首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
为了比较不同植物功能型在沙地生境下光合作用和水分利用效率的差异,测定了浑善达克沙地3种功能型的代表种的气体交换特征来比较它们的光合碳固定能力和水分利用状况。3个代表种的气体交换日变化结果表明乔木的光合速率和水分利用效率比草本和灌木的低,而蒸腾速率和气孔导度较高,经过中午的光合午休后,乔木的光合速率在下午没有恢复,而草本和灌木都有不同程度的恢复。在所测定的所有代表物种中,研究地全部的乔木(3种)和灌木(6种)以及典型的草本(2 5种) ,气孔导度与光合速率和蒸腾速率都成显著的正相关关系;另外,在同样的叶片水势情况下,乔木植物的气孔导度最低,在同样的蒸腾速率情况下,乔木植物的光合速率最低。这些结果表明乔木在CO2 同化和H2 O蒸腾平衡上具有低的水分利用效率。从这个角度考虑,我们认为在对沙地进行恢复时,一些草本和灌木种比乔木更合适  相似文献   

2.
Net photosynthesis (Pn), transpiration (E), stomatal conductance (gs), internal CO2 concentration (Ci), and water use efficiency (WUE) were examined on 215 species from eight plant functional types (PFTs) along a precipitation gradient in northeast China (the Northeast China Transect, or NECT). Among the eight PFTs, meadow steppe grasses had the highest rates of net photosynthesis and forest grasses the lowest and the following order of Pn was noted: meadow steppe grasses >typical steppe grasses >steppe shrubs >desert grasses >forest trees >forest shrubs >desert shrubs >forest grasses (P<0.05). Transpiration tended to be the highest in the steppe grasses and lowest in forest shrubs. Transpiration also decreased rapidly with the appearance of C3 desert species at the desert end. The forest tree PFT had lower Pn, E, gs than the steppe PFTs, whereas WUE values were somewhat greater in the forest tree PFT than the desert shrubs and grasses. Low Ci values along the steppe section (from 400 to 1100 km, east to west) indicated the presence of C4 species. Of all the PFTs, only shrubs and herbs were noted at all points along the transect. No clear relationship between Pn, E, gs, WUE of herb and shrub PFTs and annual precipitation was noted – low values were found at both the high and low precipitation ends of the transect. Highest values were noted when precipitation was intermediate. Received: 28 October 1998 / Accepted: 10 May 1999  相似文献   

3.
Four plant functional types (PFTs) were used to compare the vegetation structure of an alien-invaded Acacia nilotica savanna with one of negligible invasions. Heights, canopy covers and species richness of three native PFTs (woody plants, grasses and herbs) and one alien PFT (woody plants) were measured in 14, 1-m2 quadrats sampled in a stratified-random pattern in a 400-m2 plot demarcated in each savanna. In the uninvaded plot, mean heights of native PFTs were stratified. In the invaded plot, the mean height of aliens extended into the native woody stratum with the lower range of native woody PFT heights reduced to the grass stratum. Discriminant analysis of canopy covers and species richness of the four PFTs revealed significant differences in composition between plots with the alien PFT being the most important variable correlated with these differences. Univariate analysis confirmed the dominance of alien woody plants in the invaded plot but also showed significant reductions in the canopy covers and species richness of native herbs and grasses compared to those in the uninvaded plot. These results suggest that PFTs can rapidly measure small-scale, spatial differences in the physiognomy, composition and species richness of A. nilotica savannas when invaded by alien woody plants.  相似文献   

