首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
心脏祖细胞(cardiac progenitor cells,CPCs)的研究对阐明先天性心脏病的机制及治疗心血管疾病具有重要意义.哺乳动物的心脏组织由多种不同CPCs分化形成.转录因子Tbx18在发育中的心外膜中表达,对心脏的发育形成起重要的调节作用.为了在组织及活体细胞水平检测和阐明Tbx18+CPC的分化潜能,应用Cre-LoxP系统建立Tbx18+CPCs基因命运谱系示踪模型:Tbx18-Cre/Rosa26R-EYFP和Tbx18-Cre/Rosa26R-LacZ双杂合基因敲入小鼠.该双杂合基因敲入小鼠通过Cre的表达能有效地示踪Tbx18+细胞在胚胎和成年小鼠中的分化命运.Tbx18-Cre/Rosa26R-EYFP双杂合小鼠心脏能非常容易地利用流式细胞分选系统(FACS)分离出YFP+细胞,也可在倒置共聚焦显微镜下观察.应用X-gal染色分析其表达模式,揭示Tbx18命运谱系参与心房肌、室间隔、心室肌、冠状动脉、瓣膜等的形成.应用免疫荧光技术初步揭示Tbx18+CPCs向心脏肌钙蛋白T(cTNT)阳性心肌细胞和平滑肌肌球蛋白重链11(MYH11)阳性血管平滑肌细胞分化的潜能.心脏是一个由多种肌肉和非肌肉组织细胞构成的复杂器官.推测Tbx18可能在心脏祖细胞向肌源性细胞分化的信号通路中起重要调节作用.在上述研究中应用基因谱系示踪技术,验证Tbx18可作为一类CPCs的标志,为更深入揭示心脏祖细胞向心系细胞的分化潜能打下基础.  相似文献   

3.
4.
Correct delineation of the hierarchy of cardiac progenitors is a key step to understanding heart development, and will pave the way for future use of cardiac progenitors in the treatment of heart disease. Multipotent Nkx2-5 and Isl1 cardiac progenitors contribute to cardiomyocyte, smooth muscle, and endothelial lineages, which constitute the major lineages of the heart. Recently, progenitors located within the proepicardium and epicardium were reported to differentiate into cardiomyocytes, as well as smooth muscle and endothelial cells. However, the relationship of these proepicardial progenitors to the previously described Nkx2-5 and Isl1 cardiac progenitors is incompletely understood. To address this question, we performed in vivo Cre-loxP-based lineage tracing. Both Nkx2-5- and Isl1-expressing progenitors contributed to the proepicardium and expressed Wt1 and Tbx18, markers of proepicardial progenitor cells. Interestingly, Nkx2-5 knockout resulted in abnormal proepicardial development and decreased expression of Wt1, suggesting a functional role for Nkx2-5 in proepicardium formation. Taken together, these results suggest that Nkx2-5 and/or Isl1 cardiac progenitors contribute to proepicardium during heart development.  相似文献   

5.
6.

Rationale

Pluripotent stem cell–derived cardiac progenitor cells (CPCs) have emerged as a powerful tool to study cardiogenesis in vitro and a potential cell source for cardiac regenerative medicine. However, available methods to induce CPCs are not efficient or require high-cost cytokines with extensive optimization due to cell line variations.

Objective

Based on our in-vivo observation that early endodermal cells maintain contact with nascent pre-cardiac mesoderm, we hypothesized that direct physical contact with endoderm promotes induction of CPCs from pluripotent cells.

Method and Result

To test the hypothesis, we cocultured mouse embryonic stem (ES) cells with the endodermal cell line End2 by co-aggregation or End2-conditioned medium. Co-aggregation resulted in strong induction of Flk1+ PDGFRa+ CPCs in a dose-dependent manner, but the conditioned medium did not, indicating that direct contact is necessary for this process. To determine if direct contact with End2 cells also promotes the induction of committed cardiac progenitors, we utilized several mouse ES and induced pluripotent (iPS) cell lines expressing fluorescent proteins under regulation of the CPC lineage markers Nkx2.5 or Isl1. In agreement with earlier data, co-aggregation with End2 cells potently induces both Nkx2.5+ and Isl1+ CPCs, leading to a sheet of beating cardiomyocytes. Furthermore, co-aggregation with End2 cells greatly promotes the induction of KDR+ PDGFRa+ CPCs from human ES cells.

