首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3’untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3’ UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3’UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3’UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3’ UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity.  相似文献   

2.
The genome of influenza A virus (IAV) consists of eight unique viral RNA segments. This genome organization allows genetic reassortment between co-infecting IAV strains, whereby new IAVs with altered genome segment compositions emerge. While it is known that reassortment events can create pandemic IAVs, it remains impossible to anticipate reassortment outcomes with pandemic prospects. Recent research indicates that reassortment is promoted by a viral genome packaging mechanism that delivers the eight genome segments as a supramolecular complex into the virus particle. This finding holds promise of predicting pandemic IAVs by understanding the intermolecular interactions governing this genome packaging mechanism. Here, we critically review the prevailing mechanistic model postulating that IAV genome packaging is orchestrated by a network of intersegmental RNA–RNA interactions. Although we find supporting evidence, including segment-specific packaging signals and experimentally proposed RNA–RNA interaction networks, this mechanistic model remains debatable due to a current shortage of functionally validated intersegmental RNA–RNA interactions. We speculate that identifying such functional intersegmental RNA–RNA contacts might be hampered by limitations of the utilized probing techniques and the inherent complexity of the genome packaging mechanism. Nevertheless, we anticipate that improved probing strategies combined with a mutagenesis-based validation could facilitate their discovery.  相似文献   

3.
Reoviruses are important human, animal and plant pathogens having 10–12 segments of double-stranded genomic RNA. The mechanisms controlling the assortment and packaging of genomic segments in these viruses, remain poorly understood. RNA–protein and RNA–RNA interactions between viral genomic segment precursors have been implicated in the process. While non-structural viral RNA-binding proteins, such as avian reovirus σNS, are essential for virus replication, the mechanism by which they assist packaging is unclear. Here we demonstrate that σNS assembles into stable elongated hexamers in vitro, which bind single-stranded nucleic acids with high affinity, but little sequence specificity. Using ensemble and single molecule fluorescence spectroscopy, we show that σNS also binds to a partially double-stranded RNA, resulting in gradual helix unwinding. The hexamer can bind multiple RNA molecules and exhibits strand-annealing activity, thus mediating conversion of metastable, intramolecular stem-loops into more stable heteroduplexes. We demonstrate that the ARV σNS acts as an RNA chaperone facilitating specific RNA–RNA interactions between genomic precursors during segment assortment and packaging.  相似文献   

4.
Bluetongue virus (BTV) is the ‘type’ species of the genus Orbivirus within the family Reoviridae. The BTV genome is composed of ten linear segments of double-stranded RNA (dsRNA), each of which codes for one of ten distinct viral proteins. Previous phylogenetic comparisons have evaluated variations in genome segment 3 (Seg-3) nucleotide sequence as way to identify the geographical origin (different topotypes) of BTV isolates. The full-length nucleotide sequence of genome Seg-3 was determined for thirty BTV isolates recovered in the eastern Mediterranean region, the Balkans and other geographic areas (Spain, India, Malaysia and Africa). These data were compared, based on molecular variability, positive-selection-analysis and maximum-likelihood phylogenetic reconstructions (using appropriate substitution models) to 24 previously published sequences, revealing their evolutionary relationships. These analyses indicate that negative selection is a major force in the evolution of BTV, restricting nucleotide variability, reducing the evolutionary rate of Seg-3 and potentially of other regions of the BTV genome. Phylogenetic analysis of the BTV-4 strains isolated over a relatively long time interval (1979–2000), in a single geographic area (Greece), showed a low level of nucleotide diversity, indicating that the virus can circulate almost unchanged for many years. These analyses also show that the recent incursions into south-eastern Europe were caused by BTV strains belonging to two different major-lineages: representing an ‘eastern’ (BTV-9, -16 and -1) and a ‘western’ (BTV-4) group/topotype. Epidemiological and phylogenetic analyses indicate that these viruses originated from a geographic area to the east and southeast of Greece (including Cyprus and the Middle East), which appears to represent an important ecological niche for the virus that is likely to represent a continuing source of future BTV incursions into Europe.  相似文献   

