首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Archaeological, genetic, and linguistic evidence has supported the idea that northern China is the original center of modern Sino‐Tibetan‐speaking populations. However, the demographic history of subsequent southward migration and genetic admixture of Han Chinese with surrounding indigenous populations remain uncharacterized, and the language shifts and assimilations accompanied by movement of people, or just an adaptation of cultural ideas among populations in central China is still unclear, especially for Tibeto‐Burman‐speaking Tujia and central Han Chinese populations. To resolve this, we genotyped over 60K genome‐wide markers in 505 unrelated individuals from 63 indigenous populations. Our results showed both studied Han and Tujia were at the intermediate position in the modern East Asian North–South genetic cline and there was a correlation between the genetic composition and the latitude. We observed the strong genetic assimilation between Tujia people and central Han Chinese, which suggested massive population movements and genetic admixture under language borrowing. Tujia and central Han Chinese could be modeled as a two‐way admixture deriving primary ancestry from a northern ancestral population closely related to the ancient DevilsCave and present‐day Tibetans and a southern ancestral population closely related to the present‐day Tai‐Kadai and Austronesian‐speaking groups. The ancestral northern population we suspect to be related to the Neolithic millet farming groups in the Yellow River Basin or central China. We showed that the newly genotyped populations in Hubei Province had a higher proportion of DevilsCave or modern Tungusic/Mongolic‐related northern ancestries, while the Hunan populations harbored a higher proportion of Austronesian/Tai‐Kadai‐related southern ancestries.  相似文献   

2.
The population history of Southeast (SE) China remains poorly understood due to the sparse sampling of present-day populations and limited modeling with ancient genomic data. We report genome-wide genotyping data from 207 present-day Han Chinese and Hmong-Mien (HM)-speaking She people from Fujian and Taiwan Island, SE China. We coanalyzed 66 Early Neolithic to Iron Age ancient Fujian and Taiwan Island individuals obtained from previously published works to explore the genetic continuity and admixture based on patterns of genetic variations of the high-resolution time transect. We found the genetic differentiation between northern and southern East Asians was defined by a north–south East Asian genetic cline and our studied southern East Asians were clustered in the southern end of this cline. The southeastern coastal modern East Asians are genetically similar to other southern indigenous groups as well as geographically close to Neolithic-to-Iron Age populations, but they also shared excess alleles with post-Neolithic Yellow River ancients, which suggested a southward gene flow on the modern southern coastal gene pool. In addition, we identified one new HM genetic cline in East Asia with the coastal Fujian HM-speaking She localizing at the intersection between HM and Han clines. She people show stronger genetic affinity with southern East Asian indigenous populations, with the main ancestry deriving from groups related to southeastern ancient indigenous rice farmers. The southeastern Han Chinese could be modeled with the primary ancestry deriving from the group related to the Yellow River Basin millet farmers and the remaining from groups related to rice farmers, which was consistent with the northern China origin of modern southeastern Han Chinese and in line with the historically and archaeologically attested southward migrations of Han people and their ancestors. Our estimated north–south admixture time ranges based on the decay of the linkage disequilibrium spanned from the Bronze Age to historic periods, suggesting the recent large-scale population migrations and subsequent admixture participated in the formation of modern Han in SE Asia.  相似文献   

3.
《Genomics》2021,113(4):2199-2210
The Mongolians are mainly distributed in the modern state of Mongolia, China, Russia, and other countries. While the historic and archaeological records of the rise and fall of the Mongol Empire are well documented, little has been known about the genetic legacy of modern Mongolian populations. Here, 611 Mongolian individuals from Hohhot, Hulunbuir, and Ordos of China were genotyped via the 47 Insertion/Deletion markers. Forensically statistical parameters indicated that this InDel system could be applied to forensic investigation in Mongolian populations. The comprehensive population comparisons indicated that targeted Mongolian populations are a homogeneous population, which kept close genetic proximity with geographically northern East Asians. The findings of the model-based clustering analysis revealed a southern East Asian-specific ancestral component, which was maximized in Hainan Li, and Mongolian populations harbored relatively less Hainan Li-related ancestry and more northern East Asian-related ancestry compared with reference Tai-Kadai, Austroasiatic and Sinitic people.  相似文献   

