首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of microtubules in intracellular transport of African swine fever virus (ASFV) and virus-induced inclusions was studied by immunofluorescence using anti-ASFV and anti-tubulin antibodies, by electron microscopy of infected Vero cells and by in vitro binding of virions to purified microtubules. MTC, a reversible colchicine analogue, was used to depolymerize microtubules. In cells treated with MTC multiple large inclusions containing ASFV antigens and particles were observed in the cytoplasm. Removal of the drug lead to migration and fusion of the inclusions at a perinuclear location. To study the effect of microtubule repolymerization on virus particle distribution, the particles were counted in thin sections of MTC treated cells and at different times after removal of the drug. In cells treated with MTC 6.8% and 3.6% of the virus particles were found respectively in the cytoplasm and at the cell membrane while 38% of the particles were located around the virosome. With reversal of the drug effect the number of virus particles around the virosomes progressively decreased to 10% at 2 h while the number of particles in the cytoplasm and at the cell membrane increased. At 2 h after removal of the drug 33.5% of the particles were found budding from the cell membrane. Virus particles were found closely associated with microtubules in cytoskeletons obtained by Triton X-100 extraction of taxol treated cells. The association of virus particles with microtubules was also observed in vitro using purified microtubules and virus particles. The results show that microtubules are involved in the transport of African swine fever virus particles from the assembly site to the cell surface and in the movement and fusion of the virus inclusions.  相似文献   

2.
非洲猪瘟(African swine fever, ASF)是由非洲猪瘟病毒(African swine fever virus, ASFV)感染引起家猪和野猪的一种高死亡率的传染性疾病。ASFV具有庞大的基因组,其中非结构蛋白pD1133L被预测为其编码的6个解旋酶之一。本实验室应用免疫沉淀-质谱联用(immunoprecipitation-mass spectrometry, IP-MASS)技术筛选与pD1133L互作的宿主细胞蛋白,发现细胞波形蛋白(vimentin, VIM)为pD1133L互作的宿主蛋白之一,但尚不清楚宿主蛋白VIM对ASFV复制的影响。【目的】探究ASFV与VIM的相互调控作用,揭示VIM促进ASFV复制的机制。【方法】通过免疫共沉淀(co-immunoprecipitation, Co-IP)试验验证pD1133L与VIM存在互作关系;外源过表达VIM蛋白以及设计并合成VIM的siRNA探究VIM对ASFV复制的影响;利用Western blotting以及荧光定量PCR (quantitative real-time PCR, qPCR)方法检测ASFV对VIM蛋白水平以及转录水平的影响;通过Western blotting、间接免疫荧光试验(immunofluorescence assay, IFA)探究巨噬细胞感染ASFV后VIM磷酸化水平变化以及亚细胞定位变化情况;CCK-8试剂盒检测VIM磷酸化抑制剂KN-93处理的最佳浓度,并利用Western blotting以及IFA检测KN-93对VIM磷酸化、亚细胞定位以及对ASFV复制影响。【结果】VIM过表达促进ASFV复制,敲低VIM的表达则抑制ASFV复制;ASFV感染抑制VIM蛋白水平以及转录水平表达,且呈时间依赖性;ASFV感染后VIM发生磷酸化修饰且发生亚细胞定位改变,从而促进ASFV复制。【结论】证实了ASFV与宿主蛋白VIM之间的相互调控作用;初步确定ASFV感染后VIM受到ASFV pD1133L调控,亚细胞定位发生重排向核周聚集从而促进ASFV复制的机制。  相似文献   

3.
African swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease with a high mortality approaching 100% in domestic pigs. ASF is an endemic in countries in sub-Saharan Africa. Now, it has been spreading to many countries, especially in Asia and Europe. Due to the fact that there is no commercial vaccine available for ASF to provide sustainable prevention, the disease has spread rapidly worldwide and caused great economic losses in swine industry. The knowledge gap of ASF virus (ASFV) pathogenesis and immune evasion is the main factor to limit the development of safe and effective ASF vaccines. Here, we will summarize the molecular mechanisms of how ASFV interferes with the host innate and adaptive immune responses. An in-depth understanding of ASFV immune evasion strategies will provide us with rational design of ASF vaccines.  相似文献   