5.
6.
Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus which is transmitted by blood-feeding gnats to wild and domestic ruminants, causing high morbidity and often high mortality. Partly due to this BTV has been in the forefront of molecular studies for last three decades and now represents one of the best understood viruses at the molecular and structural levels. BTV, like the other members of the Reoviridae family is a complex non-enveloped virus with seven structural proteins and a RNA genome consisting of 10 dsRNA segments of different sizes. In virus infected cells, three other virus encoded nonstructural proteins are synthesized. Significant recent advances have been made in understanding the structure–function relationships of BTV proteins and their interactions during virus assembly. By combining structural and molecular data it has been possible to make progress on the fundamental mechanisms used by the virus to invade, replicate in, and escape from, susceptible host cells. Data obtained from studies over a number of years have defined the key players in BTV entry, replication, assembly and egress. Specifically, it has been possible to determine the complex nature of the virion through three dimensional structure reconstructions; atomic structure of proteins and the internal capsid; the definition of the virus encoded enzymes required for RNA replication; the ordered assembly of the capsid shell and the protein sequestration required for it; and the role of three NS proteins in virus replication, assembly and release. Overall, this review demonstrates that the integration of structural, biochemical and molecular data is necessary to fully understand the assembly and replication of this complex RNA virus.  相似文献   

7.
Orbiviruses form the largest genus of the family Reoviridae consisting of at least 23 different virus species. One of these is the bluetongue virus (BTV) and causes severe hemorrhagic disease in ruminants, and is transmitted by bites of Culicoides midges. BTV is a non-enveloped virus which is released from infected cells by cell lysis and/or a unique budding process induced by nonstructural protein NS3/NS3a encoded by genome segment 10 (Seg-10). Presence of both NS3 and NS3a is highly conserved in Culicoides borne orbiviruses which is suggesting an essential role in virus replication. We used reverse genetics to generate BTV mutants to study the function of NS3/NS3a in virus replication. Initially, BTV with small insertions in Seg-10 showed no CPE but after several passages these BTV mutants reverted to CPE phenotype comparable to wtBTV, and NS3/NS3a expression returned by repair of the ORF. These results show that there is a strong selection for functional NS3/NS3a. To abolish NS3 and/or NS3a expression, Seg-10 with one or two mutated start codons (mutAUG1, mutAUG2 and mutAUG1+2) were used to generate BTV mutants. Surprisingly, all three BTV mutants were generated and the respective AUGMet→GCCAla mutations were maintained. The lack of expression of NS3, NS3a, or both proteins was confirmed by westernblot analysis and immunostaining of infected cells with NS3/NS3a Mabs. Growth of mutAUG1 and mutAUG1+2 virus in BSR cells was retarded in both insect and mammalian cells, and particularly virus release from insect cells was strongly reduced. Our findings now enable research on the role of RNA sequences of Seg-10 independent of known gene products, and on the function of NS3/NS3a proteins in both types of cells as well as in the host and insect vector.  相似文献   

8.
9.
Bluetongue virus (BTV) is a midge-borne member of the genus Orbivirus that causes an eponymous debilitating livestock disease of great agricultural impact and which has expanded into Europe in recent decades. Reassortment among the ten segments comprising the double-stranded (ds) RNA genome of BTV has played an important role in generating the epidemic strains of this virus in Europe. In this study, we investigated the dynamics of BTV genome segment evolution utilizing time-structured data sets of complete sequences from four segments, totalling 290 sequences largely sampled from ruminant hosts. Our analysis revealed that BTV genome segments generally evolve under strong purifying selection and at substitution rates that are generally lower (mean rates of ~0.5–7 × 10−4 nucleotide substitutions per site, per year) than vector-borne positive-sense viruses with single-strand (ss) RNA genomes. These also represent the most robust estimates of the nucleotide substitution rate in a dsRNA virus generated to date. Additionally, we determined that patterns of geographic structure and times to most recent common ancestor differ substantially between each segment, including a relatively recent origin for the diversity of segment 10 within the past millennium. Together, these findings demonstrate the effect of reassortment to decouple the evolutionary dynamics of BTV genome segments.  相似文献   

10.
Matsuo E  Roy P 《PloS one》2011,6(11):e27702

Background

Bluetongue virus (BTV) protein, VP1, is known to possess an intrinsic polymerase function, unlike rotavirus VP1, which requires the capsid protein VP2 for its catalytic activity. However, compared with the polymerases of other members of the Reoviridae family, BTV VP1 has not been characterized in detail.