4.
The hypothesis that some plant traits such as life form are robust surrogates for plant functional type (PFT) has provoked an ongoing debate. Based on a dataset from the Northeast China Transect (NECT), we attempted to test the hypothesis by comparing an objective PFT identification framework in which large datasets of plant traits were considered with two subjective PFT frameworks in which only a few plant traits were involved. Additionally, we addressed the relations between the relative abundance of PFTs and the environmental gradient represented by actual evapotranspiration (AET) along the NECT. We also discuss the changes in ecosystem functioning associated with the PFT turnover along the environmental gradient. Based on an objective PFT classification, eight PFTs were identified: deciduous trees, shrubs, perennial forbs with lower net photosynthesis, perennial forbs with higher net photosynthesis, perennial bulb-grasses, perennial tiller-grasses, annual C4 herbs and evergreen trees. Our results indicated that some plant traits, such as life form and photosynthesis pathway, are robust surrogates for PFTs, implying that subjective approaches to PFT classification are useful. Nonetheless, caution should be used during the classification of PFTs. The framework adopted for PFT classification should depend on the specific scientific issues being dealt with. It is therefore meaningless to pursue a general framework for the identification of PFTs even within given plant communities. On the other hand, our quantitative classification of PFTs confirmed recurrent patterns with respect to PFT turnover along an environmental gradient. Furthermore, with the turnover in PFT along the NECT from the west to the east, ecosystem properties such as productivity and carbon storage are predicted to decrease, while photosynthesis is predicted to increase, suggesting that PFT turnover would inevitably lead to changes in ecosystem functioning.  相似文献   

5.
The study of plant functional types (PFTs) has been widely emphasized when analysing plant community changes in relation to variations in climate and disturbance regime. In this study, we search for PFTs of woody species near forest–grassland boundaries in South Brazil where, due to climate, forests tend to expand over grassland but are being restricted by frequent fires. We aimed at answering the questions: (i) which plant functional types of forest woody species can establish in adjacent grassland subject to fire disturbance and (ii) which plant functional types of forest and grassland woody species are related to short-term community dynamics in frequently burned grassland. Traits were assessed in woody plants in 156 plots (6.75 m2) arranged in 12 transects across forest–grassland boundaries with different fire history in their grassland part. The analysis used a recursive algorithm to search for traits and PFTs maximally associated to spatial distance from forest limit in one analysis, and elapsed time since last fire in another. As a result, nine PFTs of forest woody species were identified that best described community patterns associated to distance from forest. Resprouting ability characterized forest plants able to colonize grasslands. PFT diversity was higher in border plots than inside forest or grassland. Four PFTs of forest and grassland woody species best described woody species community patterns in the grassland associated to elapsed time since fire. Taller individuals of single-stemmed shrubs predominated in late post-fire recovery (3–4 years), while shorter multi-stemmed shrubs in recently burned areas (3 months to 1 year). PFTs of forest trees occurred in border plots or, as established adults, in grassland, remaining unaffected by fire. We conclude that easily measurable structural plant traits, such as those used in our study, are sufficient to evaluate post-fire community dynamics. Forest PFTs in burned grassland are restricted to those with resprouting ability to survive recurrent fire events. Establishment success is highest on protected sites with lesser or low-intensity fire.  相似文献   

6.
Elevation is involved in determining plant diversity in montane ecosystems. This study examined whether the distribution of plants in the Yatsugatake Mountains, central Japan, substantiated hypotheses associated with an elevational diversity gradient. Species richness of trees, shrubs, herbs, ferns, and bryophytes was investigated in study plots established at 200‐m elevational intervals from 1,800 to 2,800 m. The changes in plant diversity (alpha and beta diversities, plant functional types, and elevational ranges) with elevation were analyzed in relation to climatic factors and elevational diversity gradient hypotheses, that is, mass effect, mid‐domain effect, and Rapoport''s elevational rule. In addition, the elevational patterns of dominance of plant functional types were also analyzed. A comparison of alpha and beta diversities revealed that different plant groups responded variably to elevation; the alpha diversity of trees and ferns decreased, that of herbs increased, whereas the alpha diversity of shrubs and bryophytes showed a U‐shaped relationship and a hump‐shaped pattern. The beta diversity of shrubs, herbs, and bryophytes increased above the subalpine–alpine ecotone. In accordance with these changes, the dominance of evergreen shrubs and graminoids increased above this ecotone, whereas that of evergreen trees and liverworts decreased. None of the plant groups showed a wide elevational range at higher elevations. These elevational patterns of plant groups were explained by climatic factors, and not by elevational diversity gradient hypotheses. Of note, the changes in the dominance of plant groups with elevation can be attributed to plant–plant interactions via competition for light and the changes in physical habitat. These interactions could alter the elevational diversity gradient shaped by climatic factors.  相似文献   

