首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport and capture of pollen in ~20% of all angiosperm families occurs in air and water. In other words, pollination is abiotic and occurs via the fluid media, not an animal vector. Whereas some early concepts considered abiotic pollination to be largely a stochastic phenomenon, there is sufficient evidence to indicate that wind pollination (i.e. anemophily) and water pollination (i.e. hydrophily) have deterministic features and are sophisticated fluid dynamic solutions to the problem of pollen release, dispersal, and capture.An abiotic pollination syndrome is defined in which there is spatial or temporal separation of carpellate and staminate flowers, which are drab, a reduction in perianth parts, stigmas and anthers are exposed to the fluid, and typically unclumped pollen may be produced in large amounts. Separate pollination syndromes are defined for anemophilous (i.e. wind-pollinated), ephydrophilous (i.e. surface-pollinated), and hydrophilous (i.e. submarine-pollinated) plants. Distinctions are based on habitat and physical conditions for pollination, pollen size, shape, and ultrastructure, morphology and ultrastructure of stigmas, and outcrossing rates. For example, anemophilous pollen are spherical and small, ephydrophilous pollen are spherical or reniform and large, while hydrophilous pollen are filiform (i.e. filamentous) or functionally filiform. The pollination mechanisms and mechanics associated with these syndromes reveals a strong evolutionary relationship between plant morphology and fluid dynamics.  相似文献   

2.
Hydrophytes comprise aquatic macrophytes from various taxa that are able to sustain and to complete their lifecycle in a flooded environment. Their ancestors, however, underwent adaptive processes to withstand drought on land and became partially or completely independent of water for sexual reproduction. Interestingly, the step backwards into the high-density aquatic medium happened independently several times in numerous plant taxa. For flowering plants, this submersed life-style is especially difficult as they need to erect their floral organs above the water surface to be pollinated. Moreover, fresh-water plants evolved the adaptive mechanism of heterophylly, which enabled them to switch between a submersed and an emersed leaf morphology. The plant hormone abscisic acid (ABA) is a key factor of heterophylly induction in aquatic plants and is a major switch between a submersed and emersed life. The mechanisms of ABA signal perception and transduction appear to be conserved throughout the evolution of basal plants to angiosperms and from terrestrial to aquatic plants. This review summarizes the interplay of environmental factors that act through ABA to orchestrate adaptation of plants to their aquatic environment.  相似文献   

3.
Numerous studies have examined the evolution of sexual systems in angiosperms, but few explore the interaction between these and the evolution of pollination mode. Wind pollination is often associated with unisexual flowers, but which evolved first and played a causative role in the evolution of the other is unclear. Thalictrum, meadow-rues (Ranunculaceae), provides a unique opportunity to study the evolution of these traits because it contains insect and wind pollination and four sexual systems. We used a phylogenetic approach to reconstruct ancestral states for sexual system, pollination mode, and geographic distribution in Thalictrum, and tested for correlations to uncover the factors involved in the evolution of unisexuality and wind pollination. Our results show that dioecy, andro- and gynomonoecy evolved at least twice from hermaphroditism. Wind pollination, unisexual flowers, and New World distribution were all significantly correlated. Wind pollination may have evolved early in the genus, followed by multiple losses and gains, and likely preceded the origin of unisexual flowers in several cases; we found no evidence for unisexual flowers evolving prior to wind pollination. Given a broad scale study showing the evolution of dioecy before wind pollination, our results from a finer scale analysis highlight that different evolutionary pathways are likely to occur throughout angiosperms.  相似文献   