Methods and Findings

Using an in vitro polymerase assay system, we demonstrated that BTV VP1 could synthesize the ten dsRNAs simultaneously from BTV core-derived ssRNA templates in a single in vitro reaction as well as genomic dsRNA segments from rotavirus core-derived ssRNA templates that possess no sequence similarity with BTV. In contrast, dsRNAs were not synthesized from non-viral ssRNA templates by VP1, unless they were fused with specific BTV sequences. Further, we showed that synthesis of dsRNAs from capped ssRNA templates was significantly higher than that from uncapped ssRNA templates and the addition of dinucleotides enhanced activity as long as the last base of the dinucleotide complemented the 3′ -terminal nucleotide of the ssRNA template.

Conclusions

We showed that the polymerase activity was stimulated by two different factors: cap structure, likely due to allosteric effect, and dinucleotides due to priming. Our results also suggested the possible presence of cis-acting elements shared by ssRNAs in the members of family Reoviridae.  相似文献   

11.
The genomic viral RNA (vRNA) segments of influenza A virus contain specific packaging signals at their termini that overlap the coding regions. To further characterize cis-acting signals in segment 7, we introduced synonymous mutations into the terminal coding regions. Mutation of codons that are normally highly conserved reduced virus growth in embryonated eggs and MDCK cells between 10- and 1,000-fold compared to that of the wild-type virus, whereas similar alterations to nonconserved codons had little effect. In all cases, the growth-impaired viruses showed defects in virion assembly and genome packaging. In eggs, nearly normal numbers of virus particles that in aggregate contained apparently equimolar quantities of the eight segments were formed, but with about fourfold less overall vRNA content than wild-type virions, suggesting that, on average, fewer than eight segments per particle were packaged. Concomitantly, the particle/PFU and segment/PFU ratios of the mutant viruses showed relative increases of up to 300-fold, with the behavior of the most defective viruses approaching that predicted for random segment packaging. Fluorescent staining of infected cells for the nucleoprotein and specific vRNAs confirmed that most mutant virus particles did not contain a full genome complement. The specific infectivity of the mutant viruses produced by MDCK cells was also reduced, but in this system, the mutations also dramatically reduced virion production. Overall, we conclude that segment 7 plays a key role in the influenza A virus genome packaging process, since mutation of as few as 4 nucleotides can dramatically inhibit infectious virus production through disruption of vRNA packaging.  相似文献   

12.
A hypothetical evolutionary pathway from a ribozyme to a catalytic RNA–protein complex (RNP) is proposed and examined. In this hypothesis for an early phase of molecular evolution, one RNA–RNA interaction in the starting ribozyme is replaced with an RNA–protein interaction via two intermediary stages. At each stage, the original RNA–RNA interaction and a newly introduced RNA–protein interaction are designed to coexist. The catalytic RNPs corresponding to the intermediary stages were constructed by employing the Tetrahymena ribozyme together with molecular modeling. Analyses of the RNPs indicate that the protein can fully replace the original role of the RNA–RNA interaction in the starting ribozyme and that the association of a protein with a ribozyme might be beneficial for improving the ribozymatic activity.  相似文献   

