首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
近年来,越来越多的研究发现生物钟系统在许多生理活动中,包括心血管、内分泌、免疫、生殖等系统的生理,都起着重要作用。随着2006年卵巢生物钟的发现,生殖系统生物钟成为新的研究热点。研究发现卵巢生物钟不仅影响排卵,而且还控制类固醇激素的释放。卵巢生物钟属外围生物钟,受到中央生物钟(SCN)神经内分泌信号的调控。还发现下丘脑-垂体-卵巢(HPG)轴上各水平都存在生物钟,HPG轴上各生物钟失同步影响生殖能力,这可能导致一些疾病发生的病因。本文总结近十年的关于卵巢生物钟的研究,列举哺乳动物卵巢生物钟存在的证据,并阐述生物钟在雌鼠正常生殖生理过程,及在生殖系统疾病病理过程中的作用及其分子机制。  相似文献   

2.
生物钟基因研究进展   总被引:6,自引:1,他引:6  
昼夜节律是以大约24 h为周期波动的生物现象.这些节律包括血压、体温、激素水平、血中免疫细胞的数量、睡眠觉醒周期循环等.基因水平上的昼夜节律研究还只是刚起步,介绍不同物种控制昼夜行为的共同基因(如period 、timless 、clock基因等)的研究进展,特别是一些有关调控昼夜节律基因的转录因子的研究.同时讨论果蝇和人类生物钟调节的共同分子机制.  相似文献   

3.
松果体昼夜节律生物钟分子机制的研究进展   总被引:3,自引:0,他引:3  
Wang GQ  Tong J 《生理科学进展》2004,35(3):210-214
在各种非哺乳类脊椎动物中 ,松果体起着中枢昼夜节律振荡器的作用。近来 ,在鸟类松果体中相继发现了几种钟基因 ,如Per、Cry、Clock和Bmal等 ,其表达的时间变化规律与哺乳类视交叉上核 (SCN)的非常相似。钟的振荡由其自身调控反馈环路的转录和翻译组成 ,鸟类松果体和哺乳类SCN似乎具有共同的钟振荡基本分子构架 ;若干钟基因产物作为正向或负向调节子影响钟的振荡 ;昼夜性的控时机制同时也需要翻译后事件的参与。这些过程对钟振荡器的稳定性和 /或钟导引的光输入通路有着重要的调控作用  相似文献   

4.
哺乳动物昼夜节律的产生与生物钟基因的周期性表达密切相关.Bmall、Clock、Per和Cry是研究最为广泛的核心生物钟基因.肾脏在维持机体体液平衡和血压稳态方面发挥重要作用,其多数生理功能均呈现出一定的昼夜节律性,如动脉血压的调节、肾血流量的维持、肾小球滤过率的调控,以及水的重吸收和钠的排泄等都会随昼夜变化而产生节律...  相似文献   

5.
蓝藻是具有内源性生物钟的简单生物.虽然蓝藻生物钟具有跟真核生物同样的基础特征,但其相关基因和蛋白质与真核生物没有同源性.蓝藻生物钟的核心是kai基因簇及其编码的蛋白KaiA,KaiB和KaiC.这三种Kai蛋白相互作用调节KaiC的磷酸化状态,从而产生昼夜节律信息.KaiC的磷酸化循环是昼夜节律的起博器,调控包括kai基因在内的相关基因的节律性表达.组氨酸蛋白激酶的磷酸化传递可将环境信息输入和将节律信息输出生物钟核心.  相似文献   

