakob disease (CJD) patients. We found that compared with controls, the expression of GPI-PLD was dramatically down-regulated in the brains of scrapie-infected mice, especially in the caveolin-enriched membrane fractions. Interestingly, the observed decrease in GPI-PLD expression levels began at the same time that PrPSc began to accumulate in the infected brains and this decrease was also observed in both the brain and CSF of CJD patients; however, no differences in expression were observed in either the brains or CSF specimens from Alzheimer’s disease patients. Taken together, these results suggest that the down-regulation of GPI-PLD protein may be involved in prion propagation in the brains of prion diseases.  相似文献   

2.
It is shown that the moments of order statistics in samples drawn from a continuous population with pdf f(x) symmetric about zero comprising a single outlier with pdf g(x) symmetric about zero can be expressed in terms of the moments of order statistics in samples drawn from the population obtained by folding the pdf f(x) at zero and the moments of order statistics in samples drawn from the population obtained by folding the pdf f(x) at zero comprising a single outlier with pdf obtained by folding g(x) at zero. The cumulative round off error involved in numerical evaluation of the moments of order statistics from the symmetric-outlier model, using a table of the moments of order statistics from the folded population and the moments of order statistics from the folded-outlier model, is not serious.  相似文献   

3.
Human MYO7A mutations can cause a variety of conditions involving the inner ear. These include dominant and recessive non-syndromic hearing loss and syndromic conditions such as Usher syndrome. Mouse models of deafness allow us to investigate functional pathways involved in normal and abnormal hearing processes. We present two novel mouse models with mutations in the Myo7a gene with distinct phenotypes. The mutation in Myo7aI487N/I487N ewaso is located within the head motor domain of Myo7a. Mice exhibit a profound hearing loss and manifest behaviour associated with a vestibular defect. A mutation located in the linker region between the coiled-coil and the first MyTH4 domains of the protein is responsible in Myo7aF947I/F947I dumbo. These mice show a less severe hearing loss than in Myo7aI487N/I487N ewaso; their hearing loss threshold is elevated at 4 weeks old, and progressively worsens with age. These mice show no obvious signs of vestibular dysfunction, although scanning electron microscopy reveals a mild phenotype in vestibular stereocilia bundles. The Myo7aF947I/F947I dumbo strain is therefore the first reported Myo7a mouse model without an overt vestibular phenotype; a possible model for human DFNB2 deafness. Understanding the molecular basis of these newly identified mutations will provide knowledge into the complex genetic pathways involved in the maintenance of hearing, and will provide insight into recessively inherited sensorineural hearing loss in humans.  相似文献   

4.
5.
Alcohol is a neurotoxic agent, since long-term heavy ingestion of alcohol can cause various neural diseases including fetal alcohol syndrome, cerebellar degeneracy and alcoholic dementia. However, the molecular mechanisms of alcohol-induced neurotoxicity are still poorly understood despite numerous studies. Thus, we hypothesized that activated microglial cells with elevated AGE-albumin levels play an important role in promoting alcohol-induced neurodegeneration. Our results revealed that microglial activation and neuronal damage were found in the hippocampus and entorhinal cortex following alcohol treatment in a rat model. Increased AGE-albumin synthesis and secretion were also observed in activated microglial cells after alcohol exposure. The expressed levels of receptor for AGE (RAGE)-positive neurons and RAGE-dependent neuronal death were markedly elevated by AGE-albumin through the mitogen activated protein kinase pathway. Treatment with soluble RAGE or AGE inhibitors significantly diminished neuronal damage in the animal model. Furthermore, the levels of activated microglial cells, AGE-albumin and neuronal loss were significantly elevated in human brains from alcoholic indivisuals compared to normal controls. Taken together, our data suggest that increased AGE-albumin from activated microglial cells induces neuronal death, and that efficient regulation of its synthesis and secretion is a therapeutic target for preventing alcohol-induced neurodegeneration.  相似文献   

6.
7.
8.
Endothelin is a vasoconstricting peptide that plays a key role in vascular homeostasis, exerting its biologic effects via two receptors, the endothelin receptor A (ETA) and endothelin receptor B (ETB). Activation of ETA and ETB has opposing actions, in which hyperactive ETA is generally vasoconstrictive and pathologic. Selective ETA blockade has been shown to be beneficial in renal injuries such as diabetic nephropathy and can improve proteinuria. Atrasentan is a selective pharmacologic ETA blocker that preferentially inhibits ETA activation. In this study, we evaluated the efficacy of ETA blockade by atrasentan in ameliorating proteinuria and kidney injury in murine adriamycin nephropathy, a model of human focal segmental glomerulosclerosis. We found that ETA expression was unaltered during the course of adriamycin nephropathy. Whether initiated prior to injury in a prevention protocol (5 mg/kg/day, i.p.) or after injury onset in a therapeutic protocol (7 mg/kg or 20 mg/kg three times a week, i.p.), atrasentan did not significantly affect the initiation and progression of adriamycin-induced albuminuria (as measured by urinary albumin-to-creatinine ratios). Indices of glomerular damage were also not improved in atrasentan-treated groups, in either the prevention or therapeutic protocols. Atrasentan also failed to improve kidney function as determined by serum creatinine, histologic damage, and mRNA expression of numerous fibrosis-related genes such as collagen-I and TGF-β1. Therefore, we conclude that selective blockade of ETA by atrasentan has no effect on preventing or ameliorating proteinuria and kidney injury in adriamycin nephropathy.  相似文献   