13.
The initial assembly product of bacteriophage ?6, the procapsid, undergoes major structural transformation during the sequential packaging of its three segments of single-stranded RNA. The procapsid, a compact icosahedrally symmetric particle with deeply recessed vertices, expands to the spherical mature capsid, increasing the volume available to accommodate the genome by 2.5-fold. It has been proposed that expansion and packaging are linked, with each stage in expansion presenting a binding site for a particular RNA segment. To investigate procapsid transformability, we induced expansion by acidification, heating, and elevated salt concentration. Cryo-electron microscopy reconstructions after all three treatments yielded the same partially expanded particle. Analysis by cryo-electron tomography showed that all vertices of a given capsid were either in a compact or an expanded state, indicating a highly cooperative transition. To benchmark the mature capsid, we analyzed filled (in vivo packaged) capsids. When these particles were induced to release their RNA, they reverted to the same intermediate state as expanded procapsids (intermediate 1) or to a second, further expanded state (intermediate 2). This partial reversibility of expansion suggests that the mature spherical capsid conformation is obtained only when sufficient outward pressure is exerted by packaged RNA. The observation of two intermediates is consistent with the proposed three-step packaging process. The model is further supported by the observation that a mutant capable of packaging the second RNA segment without previously packaging the first segment has enhanced susceptibility for switching spontaneously from the procapsid to the first intermediate state.  相似文献   

14.
Sun L  Suzuki N 《RNA (New York, N.Y.)》2008,14(12):2557-2571
Mycoreovirus 1 (MyRV1), a member of the Reoviridae family possessing a genome consisting of 11 dsRNA segments (S1–S11), and the prototype hypovirus (CHV1-EP713) of the Hypoviridae family, which is closely related to the monopartite picorna-like superfamily with a ssRNA genome, infect the chestnut blight fungus and cause virulence attenuation and distinct phenotypic alterations in the host. Here, we present evidence for reproducible induction of intragenic rearrangements of MyRV1 S6 and S10, mediated by the multifunctional protein p29 encoded by CHV1. S6 and S10 underwent an almost full-length ORF duplication (S6L) and an internal deletion of three-fourths of the ORF (S10ss). No significant influence on symptom induction in the fungal host was associated with the S6L rearrangement. In contrast, S10-encoded VP10, while nonessential for MyRV1 replication, was shown to contribute to virulence reduction and reduced growth of aerial mycelia. Furthermore, p29 was found to copurify with MyRV1 genomic RNA and bind to VP9 in vitro and in vivo, suggesting direct interactions of p29 with the MyRV1 replication machinery. This study provides the first example of a viral factor involved in RNA genome rearrangements of a different virus and shows its usefulness as a probe into the mechanism of replication and symptom expression of a heterologous virus.  相似文献   

15.
16.
The vast majority of viruses consist of a nucleic acid surrounded by a protective icosahedral protein shell called the capsid. During viral infection of a host cell, the timing and efficiency of the assembly process is important for ensuring the production of infectious new progeny virus particles. In the class of single-stranded RNA (ssRNA) viruses, the assembly of the capsid takes place in tandem with packaging of the ssRNA genome in a highly cooperative co-assembly process. In simple ssRNA viruses such as the bacteriophage MS2 and small RNA plant viruses such as STNV, this cooperative process results from multiple interactions between the protein shell and sites in the RNA genome which have been termed packaging signals. Using a stochastic assembly algorithm which includes cooperative interactions between the protein shell and packaging signals in the RNA genome, we demonstrate that highly efficient assembly of STNV capsids arises from a set of simple local rules. Altering the local assembly rules results in different nucleation scenarios with varying assembly efficiencies, which in some cases depend strongly on interactions with RNA packaging signals. Our results provide a potential simple explanation based on local assembly rules for the ability of some ssRNA viruses to spontaneously assemble around charged polymers and other non-viral RNAs in vitro.  相似文献   