6.
在12h光照、12h黑暗交替(Light-Dark; LD)光制下,研究分析了褪黑素和皮质醇水平在鳜血清中的昼夜变化规律,以及13个生物钟基因(Arntl1、Clock、Cry1a、Cry3、Cry-dash、Npas2、Npas4、Nr1d1、Nr1d2、Per1、Per3、Rora和Tim)在鳜(Siniperca chuatsi)肝脏和心脏中的昼夜表达规律。试验在一昼夜内的ZT0(06:00)、ZT3(09:00),ZT6(12:00),ZT9(15:00),ZT12(18:00),ZT15(21:00),ZT18(24:00),ZT21(03:00,2nd d),ZT24(06:00,2nd d) (Zone time,ZT) 9个时间点随机抽取3尾鳜采集其血清、肝脏和心脏。经SPSS 单因素方差分析和Matlab余弦分析,结果显示: 鳜血清中褪黑素和皮质醇含量均呈现出昼夜节律性振荡,褪黑素含量白天显著降低(P0.05),夜间显著上升,皮质醇含量白天缓慢降低,夜间ZT15(21:00)-ZT18(24:00)显著升高,随后开始缓慢降低; 两种激素最低相位都为ZT15(21:00)。在13个生物钟基因中,Cry-dash、Npas4、Nr1d1、Per1和Tim 5个基因在鳜肝脏内具有明显的昼夜节律性,其中Npas4、Nr1d1、Per1、Tim的表达规律相似,皆呈现出光照阶段表达降低,黑暗阶段表达升高的趋势; 但Cry-dash则表现出光照阶段先升高后降低,黑暗阶段先降低后升高的规律。在鳜心脏中,Arntl1、Clock、Cry1a、Npas2、Nr1d1、Nr1d2、Per3、Rora和Tim 9个基因都表现出明显的昼夜节律,表达趋势分为两种: Arntl1、Clock、Nr1d2的表达量在光照阶段降低,黑暗阶段升高; 而Cry1a、Npas2、Nr1d1、Per3、Rora和Tim的表达量在ZT0(06:00)-ZT15(21:00)持续低水平,ZT15(21:00)-ZT18(24:00)表达量显著上升,ZT18(24:00)-ZT21(03:00)表达量降低。研究结果表明: 生物钟基因在鳜肝脏和心脏中所表达的昼夜节律不同。  相似文献   

7.
《生理学报》2021,73(5):734-744
生物钟(circadian clock)是机体内在的自主性计时系统,包括视交叉上核(suprachiasmatic nucleus, SCN)中枢生物钟与各组织外周生物钟。分子生物钟的核心机制包括CLOCK/BMAL1二聚体诱导抑制因子CRYs和PERs的转录,CRYs/PERs复合物反馈抑制前者转录活性,进而使这些生物钟核心因子以及节律输出基因的转录水平呈24 h振荡的反馈调节核心环路,以及REV-ERBα和RORα调控BMAL1转录的补充环路。机体大约80%的蛋白编码基因表达呈现明显的昼夜节律性特征,生物钟系统使生物能够适应地球自转所产生的昼夜节律(近日节律),使机体的代谢平衡与能量相互协同。生物钟与代谢稳态相互依存、互为基础,使机体能够高效利用能量,协同机体不同组织,快速适应内外环境变化。肝脏作为机体代谢的中枢器官,其进行的各种生理活动几乎都受到生物钟的控制。生物钟与肝脏代谢调控之间存在多重交互调控机制,两者的交互平衡失调是代谢性疾病的高风险因素。本文主要就肝脏的糖、脂和蛋白质代谢的节律性调控进行了综述,并强调了线粒体功能的振荡,讨论了肝脏代谢对生物钟的反馈调节,并对生物钟研究方法和应用进行展望。  相似文献   

8.
昆虫生物钟分子调控研究进展   总被引:1,自引:2,他引:1  
昆虫生物钟节律的研究是人类了解生物节律的重要途径。昆虫在生理和行为上具有广泛的节律活动,如运动、睡眠、学习记忆、交配、嗅觉等节律活动,其中昼夜活动行为节律的研究广泛而深入。昆虫乃至高等动物普遍具有保守的昼夜节律系统,昼夜生物钟节律主要包括输入系统:用于接受外界光和温度等环境信号并传入核心振荡器,使得生物时钟与环境同步;核心时钟系统:自我维持的昼夜振荡器;输出系统:将生物钟产生的信号传递出去而控制生物行为和生理的节律变化。早期分子和遗传学研究主要关注昼夜节律振荡器的分子机制及神经生物学,阐明了昼夜生物钟节律的主要分子机制及相关神经网络。最近更多的研究关注生物钟信号是如何输入和输出。本文以果蝇运动节律的相关研究为主要内容,围绕生物钟输入系统、振荡器、输出系统这3个组成部分对昆虫生物钟研究进展进行总结。  相似文献   