4.
The rapid diversification and ecological dominance of the flowering plants beg the question "Why are there so many angiosperm species and why are they so successful?" A number of equally plausible hypotheses have been advanced in response to this question, among which the most widely accepted highlights the mutually beneficial animal-plant relationships that are nowhere better developed nor more widespread than among angiosperm species and their biotic vectors for pollination and dispersal. Nevertheless, consensus acknowledges that there are many other attributes unique to or characteristic of the flowering plants. In addition, the remarkable coevolution of the angiosperms and pollination/dispersal animal agents could be an effect of the intrinsic adaptability of the flowering plants rather than a primary cause of their success, suggesting that the search for underlying causes should focus on an exploration of the genetic and epigenetic mechanisms that might facilitate adaptive evolution and speciation. Here, we explore angiosperm diversity promoting attributes in their general form and draw particular attention to those that, either individually or collectively, have been shown empirically to favor high speciation rates, low extinction rates, or broad ecological tolerances. Among these are the annual growth form, homeotic gene effects, asexual/sexual reproduction, a propensity for hybrid polyploidy, and apparent "resistance" to extinction. Our survey of the literature suggests that no single vegetative, reproductive, or ecological feature taken in isolation can account for the evolutionary success of the angiosperms. Rather, we believe that the answer to Darwin's second "abominable mystery" lies in a confluence of features that collectively make the angiosperms unique among the land plants.  相似文献   

5.
Various hypotheses that seek to explain the rich species diversity of angiosperms relative to other seed plants are briefly mentioned or reviewed. Of these, the subset that relates angiosperm diversity in some way to the relationship between angiosperms and insects, particularly anthophilous insects, is here the object of attention. Specifically, I address and reject the possibility that the relationship between angiosperm diversification and insects, particularly those demonstrating a preference for flowers with derived floral characteristics associated with insect pollination, may be ruled out because of asynchronous patterns of diversification in the fossil record. New data on floral structure from the Turonian of the Atlantic Coastal Plain reveal a surprising diversity of floral characters in taxa bearing tricolpate and tricolporate-derived pollen. The characters and taxa that appear in these Turonian sediments suggest that rather specific modes of insect pollination, perhaps involving highly derived insect pollinators, already existed at 90 Ma. Given the observed rate of diversification of angiosperms during that time and the pattern of evolution in insects, including what can be inferred about the history of the Apidae, these new floral data suggest that hypotheses relating angiosperm diversity to highly specific pollinators are still valid in the context of fossil evidence. Even so, consistency with fossil evidence is not necessarily proof of these relationships. In any case, there may well be multiple causes of relatively high angiosperm species diversity and understanding the relative importance of each of these requires neontological as well as paleontological investigations. One promising approach is to work within the context of phylogenetic patterns with more fossil data.  相似文献   

6.
The Callitrichaceae are an aquatic family of dicots that include the single, geographically cosmopolitan genus Callitriche. Callitriche contains 40-50 terrestrial, amphibious, and obligately submersed species, and it is the only known genus in the plant kingdom with co-occurring aerial and hydrophilous pollination syndromes. Pollen morphology and ultrastructure were described for 13 Callitriche species using scanning electron and transmission electron microscopy. Representative taxa of each growth form were examined; these included three terrestrial species (C. deflexa, C. peploides, and C. nuttallii), nine amphibious species (C. brutia, C. cophocarpa, C. cophocarpa-stagnalis hybrid, C. cribrosa, C. hamulata, C. heterophylla var. heterophylla, C. lusitanica, C. marginata, and C. trochlearis), and one obligately submersed species (C. truncata). Of the amphibious taxa, C. heterophylla var. heterophylla and C. trochlearis had internal geitonogamy, a type of internal self-fertilization. Pollen from all taxa was spheroidal, small, intectate, and lacked well-defined apertures. Taxa primarily differed with respect to exine thickness, surface ornamentation, and the presence or absence of aperture-like regions. The pollen of terrestrial species, as well as that of C. marginata, had well-developed exines with thick sculptured and basal layers. In general, amphibious taxa produced pollen with distinct, but thinner, exines than that of terrestrial taxa. Pollen of the amphibious taxa with internal geitonogamy had a thicker basal layer than species without internal geitonogamy, whereas the overall exine was reduced in C. hamulata and absent in C. brutia and C. lusitanica. Pollen of the obligately submersed C. truncata also lacked an exine. These palynological data were correlated with growth habits and related pollination biologies, as well as with phylogenetic interpretations of Callitrichaceae. Exine reduction or loss has evolved at least twice in the family, and it is associated with aneuploid reduction in chromosome number.  相似文献   