4.
CUX1 and CUX2 proteins are characterized by the presence of three highly similar regions called Cut repeats 1, 2, and 3. Although CUX1 is ubiquitously expressed, CUX2 plays an important role in the specification of neuronal cells and continues to be expressed in postmitotic neurons. Cut repeats from the CUX1 protein were recently shown to stimulate 8-oxoguanine DNA glycosylase 1 (OGG1), an enzyme that removes oxidized purines from DNA and introduces a single strand break through its apurinic/apyrimidinic lyase activity to initiate base excision repair. Here, we investigated whether CUX2 plays a similar role in the repair of oxidative DNA damage. Cux2 knockdown in embryonic cortical neurons increased levels of oxidative DNA damage. In vitro, Cut repeats from CUX2 increased the binding of OGG1 to 7,8-dihydro-8-oxoguanine-containing DNA and stimulated both the glycosylase and apurinic/apyrimidinic lyase activities of OGG1. Genetic inactivation in mouse embryo fibroblasts or CUX2 knockdown in HCC38 cells delayed DNA repair and increased DNA damage. Conversely, ectopic expression of Cut repeats from CUX2 accelerated DNA repair and reduced levels of oxidative DNA damage. These results demonstrate that CUX2 functions as an accessory factor that stimulates the repair of oxidative DNA damage. Neurons produce a high level of reactive oxygen species because of their dependence on aerobic oxidation of glucose as their source of energy. Our results suggest that the persistent expression of CUX2 in postmitotic neurons contributes to the maintenance of genome integrity through its stimulation of oxidative DNA damage repair.  相似文献   

5.
African swine fever virus (ASFV) infection is a big threat to the global pig industry. Because there is no effective vaccine, rapid, low-cost, and simple diagnosis methods are necessary to detect the ASFV infection in pig herds. Nanobodies, with advantages of small molecular weight and easy genetic engineering, have been universally used as reagents for developing diagnostic kits. In this study, the recombinant ASFV-p30 was expressed and served as an antigen to immunize the Bactrian camel. Then, seven nanobodies against ASFV-p30 were screened using phage display technique. Subsequently, the seven nanobodies fused horseradish peroxidase (nanobody-HRP) were secretory expressed and one fusion protein ASFV-p30-Nb75-HRP was selected with the highest sensitivity in blocking ELISA. Using the ASFV-p30-Nb75-HRP fusion protein as a probe, a competitive ELISA (cELISA) was developed for detecting anti-ASFV antibodies in pig sera. The cut-off value of cELISA was determined to be 22.7% by testing 360 negative pig sera. The detection limit of the cELISA for positive pig sera was 1:320, and there was no cross-reaction with anti-other swine virus antibodies. The comparative assay showed that the agreement of the cELISA with a commercial ELISA kit was 100%. More importantly, the developed cELISA showed low cost and easy production as a commercial kit candidate. Collectively, a simple nanobody-based cELISA for detecting antibodies against ASFV is developed and it provides a new method for monitoring ASFV infection in the pig herds.  相似文献   

6.
7.
非洲猪瘟病毒的免疫逃逸策略   总被引:1,自引:0,他引:1  
非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)引起的一种猪烈性传染病。目前无商品化的ASF疫苗,一旦发病,仅能依靠快速扑杀进行防控,严重威胁我国养猪及相关行业的健康发展。ASF疫苗研发面临的主要困难是对ASFV的毒力相关基因、致病及其免疫逃逸机制知之甚少。本文对ASFV的免疫逃逸研究进行了总结,探讨了ASFV免疫逃逸基因及其编码蛋白的功能,以便加深对ASFV及其免疫逃逸策略的认知,为致病机制研究和疫苗研发提供借鉴。  相似文献   

8.
非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)引起的一种猪烈性传染病,是全球养猪业的"头号杀手",强毒株引发的超急性和急性感染死率高达100%。2018年8月ASF首次传入我国,截止2019年6月6日,已有32个省份累计暴发137起疫情,给我国社会、经济构成巨大威胁。ASF疫苗的研制始于20世纪60年代,但均以失败而告终,其主要原因是对ASFV生物学特性缺乏深入的研究。有效控制当前ASF疫情扩散、研制安全有效的疫苗将是我国面临的巨大挑战。本文对ASFV形态与基本结构、传播途径、致病机制、基因组及编码蛋白、入侵机制、免疫逃逸等生物学特性进行了概述,并分析了当前疫苗研制面临的难点,以期为我国有效控制ASF疫情及病原研究提供参考。  相似文献   