9.
家蚕昼夜节律生物钟基因的生物信息学分析   总被引:1,自引:0,他引:1  
昼夜节律是最普遍的生物节律现象,受遗传基因调控,其分子机制在黑腹果蝇Drosophila melanogaster中有较为深入的研究,在其他昆虫中的研究相对较少。家蚕Bombyx mori的滞育是对昼夜节律授时因子响应的一种现象,可作为研究的参照。通过电子克隆的方法获得了家蚕生物钟基因Bmvri,Bmcyc,Bmtim2,Bmpdp完整的开放阅读框(ORF)序列,以及Bmclk基因的ORF片段,并对上述基因及其表达产物进行了结构分析、染色体定位和系统的分子进化分析,根据这些基因及其表达产物的结构特征结合现有的数据资源,整合了家蚕昼夜节律生物钟反馈环路。  相似文献   

10.
地球上绝大多数生物的生命活动都有与地球自转24h周期相一致的节律,由这些生物自身的计时系统,即生物钟来控制。人体的各种组织都有自己的生物钟,而主控生物钟位于脑中的下丘脑视交叉上核(简称SCN),协调和统一外周生物钟的节律。生物钟由复杂的反馈回路组成,其中基因的活性周期性地振荡,形成时间信号。人眼中有2类感光细胞,分别接收视觉信号和感知光线强度的周期性变化。其中后一种信号被用来校对生物钟。  相似文献   

11.
12.
生理和行为的昼夜节律性调控对健康生活是必需的。越来越多的流行病学和遗传学证据显示昼夜节律的破坏与代谢紊乱性疾病相关联。在分子水平上,昼夜节律受到时钟蛋白组成的转录一翻译负反馈环的调控。时钟蛋白通过以下两种途径调节代谢:首先,时钟蛋白作为转录因子直接调节一些代谢关键步骤的限速酶和代谢相关核受体的表达,其次作为代谢相关核受体的辅调节因子来激活或抑制其转录活性。虽然时钟蛋白对代谢途径的调节导致代谢物水平呈昼夜节律振荡,但是产生的代谢物反过来又可以影响昼夜节律钟基因的表达,进而影响昼夜节律钟。深入研究昼夜节律钟与代谢的交互调节可能为治疗某些代谢紊乱性疾病提供新的治疗方案。  相似文献   

13.
14.
食物信号钟     
生物钟是指生物体自身具有的一种自主时间调控机制,这种机制能使生物体感知并适 应环境中的光、食物和温度等周期信号.限时饮食动物能预期饮食时间,并表现出食物预期 性活动、体温上升以及皮质酮分泌等.这些食物预期性节律被认为是受食物信号钟(FEC)控 制的.研究表明,食物信号钟可能是由一个或者多个整合在一起的震荡子组成的生理结构, 它控制着各种食物信号相关的生理节律.本文综述了食物信号钟存在的可能位点、与其相关 的生物钟基因以及参与生物钟信号输入输出相关的神经化学信号通路.  相似文献   

15.
Abstract: Total RNA from autotrophic Chlamydomonas reinhardtii cultures grown in constant dim light and 17 °C constant temperature was subjected to Northern blot analyses. The mRNAs for cytochrome c , β-tubulin, HSP70B (a chloroplastic heat shock protein of the 70 kD family), chloroplastic fructose-bisphosphate aldolase, and GAS3 (a "gamete-specific" protein of unknown function with high expression in gametes but low expression in vegetative cells) each exhibit a clear circadian rhythm in abundance. The rhythms differ significantly in phase and amplitude. The findings show that the genes for cytochrome c and β-tubulin indeed are regulated by the circadian clock, as previously suggested. Experiments with cultures grown at 27 °C instead of 17 °C further revealed that the rhythms in mRNA abundance for HSP70B, chloroplastic aldolase, and GAS3 also occur with a similar period at the higher temperature. Thus, the rhythms conform to the criterion of temperature compensation for the period and therefore represent true circadian rhythms. In contrast, the combined amount of mRNA for ubiquitin 52 amino acid fusion protein and ubiquitin 78 to 81 amino acid fusion protein stays constant under both temperature conditions. Because the combined amount of mRNA for the ubiquitin fusion proteins was previously shown to cycle under diurnal conditions when cell division activity is high, our data suggest a regulation of these genes by the cell division cycle and not the circadian clock. In summary, our data, together with several other reports, suggest that the circadian clock regulates many but not all genes in Chlamydomonas reinhardtii.  相似文献   