7.
王芸芸  郝占庆 《生物多样性》2022,30(7):22065-349
性系统是被子植物繁育系统的核心, 决定着植物种群的遗传特征、进化方向与速度, 在种群动态、群落结构及生态系统的构建与维持中具有重要意义。本文回顾了被子植物性系统的发展历程及研究方向, 总结了近30年基于性系统研究的前沿科学问题, 包括性系统的多样性和进化、与其他功能性状的生态关联、沿环境梯度的分布格局及变化规律、与群落物种共存机制和群落动态的关系及其对干扰的响应。尽管有关植物性系统的研究已经延伸到生态学领域的诸多方面, 有力地推动了各方面的发展, 但仍有很多值得关注和需要着重研究的方向和问题。本文对未来基于植物性系统的研究方向等提出了展望, 并指出, 在当前全球气候变化背景下, 性系统可作为重要的功能性状应用于指导生物多样性保护和生态系统管理政策的制定。  相似文献   

8.
The hydrophilous seagrass Posidonia australis has a wide range of multilocus outcrossing rates (t), which vary from 0 to 0.89, with "apparent' outcrossing rates varying from 0 to 0.42 among the seven populations sampled. This pattern of outcrossing rate indicates that water pollination (hydrophily) is less uniform than wind pollination and more similar to animal pollination in its variability. Variation in levels of outcrossing between populations may be due to differences in water movement; for example, open bays have greater pollen dispersal and higher outcrossing rates. Considerable pollen movement within meadows was inferred from a high frequency of nonmaternal alleles in the pollen pool. The distribution of genetic diversity among populations (GST = 0.229) suggests moderate gene flow on the local scale. These results demonstrate that successful submarine cross-pollination occurs in the hydrophile P. australis, which has a diverse mating system with populations that range from predominantly inbred to predominantly outcrossed.  相似文献   

9.
 The Callitrichaceae are a monogeneric family of aquatic angiosperms comprising approximately 50 terrestrial, amphibious, and obligately submersed species. Callitriche is unique in being the only known genus with co-occurring aerial and underwater pollination systems. Mature pollen structure is correlated with growth habit, pollination biology, and phylogeny within the genus. In the present study, development of exineless pollen in the obligately submersed species Callitriche truncata was examined, with particular emphasis on the tetrad stage. Pollen ontogeny occurred rapidly and non-synchronously; tetrads, free microspores, and two-celled pollen grains were identified within the same anthers. Formation of the intine also occurred relatively early, during the tetrad stage. Tetrads were surrounded by a structurally distinct envelope, and its ultrastructure and histochemistry indicate that this callose-like envelope is in a transitional state. Reduction or complete loss of the exine has evolved at least twice in Callitrichaceae, and the new ontogenetic data indicate that exine loss evolves more quickly than the loss of callose. In addition, developmental information on exineless pollen in C. truncata coupled with other palynological data for the exine-bearing terrestrial and amphibious growth forms provide support for the hypothesis that underwater pollination has had a relatively recent origin in the family. Received January 2, 2001 Accepted March 27, 2001  相似文献   