Conclusions

Our co-aggregation method provides an efficient, simple and cost-effective way to induce CPCs from mouse and human pluripotent cells.  相似文献   

7.
Cardiac progenitor cells (CPCs) have the capacity to differentiate into cardiomyocytes, smooth muscle cells (SMC), and endothelial cells and hold great promise in cell therapy against heart disease. Among various methods to isolate CPCs, differentiation of embryonic stem cell (ESC) into CPCs attracts great attention in the field since ESCs can provide unlimited cell source. As a result, numerous strategies have been developed to derive CPCs from ESCs. In this protocol, differentiation and purification of embryonic CPCs from both mouse and human ESCs is described. Due to the difficulty of using cell surface markers to isolate embryonic CPCs, ESCs are engineered with fluorescent reporters activated by CPC-specific cre recombinase expression. Thus, CPCs can be enriched by fluorescence-activated cell sorting (FACS). This protocol illustrates procedures to form embryoid bodies (EBs) from ESCs for CPC specification and enrichment. The isolated CPCs can be subsequently cultured for cardiac lineage differentiation and other biological assays. This protocol is optimized for robust and efficient derivation of CPCs from both mouse and human ESCs.  相似文献   

8.
9.
The cardiac progenitor cells (CPCs) in the anterior heart field (AHF) are located in the pharyngeal mesoderm (PM), where they expand, migrate and eventually differentiate into major cell types found in the heart, including cardiomyocytes. The mechanisms by which these progenitors are able to expand within the PM microenvironment without premature differentiation remain largely unknown. Through in silico data mining, genetic loss-of-function studies, and in vivo genetic rescue studies, we identified N-cadherin and interaction with canonical Wnt signals as a critical component of the microenvironment that facilitates the expansion of AHF-CPCs in the PM. CPCs in N-cadherin mutant embryos were observed to be less proliferative and undergo premature differentiation in the PM. Notably, the phenotype of N-cadherin deficiency could be partially rescued by activating Wnt signaling, suggesting a delicate functional interaction between the adhesion role of N-cadherin and Wnt signaling in the early PM microenvironment. This study suggests a new mechanism for the early renewal of AHF progenitors where N-cadherin provides additional adhesion for progenitor cells in the PM, thereby allowing Wnt paracrine signals to expand the cells without premature differentiation.  相似文献   

10.
11.
12.
13.
The high occurrence of cardiac disease in the Western world has driven clinicians and cardiovascular biologists to look for alternative strategies to treat patients. A challenging approach is the use of stem cells to repair the heart, in itself an inspiring thought. In the past 10 years, stem cells from different sources have been under intense investigation and, as a result, a multitude of studies have been published on the identification, isolation, and characterization, of cardiovascular progenitor cells and repair in different animal models. However, relatively few cardiovascular progenitor populations have been identified in human hearts, including, but not limited to, cardiosphere-derived cells, cKit+ human cardiac stem cells , Isl1+ cardiovascular progenitors, and, in our lab, cardiomyocyte progenitor cells (CMPCs). Here, we aim to provide a comprehensive summary of the past findings and present challenges for future therapeutic potential of CMPCs.  相似文献   

14.
Cardiomyocytes are known to differentiate spontaneously from embryonic stem (ES) cells when they formed aggregates, so called "embryoid bodies", in the presence of serum. In this study, we explored the induction of cardiomyocytes from mouse ES cells in chemically defined serum-free medium by using a mesoderm-inducing factor, BMP4. Comparing the different inductive methods, we found a candidate cell surface marker, N-cadherin, for cardiomyocyte progenitors from ES cells. N-cadherin-positive cells highly expressed cardiogenic markers, Nkx2.5, Tbx5, and Isl1, and showed a high differentiation rate into cardiomyocyte lineage. These results indicate that N-cadherin can be a useful cell surface marker for the progenitors of cardiomyocyte differentiated from ES cells in the serum-free culture.  相似文献   

15.
The cardiovascular system consists of many cell types with distinct embryonic origins. Cells from an Islet1 (Isl1)-expressing progenitor population make a substantial contribution to the developing heart. We reasoned that cells derived from Isl1-expressing progenitors might contribute more widely to the cardiovascular system. We show that cells derived from an Isl1-expressing progenitor lineage make a wide contribution to the systemic vasculature and that embryos conditionally deficient for Rac1 within this cell population develop defects in the non-cardiac vasculature. These data define new roles for Isl1 in the developing embryo and demonstrate a contribution of Isl1-expressing progenitors to vascular endothelium in vivo.  相似文献   

16.
17.
Objectives: Many kinds of cardiac progenitor cell populations have been identified, including c‐kit+, Nkx2.5+s and GATA4+ cells. However, these progenitors have limited ability to differentiate into different cardiac cell types. Recently, a new kind of cardiac progenitor cell named the multipotent Isl1+ cardiovascular progenitor (MICPs) has been identified, which also expresses Nkx2.5, GATA4, CD34 and Flk1. Materials and methods: In this study, we have isolated and characterized MICPs from chicken embryonic heart tissues using immunofluorescence and PCR. Results: Results shown that they express markers of cardiac progenitor cells, with high clonality. They have the ability to self‐renew and can give rise to three types of heart cell in vitro. Conclusions: Myocytes, smooth muscle cells and endothelial cells. Our work provides evidence for a developmental paradigm of the heart, that endothelial and muscle lineage diversification arises from multipotent cardiac progenitor cells. Existence of these cells provides a new opportunity for myocardial injury repair.  相似文献   