7.
Aims Our aim was to study how diversity and dominance of plant species and plant functional types (PFTs) change and covary across three dune fixation stages in the Chinese steppe zone.Methods In the Chinese steppe zone, we measured coverage, mean height and density of each plant species in three types of dunes (mobile, semi-fixed and fixed dunes) in four sites (Mu Us, Otindag, Hulunbeir and Horqin). Plant species were grouped into 24 PFTs according to their lifespan, photosynthetic pathway, reproductive mode and life form. Dominance of each plant species and PFT were determined, and species diversity and PFT diversity were quantified using Shannon–Wiener index.Important findings PFT diversity was positively related to plant species diversity in each dune stage, but PFT diversity increased more with increasing plant species diversity in the mobile and semi-fixed dunes than in the fixed dunes. Dune fixation stage explained 87.2% of the variation in plant species diversity and 84.8% of the variation in PFT diversity. Dominant species and PFTs differed among the three dune fixation stages; the more fixed the dunes were, the more perennial, shrubby, clonal and C3 species co-dominated. Specifically, in mobile dunes annual C4 non-clonal herbs were the most dominant, and in semi-fixed and fixed dunes perennial C3 clonal shrubs were most dominant.  相似文献   

8.
We examined the initial response of the quantity and distribution of fine roots to the creation of an experimental canopy gap with a diameter of 50 m in a mature managed Norway spruce forest. Under the canopy, the fine root length densities of trees, shrubs, and grasses and herbs were 3207, 707 and 2738 m m–2, respectively. The fine root biomass of trees, shrubs, and grasses and herbs were 182, 47 and 52 g m–2, respectively. Two growing seasons after gap creation hardly any fine tree roots were found in the middle part of the gap. The living tree roots in the gap edge zone were mainly located within a 5-m distance from the standing edge trees. The indices developed here to show the influence of trees on fine root lenght density clearly revealed the effect of the vicinity of living trees on fine root lenght density. The root densities of grasses, herbs and dwarf shrubs did not show a clear response to gap creation despite the increase of their foliage. Our results suggest that in boreal spruce forests a gap disturbance creates a distinct tree root gap and that the gap edge trees do not extend their root systems rapidly into the formed root gap.  相似文献   

9.
普晓妍  王鹏程  李苏  鲁志云  宋钰 《广西植物》2021,41(9):1465-1475
附生植物是热带亚热带森林生态系统中物种多样性极高且极其脆弱敏感的生物类群之一。光照被认为是促进附生植物由陆生类群演化而来并决定其生长和分布的关键因素。然而,由于接近林冠和规范性采样的限制,附生植物与光照的关系仍亟待阐述。为揭示附生植物对光强变化的响应和适应策略,该研究以亚热带常绿阔叶林6种附生植物(林冠层木本:鼠李叶花楸、毛棉杜鹃;林冠层草本:狭瓣贝母兰、毛唇独蒜兰;树干区草本:点花黄精、距药姜)为对象,对其在4个光处理梯度下生长的叶片气孔特征及其可塑性进行了对比分析。结果表明:(1) 2种附生小乔木的气孔面积(SA)、气孔密度(SD)、潜在气孔导度指数(PCI)和表皮细胞密度(ECD)均对光强改变显著响应。2种附生兰科植物的SA最大,而SD最小;附生乔木叶片SD和ECD的光响应趋势与陆生植物更相似,而附生草本则出现种间差异。(2) 6种附生植物的气孔、表皮细胞特性及其表型可塑性,在草本-木本、常绿-落叶植物、林冠-树干区之间,均无明显差别。(3)附生植物气孔特性和表皮细胞平均可塑性指数均低于陆生植物。综上结果表明,亚热带常绿阔叶林中附生植物对于光环境变化的适应性相对较弱。不同的附生植物可以通过不同程度地增加叶片SD和ECD来适应高光强生境,并通过对SD和SA的双重调节以增大潜在光合能力从而应对低光胁迫。  相似文献   