10.
Although flowers, leaves, and stems of the angiosperms have understandably received more attention than roots, the growing root tips, or root apical meristems (RAMs), are organs that could provide insight into angiosperm evolution. We studied RAM organization across a broad spectrum of angiosperms (45 orders and 132 families of basal angiosperms, monocots, and eudicots) to characterize angiosperm RAMs and cortex development related to RAMs. Types of RAM organization in root tips of flowering plants include open RAMs without boundaries between some tissues in the growing tip and closed RAMs with distinct boundaries between apical regions. Epidermis origin is associated with the cortex in some basal angiosperms and monocots and with the lateral rootcap in eudicots and other basal angiosperms. In most angiosperm RAMs, initials for the central region of the rootcap, or columella, are distinct from the lateral rootcap and its initials. Slightly more angiosperm families have exclusively closed RAMs than exclusively open RAMs, but many families have representatives with both open and closed RAMs. Root tips with open RAMs are generally found in angiosperm families considered sister to other families; certain open RAMs may be ancestral in angiosperms.  相似文献   

11.
Age at maturity and diversification in woody angiosperms   总被引:2,自引:0,他引:2  
Angiosperm diversification has been associated with plant-animal interactions such as seed dispersal and pollination and life-history characters such as rapid growth and fast reproduction. This paper relates a life-history character (age at maturity) to woody angiosperm diversification. Here I present a comparative analysis of data drawn from the literature, indicating that time to first reproduction is shorter in woody angiosperms than in gymnosperms. In addition, age at maturity is negatively correlated with the rate of diversification (measured as the number of species per genus) at all the taxonomic levels analyzed and also when phylogenetically independent contrasts were conducted. This correlation suggests that early reproduction promotes diversification in woody angiosperms. Furthermore, this correlation is not a confounding effect of the association between age at maturity and other ecological factors that promote angiosperm diversification, such as pollination and seed dispersal systems.  相似文献   

12.
刘美  黎云祥  陈艳 《广西植物》2020,40(8):1211-1220
繁殖是生物适合度的最终表现,有性繁殖相关性状的多态性极大地促进了物种分化和生物多样性的维持,并影响着植物对环境变化的响应。在种群水平上,被子植物的花有雌花、雄花和两性花三种性表型,三种性表型在种群中的分布和频率即定义了种群的性系统。被子植物的性系统包含植物影响性分配和交配的相关特性,决定着雌配子、雄配子在种群中的频率、交配机会及交配方式,是有性繁殖的关键性状,在被子植物中表现出丰富的多态性,在种群水平上分为性单态和性多态两大类。性单态为被子植物的古老性状,而性多态在100多个被子植物科中独立进化产生。被子植物性系统多态性及其变化机理一直是进化生物学与生态学的热点问题之一。该文以种群水平的性多态为对象,总结了被子植物性系统的类型、表达的遗传基础、分布频率,以及遗传因子、非生物环境和交配环境对性系统表达和性分配的影响。  相似文献   

13.
Although aquatic plants are discussed as a unified biological group, they are phylogenetically well dispersed across the angiosperms. In this study, we annotated the aquatic taxa on the tree of vascular plants, and extracted the topology of these aquatic lineages to construct the tree of aquatic angiosperms. We also reconstructed the ancestral areas of aquatic families. We found that aquatic angiosperms could be divided into two different categories: the four aquatic orders and the aquatic taxa in terrestrial orders. Aquatic lineages evolved early in the radiation of angiosperms, both in the orders Nymphaeales and Ceratophyllales and among basal monocots (Acorales and Alismatales). These aquatic orders do not have any extant terrestrial relatives. They originated from aquatic habitats during the Early Cretaceous. Asia would have been one of the centers for early diversification of aquatic angiosperms. The aquatic families within terrestrial orders may originate from other areas besides Asia, such as America or Australia. The lineages leading to extant angiosperms diversified early in underexploited freshwater habitats. The four extant aquatic orders were relicts of an early radiation of angiosperm in aquatic environments. Their extinct ancestors might be aquatic early angiosperms.  相似文献   