9.
The cellular pool of ribonucleotide triphosphates (rNTPs) is higher than that of deoxyribonucleotide triphosphates. To ensure genome stability, DNA polymerases must discriminate against rNTPs and incorporated ribonucleotides must be removed by ribonucleotide excision repair (RER). We investigated DNA polymerase β (POL β) capacity to incorporate ribonucleotides into trinucleotide repeated DNA sequences and the efficiency of base excision repair (BER) and RER enzymes (OGG1, MUTYH, and RNase H2) when presented with an incorrect sugar and an oxidized base. POL β incorporated rAMP and rCMP opposite 7,8-dihydro-8-oxoguanine (8-oxodG) and extended both mispairs. In addition, POL β was able to insert and elongate an oxidized rGMP when paired with dA. We show that RNase H2 always preserves the capacity to remove a single ribonucleotide when paired to an oxidized base or to incise an oxidized ribonucleotide in a DNA duplex. In contrast, BER activity is affected by the presence of a ribonucleotide opposite an 8-oxodG. In particular, MUTYH activity on 8-oxodG:rA mispairs is fully inhibited, although its binding capacity is retained. This results in the reduction of RNase H2 incision capability of this substrate. Thus complex mispairs formed by an oxidized base and a ribonucleotide can compromise BER and RER in repeated sequences.  相似文献   

10.
11.
12.
【目的】通过炎症应答系统筛选,发现非洲猪瘟病毒(African swine fever virus, ASFV) C717R蛋白可诱导炎症反应,本研究旨在首次鉴定C717R蛋白功能,通过构建C717R重组慢病毒并感染BALB/c小鼠,探究其对炎症应答产生的影响。【方法】通过炎症小体表达系统筛选出诱导炎症应答的C717R蛋白,并构建C717R重组慢病毒。利用C717R重组慢病毒感染小鼠,使C717R在小鼠组织中表达。经实时荧光定量、蛋白质免疫印迹等方法检测C717R慢病毒包装、蛋白表达以及促炎细胞因子TNF-α、IL-1β、IL-6、IFN-β的变化。【结果】C717R蛋白在小鼠组织中正常表达。酶联免疫吸附测定(enzyme linked immunosorbent assay, ELISA)检测发现,表达C717R蛋白的小鼠,血清中促炎细胞因子TNF-α、IL-1β、IL-6、IFN-β及IFN-γ分泌水平显著升高。实时荧光定量检测表达C717R蛋白的小鼠组织证实,C717R、TNF-α、IL-1β、IL-6的mRNA转录水平显著上调;蛋白质免疫印迹证实,C717R可诱导小鼠不同组织caspase-1和IL-1β的成熟。组织病理切片结果显示,表达C717R蛋白的BALB/c小鼠和对照组和相比,肝脏、心脏、肺脏等器官炎性细胞浸润程度较对照组更严重。【结论】ASFV的C717R蛋白表达诱导BALB/c小鼠产生炎症应答,为鉴定和阐明C717R蛋白介导的促炎新机制提供了重要依据。  相似文献   

13.
African swine fever(ASF) is a lethal hemorrhagic disease that affects wild and domestic swine. The etiological agent of ASF is African swine fever virus(ASFV). Since the first case was described in Kenya in 1921, the disease has spread to many other countries. No commercial vaccines are available to prevent ASF. In this study, we generated a recombinant Newcastle disease virus(r NDV) expressing ASFV protein 72(p72) by reverse genetics and evaluated its humoral and cellular immunogenicity in a mouse model. The recombinant virus, r NDV/p72, replicated well in embryonated chicken eggs and was safe to use in chicks and mice. The p72 gene in r NDV/p72 was stably maintained through ten passages. Mice immunized with r NDV/p72 developed high titers of ASFV p72 specific Ig G antibody, and had higher levels of Ig G1 than IgG2 a. Immunization also elicited T-cell proliferation and secretion of IFN-γ and IL-4. Taken together, these results indicate that r NDV expressing ASFV p72 might be a potential vaccine candidate for preventing ASF.  相似文献   

14.
Autophagy plays an important role in cellular responses to pathogens. However, the impact of the autophagy machinery on classical swine fever virus (CSFV) infection is not yet confirmed. In this study, we showed that CSFV infection significantly increases the number of autophagy-like vesicles in the cytoplasm of host cells at the ultrastructural level. We also found the formation of 2 ubiquitin-like conjugation systems upon virus infection, including LC3-I/LC3-II conversion and ATG12–ATG5 conjugation, which are considered important indicators of autophagy. Meanwhile, high expression of ATG5 and BECN1 was detected in CSFV-infected cells; conversely, degradation of SQSTM1 was observed by immunoblotting, suggesting that CSFV infection triggered a complete autophagic response, most likely by the NS5A protein. Furthermore, by confocal immunofluorescence analysis, we discovered that both envelope protein E2 and nonstructural protein NS5A colocalized with LC3 and CD63 during CSFV infection. Examination by immunoelectron microscopy further confirmed the colocalization of both E2 and NS5A proteins with autophagosome-like vesicles, indicating that CSFV utilizes the membranes of these vesicles for replication. Finally, we demonstrated that alteration of cellular autophagy by autophagy regulators and shRNAs affects progeny virus production. Collectively, these findings provide strong evidence that CSFV infection needs an autophagy pathway to enhance viral replication and maturity in host cells.  相似文献   