10.
It is very difficult to estimate litter decomposition rates in natural ecosystems because litters of many species are mixed and idiosyncratic interactions occur among those litters. A way to tackle this problem is to investigate litter mixing effects not at the species level but at the level of Plant Functional Types (PFTs). We tested the hypothesis that at the PFT level positive and negative interactions balance each other, causing an overall additive effect (no significant interactions among PFTs). Thereto, we used litter of four PFTs from a temperate peatland in which random draws were taken from the litter species pool of each PFT for every combination of 2, 3, and 4 PFTs. Decomposition rates clearly differed among the 4 PFTs (Sphagnum spp. < graminoids = N-fixing tree < forbs) and showed little variation within the PFTs (notably for the Sphagnum mosses and the graminoids). Significant positive interactions (4 out of 11) in the PFT mixtures were only found after 20 weeks and in all these combinations Sphagnum was involved. After 36 and 56 weeks of incubation interactions were not significantly different from zero. However, standard deviations were larger than the means, indicating that positive and negative interactions balanced each other. Thus, when litter mixture interactions are considered at the PFT level the interactions are additive. From this we conclude that for estimating litter decomposition rates at the ecosystem level, it is sufficient to use the weighted (by litter production) average decomposition rates of the contributing PFTs.  相似文献   

11.
Hu G  Xu X  Wang Y  Lu G  Feeley KJ  Yu M 《PloS one》2012,7(5):e36432
Pine wilt disease is a severe threat to the native pine forests in East Asia. Understanding the natural regeneration of the forests disturbed by pine wilt disease is thus critical for the conservation of biodiversity in this realm. We studied the dynamics of composition and structure within different plant functional types (PFTs) in Masson pine forests affected by pine wilt disease (PWD). Based on plant traits, all species were assigned to four PFTs: evergreen woody species (PFT1), deciduous woody species (PFT2), herbs (PFT3), and ferns (PFT4). We analyzed the changes in these PFTs during the initial disturbance period and during post-disturbance regeneration. The species richness, abundance and basal area, as well as life-stage structure of the PFTs changed differently after pine wilt disease. The direction of plant community regeneration depended on the differential response of the PFTs. PFT1, which has a higher tolerance to disturbances, became dominant during the post-disturbance regeneration, and a young evergreen-broad-leaved forest developed quickly after PWD. Results also indicated that the impacts of PWD were dampened by the feedbacks between PFTs and the microclimate, in which PFT4 played an important ecological role. In conclusion, we propose management at the functional type level instead of at the population level as a promising approach in ecological restoration and biodiversity conservation.  相似文献   