14.
The evolution of seed size among angiosperms reflects their ecological diversification in a complex fitness landscape of life‐history strategies. The lineages that have evolved seeds beyond the upper and lower boundaries that defined nonflowering seed plants since the Paleozoic are more dispersed across the angiosperm phylogeny than would be expected under a neutral model of phenotypic evolution. Morphological rates of seed size evolution estimated for 40 clades based on 17,375 species ranged from 0.001 (Garryales) to 0.207 (Malvales). Comparative phylogenetic analysis indicated that morphological rates are not associated with the clade's seed size but are negatively correlated with the clade's position in the overall distribution of angiosperm seed sizes; clades with seed sizes closer to the angiosperm mean had significantly higher morphological rates than clades with extremely small or extremely large seeds. Likewise, per‐clade taxonomic diversification rates are not associated with the seed size of the clade but with where the clade falls within the angiosperm seed size distribution. These results suggest that evolutionary rates (morphological and taxonomic) are elevated in densely occupied regions of the seed morphospace relative to lineages whose ecophenotypic innovations have moved them toward the edges.  相似文献   

15.
Pollen longevity in seven Potamogeton species representing different pollination systems (anemophily, epihydrophily and hydroautogamy) was assessed both under aerial condition and in contact with water to investigate how water impacts the sexual reproduction in these aquatic taxa. Stainability of pollen with MTT was considered as an indicator of pollen viability. The half-life of pollen longevity was calculated using exponential decay regression. Overall, pollen viability decreased relatively rapidly with time. Pollen grains of obligate anemophilic species had lower initial viability and shorter half-lives than those of facultative anemophilic species. Pollen in these latter species may take more time to reach the stigma. The pollen of Potamogeton may be categorized as partially hydrated pollen owing to its generally spherical shape and lack of furrows, rapid loss of viability, and fast pollen tube initiation. The half-life is positively correlated with pollen size. Smaller-sized grains are at greater risk of desiccation than larger grains. In contrast with the situation observed in most terrestrial angiosperms, contact with water increases pollen longevity in Potamogeton species. In our present study the half-lives of pollen longevity of Potamogeton species in which the pollen had come into contact with water (mean of 10.65 h) were markedly higher than those under aerial conditions (mean of 5.79 h, t = 2.622, P = 0.039). The results of our study contradict a widely held belief that water is detrimental to pollen viability in angiosperms and furthermore indicate that close proximity to water results in selection for wettability. The transition to a hydrated status together with its morphology, make Potamogeton pollen more adapted to the aquatic environment and thus serves to ensure reproductive process. Results of our present study may have direct implications for understanding the evolution of the sexual reproductive system in aquatic angiosperms.  相似文献   

16.
Breeding systems were evaluated for 51 plant species according to life form, pollination system, vegetation type, and phenology, in the coastal plain of Paraguaná Peninsula, Venezuela. Sexual systems were no associated to life form, pollination system, vegetation type, and phenology. The frequency distribution of sexual system was 82.3% hermaphroditism, 15.6% monoecy, and 1.9% dioecy. All sexual systems had a peak during the lowest rainfall. Genetic system distribution was 64.8% self-compatibility (including partially self-compatibility) and 35.2% self-incompatibility. Among self-compatible species, 45.1% were autogamous (19.6% not autogamous). The genetic systems were associated significantly to: (1) plant life form: self-compatible species tend to be herbaceous and self-incompatible plants tend to be woody species; (2) vegetation type: self-compatible species were predominant in the three vegetation types, but in the mangrove the frequency of self-compatible and self-incompatibles was similar; and (3) pollination system: most of the self-compatible species were polyphilous. Mating systems: xenogamous and autogamous species were associated only with plant life forms. Xenogamous plants were mostly woody species and autogamous plants were mostly herbaceous species. The high incidence of hermaphroditism, self-compatibility, and autogamy are related to herbaceous life form, polyphilous pollination system, and climatic conditions, together the insularity of the Paraguaná peninsula.  相似文献   