18.
Many cell types are currently being studied as potential sources of cardiomyocytes for cell transplantation therapy to repair and regenerate damaged myocardium. The question remains as to which progenitor cell represents the best candidate. Bone marrow-derived cells and endothelial progenitor cells have been tested in clinical studies. These cells are safe, but their cardiogenic potential is controversial. The functional benefits observed are probably due to enhanced angiogenesis, reduced ventricular remodeling, or to cytokine-mediated effects that promote the survival of endogenous cells. Human embryonic stem cells represent an unlimited source of cardiomyocytes due to their great differentiation potential, but each step of differentiation must be tightly controlled due to the high risk of teratoma formation. These cells, however, confront ethical barriers and there is a risk of graft rejection. These last two problems can be avoided by using induced pluripotent stem cells (iPS), which can be autologously derived, but the high risk of teratoma formation remains. Cardiac progenitor cells have the advantage of being cardiac committed, but important questions remain unanswered, such as what is the best marker to identify and isolate these cells? To date the different markers used to identify adult cardiac progenitor cells also recognize progenitor cells that are outside the heart. Thus, it cannot be determined whether the cardiac progenitor cells identified in the adult heart represent resident cells present since fetal life or extracardiac cells that colonized the heart after cardiac injury. Developmental studies have identified markers of multipotent progenitors, but it is unknown whether these markers are specific for adult progenitors when expressed in the adult myocardium. Cardiac regeneration is dependent on the stability of the cells transplanted into the host myocardium and on the electromechanical coupling with the endogenous cells. Finally, the promotion of endogenous regenerative processes by mobilizing endogenous progenitors represents a complementary approach to cell transplantation therapy.  相似文献   

19.
During early embryogenesis, heart and skeletal muscle progenitor cells are thought to derive from distinct regions of the mesoderm (i.e. the lateral plate mesoderm and paraxial mesoderm, respectively). In the present study, we have employed both in vitro and in vivo experimental systems in the avian embryo to explore how mesoderm progenitors in the head differentiate into both heart and skeletal muscles. Using fate-mapping studies, gene expression analyses, and manipulation of signaling pathways in the chick embryo, we demonstrate that cells from the cranial paraxial mesoderm contribute to both myocardial and endocardial cell populations within the cardiac outflow tract. We further show that Bmp signaling affects the specification of mesoderm cells in the head: application of Bmp4, both in vitro and in vivo, induces cardiac differentiation in the cranial paraxial mesoderm and blocks the differentiation of skeletal muscle precursors in these cells. Our results demonstrate that cells within the cranial paraxial mesoderm play a vital role in cardiogenesis, as a new source of cardiac progenitors that populate the cardiac outflow tract in vivo. A deeper understanding of mesodermal lineage specification in the vertebrate head is expected to provide insights into the normal, as well as pathological, aspects of heart and craniofacial development.  相似文献   

20.
The embryonic heart is composed of two cell layers: the myocardium, which contributes to cardiac muscle tissue, and the endocardium, which covers the inner lumen of the heart. Whereas significant progress has been made toward elucidating the embryonic origins of the myocardium, the origins of the endocardium remain unclear. Here, we have identified an endocardium-forming field medial to the cardiac crescent, in a continuum with the endothelial plexus. In vivo live imaging of quail embryos revealed that endothelial progenitors, like second/anterior heart field progenitors, migrate to, and enter, the heart from the arterial pole. Furthermore, embryonic endothelial cells implanted into the cardiac crescent contribute to the endocardium, but not to the myocardium. In mouse, lineage analysis focusing on endocardial cells revealed an unexpected heterogeneity in the origins of the endocardium. To gain deeper insight into this heterogeneity, we conditionally ablated Flk1 in distinct cardiovascular progenitor populations; FLK1 is required in vivo for formation of the endocardium in the Mesp1 and Tie2 lineages, but not in the Isl1 lineage. Ablation of Flk1 coupled with lineage analysis in the Isl1 lineage revealed that endothelium-derived Isl1(-) endocardial cells were significantly increased, whereas Isl1(+) endocardial cells were reduced, suggesting that the endocardium is capable of undergoing regulative compensatory growth. Collectively, our findings demonstrate that the second heart field contains distinct myocardial and endocardial progenitor populations. We suggest that the endocardium derives, at least in part, from vascular endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号