9.
10.
11.
Wnts function through the activation of at least three intracellular signal transduction pathways, of which the canonical β-catenin mediated pathway is the best understood. Aberrant canonical Wnt signaling has been involved in both neurodegeneration and cancer. An impairment of Wnt signals appears to be associated with aspects of neurodegenerative pathologies while overactivation of Wnt signaling is a common theme in several types of human tumors. Therefore, although therapeutic approaches aimed at modulating Wnt signaling in neurodegenerative and hyperproliferative diseases might impinge on the same molecular mechanisms, different pharmacological outcomes are required. Here we review recent developments on the understanding of the role of Wnt signaling in Alzheimer’s disease and CNS tumors, and identify possible avenues for therapeutic intervention within a complex and multi-faceted signaling pathway.  相似文献   

12.
13.
刘静  王娜  朱作言 《遗传》2006,28(8):1023-1030
脊椎动物在胚胎发育的过程中沿身体前后轴形成一定数目的暂时性结构—体节(somite),随着胚胎的继续发育每个体节分化成为生骨节,生皮节和生肌节,继而生成各种组织。近三十年来,研究者们就体节的发生和发育提出了多种解释模型,这包括时钟波阵面模型,反应扩散模型,时钟诱导模型,时钟痕迹模型等,虽然这些模型能从不同角度不同程度来解释动物体节发生和发育的不同现象, 但无一能够解释体节发生和发育的全部。然而,大多数模型都提出了时钟分割(segmental clock)这一概念。鸡胚中的c-hairy1和c-hairy2,鸡胚、小鼠中的lunatic fringe以及斑马鱼中的her1, Delta C等几种基因的表达图式的研究为模型中分割时钟的存在提供了分子生物学上的有力证据。  相似文献   

14.
Independent systems of high and low affinity effect glucose uptake in the filamentous fungus Aspergillus nidulans. Low-affinity uptake is known to be mediated by the product of the mstE gene. In the current work two genes, mstA and mstC, have been identified that encode high-affinity glucose transporter proteins. These proteins'' primary structures share over 90% similarity, indicating that the corresponding genes share a common origin. Whilst the function of the paralogous proteins is little changed, they differ notably in their patterns of expression. The mstC gene is expressed during the early phases of germination and is subject to CreA-mediated carbon catabolite repression whereas mstA is expressed as a culture tends toward carbon starvation. In addition, various pieces of genetic evidence strongly support allelism of mstC and the previously described locus sorA. Overall, our data define MstC/SorA as a high-affinity glucose transporter expressed in germinating conidia, and MstA as a high-affinity glucose transporter that operates in vegetative hyphae under conditions of carbon limitation.  相似文献   

15.
Two simple models of the ecology of population growth are described: "exponential" growth with "r -selection," and "logistic" growth, with "K- selection." Various methods for estimating the parameters of these models are presented in detail, along with statistical methods of evaluation and comparison. Also briefly discussed are more complex models of population growth sometimes used by demographers and ecologists. The two simpler models of population growth are then applied, by way of illustration, to two episodes of population growth in protohistoric southwest Iran, dating from 4000–2350 B. C. Interpretation of the results and the implications for future research are then discussed . [population growth, statistical models, exponential growth, logistic growth, early Iran]  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease and it is the most common adult onset neurodegenerative disorder affecting motor neurons. There is currently no effective treatment for ALS and our understanding of the pathological mechanism is still far away from prevention and/or treatment of this devastating disease. Amyloid precursor protein (APP) is a transmembrane protein that undergoes processing either by β-secretase or α-secretase, followed by γ-secretase. In the present study, we show that APP levels, and aberrant phosphorylation, which is associated with enhanced β-secretase cleavage, are increased in SOD1G93A ALS mouse model. Fluorescence resonance energy transfer (FRET) analysis suggests a close interaction between SOD1 and APP at hippocampal synapses. Notably, SOD1G93A mutation induces APP-SOD1 conformational changes, indicating a crosstalk between these two signaling proteins. Inhibition of APP processing via monoclonal antibody called BBS that blocks APP β-secretase cleavage site, resulted in reduction of mutant SOD1G93A levels in animal and cellular models of ALS, significantly prolonged life span of SOD1G93A mice and diminished inflammation. Beyond its effect on toxic mutant SOD1G93A, BBS treatment resulted in a reduction in the levels of APP, its processing product soluble APPβ and pro-apoptotic p53. This study demonstrates that APP and its processing products contribute to ALS pathology through several different pathways; thus BBS antibody could be a promising neuroprotective strategy for treatment of this disease.  相似文献   