12.
This study describes the dispersal traits and dispersal patterns of 51 perennial plant species belonging to 19 families in an oro-Mediterranean thorn cushion plant formation on the High Atlas, Morocco. Diaspore type, mass, number, antitelechoric mechanisms and dispersal time were studied with respect to growth forms, dispersal modes and spatial dispersal. Species spanned 105 range of diaspore mass, which coincided with those found in other high mountain regions. Diaspore mass was significantly higher in trees and shrubs than in semi-shrubs and perennial herbs. Barochorous and zoochorous species are more likely to have heavy diaspores, whereas anemochorous and ballistic species have a medium diaspore mass and semachorous and ombro-hydrochorous species have low diaspore mass. Diaspore number was significantly higher in trees and shrubs than in semi-shrubs and perennial herbs. The barochorous, ombro-hydrochorous and zoochorous species tended to produce higher diaspore numbers than species with other dispersal modes. Bradyspory was well-developed by trees and large shrubs dispersed by biotic vectors. Synaptospermy was represented by its long dispersal component. Myxospermy was significantly associated with semi-shrubs and perennial herbs with restricted spatial dispersal. It seems that ombro-hydrochory combined with myxospermy and a high number of light seeds is an efficient mechanism that ensures successful establishment of the most typical and endemic thorn cushion plant species, such as Alyssum, Vella and Ormenis. In our study area, the highest dispersal availability was synchronized with the dry summer season (July–August) and the beginning of the rainy months (September). The dispersal peak for the wind-dispersed species, which is the most effective primary dispersal mode, occurs during the dry season, while dispersal for the biotic-dispersed species takes place throughout the year.  相似文献   

13.
The wood sorrel family, Oxalidaceae, is mainly composed of annual or perennial herbs, a few shrubs, and trees distributed from temperate to tropical zones. Members of Oxalidaceae are of high medicinal, ornamental, and economic value. Despite the rich diversity and value of Oxalidaceae, few molecular markers or plastomes are available for phylogenetic analysis of the family. Here, we reported four new whole plastomes of Oxalidaceae and compared them with plastomes of three species in the family, as well as the plastome of Rourea microphylla in the closely related family Connaraceae. The eight plastomes ranged in length from 150,673 bp (Biophytum sensitivum) to 156,609 bp (R. microphylla). Genome annotations revealed a total of 129–131 genes, including 83–84 protein-coding genes, eight rRNA genes, 37 tRNA genes, and two to three pseudogenes. Comparative analyses showed that the plastomes of these species have minor variations at the gene level. The smaller plastomes of herbs B. sensitivum and three Oxalis species are associated with variations in IR region sizes, intergenic region variation, and gene or intron loss. We identified sequences with high variation that may serve as molecular markers in taxonomic studies of Oxalidaceae. The phylogenetic trees of selected superrosid representatives based on 76 protein-coding genes corroborated the Oxalidaceae position in Oxalidales and supported it as a sister to Connaraceae. Our research also supported the monophyly of the COM (Celastrales, Oxalidales, and Malpighiales) clade.  相似文献   

14.
Topsoil translocation has been used for vegetation restoration throughout the world, but it has been poorly tested within savannas. This study describes Brazilian savanna (cerrado) regeneration for the first 3 years following topsoil translocation. The topsoil was stripped from 2.5 ha of savanna and spread on 1 ha of an abandoned laterite quarry in the Federal District, Brazil. We assessed vegetation structure and species composition in 18 circular plots (3.14/m2) after 5 and 15 months and in 30 circular plots after 37 months. In the last floristic survey, the coverage of herbs was estimated using the step‐point method. To verify the source of regeneration, a total of 181 shrubs and trees were excavated over the first 2 surveys. After 3 years, 24, 40, and 21 species of herbs, shrubs, and trees, respectively, had been recorded by the surveys. Of the 33 families found, Fabaceae, Poaceae, and Asteraceae were the most representative. At 5 and 15 months, 91 and 83% of the individuals (shrubs and trees combined) were derived from resprouting, respectively. Shrub and tree stem density reached 3.2/m2 at 5 months, but declined to 0.5/m2 at 37 months. By the final survey, native and exotic grasses completely covered the ground. Topsoil translocation was effective for the propagation of native herbs, shrubs, and trees, despite the need to control invasive grasses. The large number of shrub and tree resprouts from roots suggests that the bud bank is an important component of the topsoil for savanna restoration.  相似文献   