17.
Bluetongue (BT), caused by Bluetongue virus (BTV), is an economically important disease affecting sheep, deer, cattle, and goats. Since 1998, a series of BT outbreaks have spread across much of southern and central Europe. To study why the epidemiology of the virus happens to change, it is important to fully know the mechanisms resulting in its genetic diversity. Gene mutation and segment reassortment have been considered as the key forces driving the evolution of BTV. However, it is still unknown whether intragenic recombination can occur and contribute to the process in the virus. We present here several BTV groups containing mosaic genes to reveal that intragenic recombination can take place between the virus strains and play a potential role in bringing novel BTV lineages.Bluetongue (BT) is an economically significant disease that seriously threatens sheep, some species of deer, and to a lesser extent cattle and goats. As a vector-borne viral disease of ruminants, BT is endemic in tropical and subtropical countries (46). However, a series of BT outbreaks have spread across much of southern and central Europe since 1998 (29). Thus, it is of great importance to fully understand the molecular basis driving the change of its epidemiology so as to prevent or limit future BT pandemics.Bluetongue virus (BTV), the pathogen of BT, belongs to the Orbivirus genus of the Reoviridae family (46). The virus has a segmented double-stranded RNA (dsRNA) genome that is packaged in a nonenveloped, icosahedral particle (46). Its 10 dsRNA segments encode 11 proteins, VP1 to VP7 (encoded by segments 1, 2, 3, 4, 6, 9, and 7, respectively), NS1 to SN3 (encoded by segments 5, 8, and 10, respectively), and NS3A (encoded by segment 10) (46). Two structural proteins, VP2 and VP5, form the outer layer of the virion particle and are responsible for cell attachment and virus entry (18, 31, 32), neutralizing epitope (14, 21), and virus virulence (36). Both of them are highly variable and generate 24 serotypes of the virus (44). The inner layers contain VP1, VP3, VP4, VP6, and VP7, and form the “core” of the BTV capsid. VP1 and VP6 are involved in RNA replication as the RNA-dependent RNA polymerase (54) and helicase/NTPase, respectively (49). VP7 forms the surface of the core and functions during the entry of the core into insect cells (44) and also can react with “core neutralizing” antibodies as a major serogroup-specific antigen (32, 44). These core proteins and two nonstructural proteins, NS1 and NS2, are thought to be relatively conservative, so that antigenic cross-reaction can take place between different BTV strains and serotypes, whereas NS3/N3a is more variable than the other nonstructural or core proteins (46).The genetic diversity and variation in sequences of different BTV genome segments were initially identified by RNA oligonucleotide fingerprint analysis of BTV field samples (47). Until now, reassortment and dynamic gene mutation, regarded as the key factors responsible for the genetic diversity of BTV, have been studied in details (46). The two mechanisms can result in both genetic drift and genetic shift and contribute to BTV evolution (47). It has been revealed that high-frequency genome segment reassortment occurs readily between different BTV serotypes (16). Thus, segment reassortment is an important factor in generation of genetic diversity in orbivirus populations in nature (45). In addition, it has been shown that homologous recombination can also play a role in the genetic diversity and evolution of some RNA viruses (24, 33) and bring on virulent variants of these viruses at last (8, 56). Although homologous recombination has been observed in rotavirus, a member of the Reoviridae (39, 40), it is still unknown whether the intragenic recombination can occur and play a role in the generation of genetic diversity in orbivirus populations.To determine whether homologous recombination shaped the evolution of BTV and to provide some insights into the recombination itself in the virus, we analyzed roughly 690 complete segments of BTV deposited in GenBank to see whether some of them underwent intragenic recombination event. Several BTV groups isolated at different time points and in different countries were found containing the same (or similar) mosaic segments, demonstrating that intragenic recombination had occurred in the field and that these viruses with mosaic segments had become prevailing strains. That is, intragenic recombination can play a potential role in generating genetic diversity of BTV and exert its influence on the change of BTV epidemiology.  相似文献   

18.
The smallest RNA segment (S10) of bluetongue virus (an orbivirus, family Reoviridae) encodes two closely related nonstructural proteins, the 229-amino-acid (aa) NS3 and the 216-aa NS3A. The proteins are found in glycosylated and nonglycosylated forms in infected cells (X. Wu, H. Iwata, S.-Y. Chen, R. W. Compans and P. Roy J. Virol. 66:7104–7112, 1992). The NS3/NS3A proteins have two hydrophobic domains (aa 118 to 141 and 162 to 182) and two potential asparagine-linked glycosylation sites (aa 63 and 150), one of which is located between the hydrophobic domains. To determine whether these features were used in the mature protein forms, we generated a series of mutants of the S10 gene and expressed them by using the vaccinia virus T7 polymerase transient-expression system. Our data indicate that both hydrophobic domains of NS3 span the cell membrane and that only the site at aa 150 is responsible for N-linked glycosylation of the NS3 proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号