17.
Mutations in the gene drop-dead (drd) cause diverse phenotypes in adult Drosophila melanogaster including early lethality, neurodegeneration, tracheal defects, gut dysfunction, reduced body mass, and female sterility. Despite the identification of the drd gene itself, the causes of early lethality and neurodegeneration in the mutant flies remain unknown. To determine the pattern of drd expression associated with the neurodegenerative phenotype, knockdown of drd with various Gal4 drivers was performed. Early adult lethality and neurodegeneration were observed upon knockdown of drd in the tracheal system with two independent insertions of the breathless-Gal4 driver and upon knockdown in the tracheal system and elsewhere with the DJ717-Gal4 driver. Surprisingly, rescue of drd expression exclusively in the tracheae in otherwise mutant flies rescued the neurodegenerative phenotype but not adult lethality. Gut dysfunction, as measured by defecation rate, was not rescued in these flies, and gut function appeared normal upon tracheal-specific knockdown of drd. Finally, the hypothesis that tracheal dysfunction in drd mutants results in hypoxia was tested. Hypoxia-sensitive reporter transgenes (LDH-Gal4 and LDH-LacZ) were placed on a drd mutant background, but enhanced expression of these reporters was not observed. In addition, manipulation of drd expression in the tracheae did not affect expression of the hypoxia-induced genes LDH, tango, and similar. Overall, these results indicate that there are at least two causes of adult lethality in drd mutants, that gut dysfunction and neurodegeneration are independent phenotypes, and that neurodegeneration is associated with tracheal expression of drd but not with hypoxia.  相似文献   

18.

Background

Pantothenate kinase-associated neurodegeneration, PKAN, is an inherited disorder characterized by progressive impairment in motor coordination and caused by mutations in PANK2, a human gene that encodes one of four pantothenate kinase (PanK) isoforms. PanK initiates the synthesis of coenzyme A (CoA), an essential cofactor that plays a key role in energy metabolism and lipid synthesis. Most of the mutations in PANK2 reduce or abolish the activity of the enzyme. This evidence has led to the hypothesis that lower CoA might be the underlying cause of the neurodegeneration in PKAN patients; however, no mouse model of the disease is currently available to investigate the connection between neuronal CoA levels and neurodegeneration. Indeed, genetic and/or dietary manipulations aimed at reducing whole-body CoA synthesis have not produced a desirable PKAN model, and this has greatly hindered the discovery of a treatment for the disease.

Objective, Methods, Results and Conclusions

Cellular CoA levels are tightly regulated by a balance between synthesis and degradation. CoA degradation is catalyzed by two peroxisomal nudix hydrolases, Nudt7 and Nudt19. In this study we sought to reduce neuronal CoA in mice through the alternative approach of increasing Nudt7-mediated CoA degradation. This was achieved by combining the use of an adeno-associated virus-based expression system with the synapsin (Syn) promoter. We show that mice with neuronal overexpression of a cytosolic version of Nudt7 (scAAV9-Syn-Nudt7cyt) exhibit a significant decrease in brain CoA levels in conjunction with a reduction in motor coordination. These results strongly support the existence of a link between CoA levels and neuronal function and show that scAAV9-Syn-Nudt7cyt mice can be used to model PKAN.  相似文献   

19.

Background

Parkinson''s disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD.

Methodology/Principal Findings

Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of α-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons.

Conclusion

Thus, aging Pink1−/− mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death.  相似文献   

20.
The neuropeptide substance P (SP) is a well-known mediator of neurogenic inflammation following a variety of CNS disorders. Indeed, inhibition of SP through antagonism of its receptor, the tachykinin NK1 receptor, has been shown to be beneficial following both traumatic brain injury and stroke. Such studies demonstrated that administration of an NK1 receptor antagonist reduced blood-brain-barrier permeability, edema development and improved functional outcome. Furthermore, our recent studies have demonstrated a potential role for SP in mediating neurogenic inflammation following traumatic spinal cord injury (SCI). Accordingly, the present study investigates whether inhibition of SP may similarly play a neuroprotective role following traumatic SCI. A closed balloon compression injury was induced at T10 in New Zealand White rabbits. At 30 minutes post-injury an NK1 receptor antagonist was administered intravenously. Animals were thereafter assessed for blood spinal cord barrier (BSCB) permeability, spinal water content (edema), intrathecal pressure (ITP), and histological and functional outcome from 5 hours to 2 weeks post-SCI. Administration of an NK1 receptor antagonist was not effective in reducing BSCB permeability, edema, ITP, or functional deficits following SCI. We conclude that SP mediated neurogenic inflammation does not seem to play a major role in BSCB disruption, edema development and consequential tissue damage seen in acute traumatic SCI. Rather it is likely that the severe primary insult and subsequent hemorrhage may be the key contributing factors to ongoing SCI injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号