15.
叶片气孔不仅是植物平衡光合-蒸腾关系的重要门户,也是影响大气碳循环与水循环的关键结构。分析热岛效应下福州市乔木、灌木、草本3种生活型和常绿、落叶2种叶习性植物的气孔性状间的差异及其与其他叶功能性状间的权衡关系有助于探究不同类型植物在热环境下的适应策略。以福州市区的自然和半自然植被为研究对象,测定441个植物样本的气孔特征、化学计量特征和形态特征,结果表明:(1)3种生活型、2种叶习性植物的气孔长度(SL)、气孔密度(SD)差异显著(P<0.05),潜在气孔导度指数(PCI)不存在显著差异(P>0.05)。草本的SL高于灌木和乔木,乔木的SD最高,灌木次之,草本最低;落叶植物的SL高于常绿植物,SD低于常绿植物。(2)SLSD间的权衡关系稳定存在于3种生活型和2种叶习性植物中,且随着不同生活型和落叶习性植物的生态策略而呈现各异的权衡特征,即当SL一定时,乔木的SD最大,灌木的SD最小,常绿植物的SD大于落叶植物。(3)气孔性状和叶片形态、化学计量特征紧密联系,SL与比叶面积(SLA)正相关(P<0.01),与叶面积(LA)负相关(P<0.01);SD与叶氮含量(LNC)、叶磷含量(LPC)、SLA负相关(P<0.01),与LA正相关(P<0.01);PCI与LNC、SLA负相关(P<0.01),与叶厚度(LT)正相关(P<0.05)。(4)复杂的环境是气孔性状变异的重要驱动因素,SL、PCI均与年均温(MAT)负相关(P<0.05)。  相似文献   

16.
Abstract. In an effort to identify ‘plant functional types’, the islands floras of Great Britain and Kríti (Crete, Greece) were examined separately for ecological correlates of plant range size. Plant functional types (PFTs) were defined here as categories into which plants could be grouped on the basis of attributes that predict greater or lesser sensitivity to ecological variability. Plant range size indicates commonness of a species and was assumed to be a proxy for ‘ecological flexibility’, i.e. species of larger range sizes can better withstand environmental change and differences than species of smaller range sizes. Using evolutionary comparative methods that account for the effect of taxonomic relatedness, both floras were investigated for the effects on range size of woodiness vs. non-woodiness, trees vs. shrubs, trees vs. herbs and shrubs vs. herbs. The British flora was examined additionally for the effects of wind- vs. non-wind-pollination, self vs. animal pollination and animal vs. non-animal fruit dispersal on range size. Two analyses showed significant effects on range size: for British species, trees had larger ranges than shrubs, and wind- pollinated species had larger ranges than non-wind-pollinated species. It is suggested that the lack of a similar pattern for shrubs and trees in Kríti is because the lower water availability of Kríti imbues shrubs with an ecophysiological advantage not relevant in plants of Great Britain. That trees have larger range sizes than shrubs in Great Britain is ascribed to the greater importance of competition for light when other factors are not at issue. The greater range of wind-pollinated than non-windpollinated species in Great Britain is postulated to be because both mutualists must be capable of invading new areas. This may be termed a ‘cost of mutualism’. In terms of PFTs, the results indicate that ‘life-form’ is too broad a classification category by which to differentiate relative sensitivity to environmental variability in Great Britain, in that there were significant differences in range size of trees and shrubs, but not between either of the two categories and herbs, or between woody and non-woody plants. Although pollination type may predict relative sensitivity to variation in Great Britain, dispersal type will not. Finally, differences between Great Britain and Kríti in relative range size patterns suggests that plant functional types may be specific to a region or set of conditions.  相似文献   