16.
硫化氢(hydrogen sulfide, H_2S)是继一氧化氮(nitric oxide, NO)与一氧化碳(carbon oxide, CO)之后的第3种气体信号分子,在动植物中均发挥着重要的生理功能。生物钟是生物体的内在计时器,对动植物适应环境和生长发育至关重要。鉴于H_2S与生物钟调控的生理过程有较大的相关性,本文以拟南芥(Arabidopsis thaliana)为实验材料,对二者之间的关系进行了探索。结果发现,外源NaHS(H_2S供体)处理能够上调生物钟相关基因CCA1(circadian clock associated 1)和PRR9(pseudo-response regulator 9)的表达,而且在H_2S生成关键酶编码基因缺失的双突变体lcd/des1中,CCA1与PRR9的峰值表达时间明显滞后。CBFs(c-repeat binding factors)是受CCA1调控的冷胁迫响应基因,其表达也受H_2S的调控。lcd/des1中CBF1和CBF3的峰值表达时间延迟,同时在lcd/des1中CBF1、CBF2和CBF3都下调表达。lcd/des1幼苗对冷胁迫表现出更高的敏感性。本文也对拟南芥内源H_2S生成关键酶L-半胱氨酸脱硫基酶(L-cysteine desulfhydrase, LCD)与脱硫基酶1(desulfhydrase 1, DES1)编码基因的转录水平节律性进行了初步的探索。LCD的表达在1 d内未见明显的变化,而DES1的表达有明显的节律性,在早上8:00达到峰值。综上所述,H_2S能够通过调节CCA1与PRR9基因的表达调控生物钟,进而影响下游靶标CBFs基因的表达以增加拟南芥对冷胁迫的耐受性。  相似文献   

17.
Flowering symbolizes the transition of s plant from vegetative phase to reproductive phase and is controlled by fairly complex and highly coordinated regulatory pathways. Over the last decade, genetic studies in Arabidopsis have aided the discovery of many signaling components involved in these pathways. In this review, we discuss how the timing of flowering is regulated by photoperiod and the involvement of light perception and the circadian clock in this process. The specific regulatory mechanisms on CONSTANS expression and CONSTANS stability by the circadian clock and photoreceptors are described in detail. In addition, the roles of CONSTANS, FLOWERING LOCUS T, and several other light signaling and circadian-dependent components in photoperiodic flowering are also highlighted.  相似文献   

18.
Flowering symbolizes the transition of a plant from vegetative phase to reproductive phase and is controlled by fairly complex and highly coordinated regulatory pathways. Over the last decade, genetic studies in Arabidopsis have aided the discovery of many signaling components involved in these pathways. In this review, we discuss how the timing of flowering is regulated by photoperiod and the involvement of light perception and the circadian clock in this process. The specific regulatory mechanisms on CONSTANS expression and CONSTANS stability by the circadian clock and photoreceptors are described in detail. In addition, the roles of CONSTANS, FLOWERING LOCUS T, and several other light signaling and circadiandependent components in photoperiodic flowering are also highlighted.  相似文献   

19.
Alterations in the circadian system are characteristic of aging on Earth. With the decline in physiological processes due to aging, several health concerns including vision loss, cardiovascular disorders, cognitive impairments, and muscle mass loss arise in elderly populations. Similar health risks are reported as “red flag” risks among astronauts during and after a long-term Space exploration journey. However, little is known about the common molecular alterations underlying terrestrial aging and space-related aging in astronauts, and controversial conclusions have been recently reported. In light of the regulatory role of the circadian clock in the maintenance of human health, we review here the overlapping role of the circadian clock both on aging on Earth and spaceflight with a focus on the four most affected systems: visual, cardiovascular, central nervous, and musculoskeletal systems. In this review, we briefly introduce the regulatory role of the circadian clock in specific cellular processes followed by alterations in those processes due to aging. We next summarize the known molecular alterations associated with spaceflight, highlighting involved clock-regulated genes in space flown Drosophila, nematodes, small mammals, and astronauts. Finally, we discuss common genes that are altered in terms of their expression due to aging on Earth and spaceflight. Altogether, the data elaborated in this review strengthen our hypothesis regarding the timely need to include circadian dysregulation as an emerging hallmark of aging on Earth and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号