15.
Infection of cells with African swine fever virus (ASFV) can lead to the formation of zipper-like stacks of structural proteins attached to collapsed endoplasmic reticulum (ER) cisternae. We show that the collapse of ER cisternae observed during ASFV infection is dependent on the viral envelope protein, J13Lp. Expression of J13Lp alone in cells is sufficient to induce collapsed ER cisternae. Collapse was dependent on a cysteine residue in the N-terminal domain of J13Lp exposed to the ER lumen. Luminal collapse was also dependent on the expression of J13Lp within stacks of ER where antiparallel interactions between the cytoplasmic domains of J13Lp orientated N-terminal domains across ER cisternae. Cisternal collapse was then driven by disulphide bonds between N-terminal domains arranged in antiparallel arrays across the ER lumen. This provides a novel mechanism for biogenesis of modified stacks of ER present in cells infected with ASFV, and may also be relevant to cellular processes.  相似文献   

16.
African swine fever virus (ASFV) was detected on or in zona pellucida-intact porcine embryos that had been exposed to 106.6 hemadsorption dose 50%/ml (HAdD50/ml) of ASFV for 18 hours, washed and then cultured. Ninety-five percent of the embryos retained infectious virus after washing. Treating the embryos with papain, EDTA or ficin had no effect on the retained virus, whereas treating them with trypsin or pronase reduced the number of embryos carrying detectable virus (30% instead of 95%) and lowered the amount of virus on the embryos. It has not yet been determined whether ASFV enters the embryonic cells but the evidence suggests that most of the virus, and possibly all of it, is bound to the zona pellucida.  相似文献   

17.
The aim of this study was to determine filial infection prevalence of experimentally infected colony Ornithodoros moubata Walton (Ixodoidea: Argasidae) ticks for African swine fever virus (ASFV). Three groups of ticks were used: an uninfected control group, one group orally infected with the VIC T90/1 isolate and another group orally infected with the LIV 13/33 isolate of ASFV. The results show that filial infection prevalences were not constant but were highly variable between egg batches from different ticks and between successive egg batches from the same tick. Filial infection prevalences ranged from 1.8% to 31.8% for ticks infected with the VICT90/1 isolate and from 1.2% to 35.5% for ticks infected with the LIV 13/33 isolate. A similar pattern was noted after the third feed. Immunohistochemisty showed that virus replicates in the developing larval cells and not in the yolk sac cells or within the outer layers of the eggs. The results show that ASFV can replicate to a high titre (10(5.1)log10HAD50) within the larval cells of the developing egg.  相似文献   

18.
The effects of infection with African swine fever virus (ASFV) on adult and nymphal Ornithodoros moubata Murray (Ixodoidea, Argasidae) ticks were examined. Three groups of ticks were used, an uninfected control group, one group infected with the VIC T90/1 isolate of ASFV and another group infected with the LIV 13/33 isolate of ASFV. Infection with ASFV did not affect the oviposition rates of infected ticks when compared with uninfected ticks. There was no difference between infected and uninfected ticks in progeny hatching rates and first nymphal stage feeding rates. Feeding rates of infected adult ticks were also unaffected. However, a significant increase in mortality rates was observed amongst the adult ticks that fed on an infective bloodmeal compared to ticks fed on an unifected bloodmeal.  相似文献   

19.
20.
非洲猪瘟病毒(African swine fever virus,ASFV)的感染导致猪的死亡率高达100%,给养猪业造成毁灭性灾难。因此,开展针对ASFV感染复制的研究有着重大的意义。目前发现ASFV有超过150个开放阅读框,其中D117L基因编码的内囊膜蛋白p17参与病毒二十面体结构的形成,但是对p17调控宿主细胞功能的机制知之甚少。研究通过免疫沉淀技术联合蛋白质谱分析,初步筛选出与ASFV p17潜在的宿主互作蛋白。通过进一步免疫共沉淀技术和激光共聚焦实验确认了p17与线粒体外膜蛋白TOMM70(translocase of outer mitochondrial membrane 70)、热休克蛋白HSPA8(heat shock 70 kDa protein 8)的互作。该研究为进一步探索p17在ASFV感染过程中的功能提供了重要信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号