17.
Grime’s competition–stress–ruderal (CSR) theory is widely used to study plant species’ responses to multiple environmental factors. We compared two models to allocate CSR types the global “StrateFy” model (Pierce et al. Funct Ecol, 31:444–457, 2017) and a locally developed morpho-physiological model (Novakovskiy et al. Int J Ecol, p e1323614, 2016). The “StrateFy” model is based on three morphological leaf traits: leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA). The morpho-physiological model additionally uses plant height (PH), leaf dry weight (LDW), photosynthetic capacity (PN) and respiration rate (RD), leaf nitrogen, and carbon concentration (LNC, LCC). We applied both models to 74 plant species, the traits of which were measured at mountain (Northern Urals) and plane (Komi Republic, Russia) landscapes of European Northeast. The comparison of the calculated C, S, and R scores showed two groups of species with large and unidirectional differences. The first group consists of species with a shift from S (morpho-physiological model) to CR (StrateFy model) strategy. Species of this group are typical for deep shaded habitats and characterized by low LDMC (10–25%) and high SLA (30–60 mm2 mg−1). The second group consists of C species (morpho-physiological model) which were classified as S (StrateFy model) strategy. This group includes mainly tall shrubs, graminoids, and forbs with relatively small leaves (300–2000 mm2). In our opinion, the CSR strategies obtained by the morpho-physiological model showed better agreement with the basic principles underlying Grime''s theory. The use of a limited number of morphological traits (LA, LDMC, SLA) in the StrateFy model does not always allow to determine the life strategy correctly. For example, these traits are insufficient for a clear separation of deeply shaded stress-tolerant species and ruderals. On the other hand, the use of the morpho-physiological model requires a large number of field measurements, which makes it difficult to use this model to allocate CSR strategies for a large number of species.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00973-9.  相似文献   

18.
嵩草属(Kobresia)植物是藏东南高山草甸的优势种和建群种,对该区畜牧业发展和维持生态系统平衡起着重要作用。选择西藏左贡县东达山为研究地点,从林线开始,海拔每升高约100m设置1个样带直至高山草甸分布边缘,共8个样带,调查各样带中物种的组成及盖度,并依据相对盖度和相对频度计算3种嵩草植物矮生嵩草(K.humilis)、线叶嵩草(K.capillifolia)和大花嵩草(K.macrantha)在群落中的重要值,同时取样观察它们叶片远、近轴面表皮细胞形态,测量气孔长度及保卫细胞宽度,计算气孔密度,探讨嵩草属植物对海拔梯度的适应性。结果表明:(1)3种嵩草属植物叶表皮细胞均呈波浪状,气孔器仅分布于远轴面,近轴面无气孔器分布。(2)3种嵩草属植物气孔密度沿海拔梯度的变化均呈单峰曲线分布格局,且在海拔4 537m样带处达到最大值,并表现为矮生嵩草(777.6个/mm2)线叶嵩草(476.4个/mm2)大花嵩草(414.3个/mm2)。(3)随海拔的增加,矮生嵩草和线叶嵩草气孔长度显著增大(P0.05),而保卫细胞宽度显著减小;但大花嵩草气孔长度随海拔的升高而显著减小,保卫细胞宽度基本保持不变。(4)矮生嵩草和线叶嵩草气孔密度、长度和保卫细胞宽度与海拔梯度均显著相关,气孔特征对海拔梯度变化的敏感程度高,与其在群落中重要值高的分布特征一致;而大花嵩草仅气孔密度和长度与海拔梯度显著相关,气孔特征对海拔梯度变化的敏感性低,与其在群落中重要值低的分布特征一致;嵩草属植物气孔密度、长度和保护细胞宽度与海拔梯度之间的相关性,反映出它们在海拔梯度上对生境的适应程度。可见,3种嵩草属植物气孔特征对海拔梯度上生境变化的适应性不同,从而影响它们在群落中的分布范围和物种优势度,其中矮生嵩草和线叶嵩草对环境变化敏感,而大花嵩草对环境变化相对不敏感;保卫细胞宽度与气孔长度同样对植物适应环境变化起重要作用。  相似文献   