17.
Developmental process of structure-less exine is studied in a hydrophilous plant,Ceratophyllum demersum L., with electron microscopy. The plant shows a characteristic feature in tetrad formation. A callose wall is not synthesized and exine initiation does not occur during the tetrad stage. After release of microspores, a trilaminar layer with two electron-dense lines is formed in the surface of each microspore. The trilaminar layer develops to a thin structure-less exine that is considered to consist of only an endexine. The unusual exine would be an adaptive feature for submersed pollination in fresh water.  相似文献   

18.
Ashman TL  Majetic CJ 《Heredity》2006,96(5):343-352
The characteristics of flowers influence most aspects of angiosperm reproduction, including the agents of pollination and patterns of mating. Thus, a clear view of the forces that mediate floral phenotypic evolution is central to understanding angiosperm diversity. Here, we inform on the capacity for floral phenotype to respond to selection by reviewing published data on heritabilities and genetic correlations for several classes of floral traits (primary sexual, attraction, mating system) in hermaphroditic plants. We find significant heritability for all floral traits but also variation among them, as well as a tendency for heritability to vary with mating system, but not life history. We additionally test predictions stemming from life history theory (eg, negative covariation between male-female traits and flower size-flower number), and ideas concerning the extent and pattern of genetic integration between flowers and leaves, and between the sexes of dioecious and gynodioecious species. We find mixed evidence for life history tradeoffs. We find strong support for floral integration and its relation with floral morphology (actinomorphy vs zygomorphy) and for a decoupling of floral and vegetative traits, but no evidence that modular integration varies with floral morphology. Lastly, we find mixed evidence for a relationship between the level of sexual dimorphism in attraction traits and the between-sex correlation in gender dimorphic plants.  相似文献   

19.
The flowering plants--angiosperms--appeared during the Early Cretaceous period and within 10-30 Myr dominated the species composition of many floras worldwide. Emerging insights into the phylogenetics of development and discoveries of early angiosperm fossils are shedding increased light on the patterns and processes of early angiosperm evolution. However, we also need to integrate ecology, in particular how early angiosperms established a roothold in pre-existing Mesozoic plant communities. These events were critical in guiding subsequent waves of angiosperm diversification during the Aptian-Albian. Previous pictures of the early flowering plant ecology have been diverse, ranging from large tropical rainforest trees, weedy drought-adapted and colonizing shrubs, disturbance- and sun-loving rhizomatous herbs, and, more recently, aquatic herbs; however, none of these images were tethered to a robust hypothesis of angiosperm phylogeny. Here, we synthesize our current understanding of early angiosperm ecology, focusing on patterns of functional ecology, by merging recent molecular phylogenetic studies and functional studies on extant 'basal angiosperms' with the picture of early angiosperm evolution drawn by the fossil record.  相似文献   

20.
Flowering plants (angiosperms) are by far the largest, most diverse, and most important group of land plants, with over 250,000 species and a dominating presence in most terrestrial ecosystems. Understanding the origin and early diversification of angiosperms has posed a long-standing botanical challenge [1]. Numerous morphological and molecular systematic studies have attempted to reconstruct the early history of this group, including identifying the root of the angiosperm tree. There is considerable disagreement among these studies, with various groups of putatively basal angiosperms from the subclass Magnoliidae having been placed at the root of the angiosperm tree (reviewed in [2-4]). We investigated the early evolution of angiosperms by conducting combined phylogenetic analyses of five genes that represent all three plant genomes from a broad sampling of angiosperms. Amborella, a monotypic, vessel-less dioecious shrub from New Caledonia, was clearly identified as the first branch of angiosperm evolution, followed by the Nymphaeales (water lillies), and then a clade of woody vines comprising Schisandraceae and Austrobaileyaceae. These findings are remarkably congruent with those from several concurrent molecular studies [5-7] and have important implications for whether or not the first angiosperms were woody and contained vessels, for interpreting the evolution of other key characteristics of basal angiosperms, and for understanding the timing and pattern of angiosperm origin and diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号