19.
Question: Can augmented forest stand complexity increase understory vegetation richness and cover and accelerate the development of late‐successional features? Does within‐stand understory vegetation variability increase after imposing treatments that increase stand structural complexity of the overstory? What is the relative contribution of individual stand structural components (i.e. forest matrix, gaps, and leave island reserves) to changes in understory vegetation richness? Location: Seven study sites in the Coastal Range and Cascades regions of Oregon, USA. Methods: We examined the effects of thinning six years after harvest on understory plant vascular richness and cover in 40‐ to 60‐year‐old forest stands dominated by Douglas‐fir (Pseudotsuga menziesii). At each site, one unthinned control was preserved and three thinning treatments were implemented: low complexity (LC, 300 trees ha?1), moderate complexity (MC, 200 trees ha?1), and high complexity (HC, variable densities from 100 to 300 trees ha?1). Gaps openings and leave island reserves were established in MC and HC. Results: Richness of all herbs, forest herbs, early seral herbs and shrubs, and introduced species increased in all thinning treatments, although early seral herbs and introduced species remained a small component. Only cover of early seral herbs and shrubs increased in all thinning treatments whereas forest shrub cover increased in MC and HC. In the understory, we found 284 vascular plant species. After accounting for site‐level differences, the richness of understory communities in thinned stands differed from those in control stands. Within‐treatment variability of herb and shrub richness was reduced by thinning. Matrix areas and gap openings in thinned treatments appeared to contribute to the recruitment of early seral herbs and shrubs. Conclusions: Understory vegetation richness increased 6 years after imposing treatments, with increasing stand complexity mainly because of the recruitment of early seral and forest herbs, and both low and tall shrubs. Changes in stand density did not likely lead to competitive species exclusion. The abundance of potentially invasive introduced species was much lower compared to other plant groups. Post‐thinning reductions in within‐treatment variability was caused by greater abundance of early seral herbs and shrubs in thinned stands compared with the control. Gaps and low‐density forest matrix areas created as part of spatially variably thinning had greater overall species richness. Increased overstory variability encouraged development of multiple layers of understory vegetation.  相似文献   

20.
This study was conducted in the islands of Lake Ziway located in the main Ethiopian Rift Valley in south-central Ethiopia. Its main objective was to investigate the diversity, regeneration status, socio-economic importance and the factors that cause degradation of the plant resources in the islands. A total of 73 relevés, measuring 20×20 m, were established along line transects laid from the central part of each island to the lake edge in eight aspects. Herbaceous species were sampled by using a 2×2 m sub-relevé laid within each relevé. In each relevé, the cover/abundance of each species was estimated, woody species were counted, diameter at breast height and height of trees and shrubs and the environmental variables altitude, slope, aspect and position were measured. Participatory Rural Appraisal was employed to generate the socio-economic information. A total of 141 species belonging to 113 genera and 55 families were identified, of which 18.4% were trees, 21.3% trees/shrubs, 12.1% shrubs, 3.5% lianas, 4.3% herbaceous climbers and 40.4% herbs. The overall Shannon diversity and evenness of woody species in the islands were 2.60 and 0.62, respectively. The number of species on the islands correlated with island's size, habitat diversity and degree of human disturbance. The similarity in species composition between the islands was low, indicating that each island has its own unique flora. Nine plant communities were recognized and described. The total density and basal area of the vegetation were 2979 individuals ha−1 and 191 m2 ha−1, respectively. The importance value index and the diameter and height class distribution revealed that some species are threatened and need the highest priority for conservation. The socio-economic survey showed that the island communities are highly dependent on the natural vegetation for various purposes. On the other hand, the islanders have maintained the soil and vegetation resources for centuries through their indigenous resource management systems and practices. Human population growth coupled with farmland expansion, soil erosion, free grazing and cutting trees for various purposes are the major threats to the vegetation resources in the islands. The implications of the results are discussed and recommendations are suggested for conservation, management and sustainable utilization of the fragile island ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号