4.
With the aim of uncovering all of the most basal variation in the northern Asian mitochondrial DNA (mtDNA) haplogroups, we have analyzed mtDNA control region and coding region sequence variation in 98 Altaian Kazakhs from southern Siberia and 149 Barghuts from Inner Mongolia, China. Both populations exhibit the prevalence of eastern Eurasian lineages accounting for 91.9% in Barghuts and 60.2% in Altaian Kazakhs. The strong affinity of Altaian Kazakhs and populations of northern and central Asia has been revealed, reflecting both influences of central Asian inhabitants and essential genetic interaction with the Altai region indigenous populations. Statistical analyses data demonstrate a close positioning of all Mongolic-speaking populations (Mongolians, Buryats, Khamnigans, Kalmyks as well as Barghuts studied here) and Turkic-speaking Sojots, thus suggesting their origin from a common maternal ancestral gene pool. In order to achieve a thorough coverage of DNA lineages revealed in the northern Asian matrilineal gene pool, we have completely sequenced the mtDNA of 55 samples representing haplogroups R11b, B4, B5, F2, M9, M10, M11, M13, N9a and R9c1, which were pinpointed from a massive collection (over 5000 individuals) of northern and eastern Asian, as well as European control region mtDNA sequences. Applying the newly updated mtDNA tree to the previously reported northern Asian and eastern Asian mtDNA data sets has resolved the status of the poorly classified mtDNA types and allowed us to obtain the coalescence age estimates of the nodes of interest using different calibrated rates. Our findings confirm our previous conclusion that northern Asian maternal gene pool consists of predominantly post-LGM components of eastern Asian ancestry, though some genetic lineages may have a pre-LGM/LGM origin.  相似文献   

5.
South China (SC) was a region with mixed rice–millet farming during the Middle Neolithic period and was also suggested to be the homeland of Tai-Kadai (TK)-speaking people. However, the formations of inland TK-speaking people and southwestern Hans are far from clear due to very few studies on this subject. Here, we reveal the spatiotemporally demographic history of SC by analyzing newly-generated genome-wide SNP data of 115 modern southwestern individuals and find that inland TK-speaking Dongs and Bouyeis have a close genomic affinity to coastal TK/Austronesian (AN)-speaking people and Neolithic Yangtze River basin (YZRB) farmers, while southwestern Hans and TK-speaking Gelaos possess a close genomic affinity to Neolithic Yellow River basin (YRB) farmers. Genetic differentiations are identified among TK people from SC and Southeast Asia, and between northern and southern inland Chinese TK people, in which the identified shared genetic ancestry between TK and AN people highlights a common origin of AN/TK groups. Conclusively, our findings indicate that millet farmers deriving from the YRB and rice farmers deriving from the YZRB substantially contribute to the present-day inland TK speakers and southwestern Hans via a two-way admixture scenario of bi-directional gene-flow events, which facilitates the formation of a modern two-way genetic admixture profile.  相似文献   

6.
The Han Chinese are the world's largest ethnic group residing across China. Shaanxi province in northern China was a pastoral–agricultural interlacing region sensitive to climate change since Neolithic times, which makes it a vital place for studying population dynamics. However, genetic studies of Shaanxi Han are underrepresented due to the lack of high-density sampling and genome-wide data. Here, we genotyped 700 000 single nucleotide polymorphisms (SNPs) in 200 Han individuals from nine populations in Shaanxi and compared with available modern and ancient Eurasian individuals. We revealed a north–south genetic cline in Han Chinese with Shaanxi Han locating at the northern side of the cline. We detected the western Eurasian-related admixture in Shaanxi populations, especially in Guanzhong and Shanbei Han Chinese in proportions of 2%–4.6%. Shaanxi Han were suggested to derive a large part of ancestry (39%–69%) from a lineage that also contributed largely to ancient and present-day Tibetans (85%) as well as southern Han, supporting the common northern China origin of modern Sino-Tibetan-speaking populations and southwestward expansion of millet farmers from the middle-upper Yellow River Basin to the Tibetan Plateau and to southern China. The rest of the ancestry of Shaanxi Han was from a lineage closely related to ancient and present-day Austronesian and Tai-Kadai speaking populations in southern China and Southeast Asia. We also observed a genetic substructure in Shaanxi Han in terms of north–south-related ancestry corresponding well to the latitudes. Maternal mitochondrial DNA and paternal Y-chromosome lineages further demonstrated the aforementioned admixture pattern of Han Chinese in Shaanxi province.  相似文献   

7.
Geographical partitioning of goat diversity in Europe and the Middle East   总被引:1,自引:0,他引:1  
Thirty microsatellite markers were analysed in 1426 goats from 45 traditional or rare breeds in 15 European and Middle Eastern countries. In all populations inbreeding was indicated by heterozygosity deficiency (mean FIS = 0.10). Genetic differentiation between breeds was moderate with a mean FST value of 0.07, but for most (c. 71%) northern and central European breeds, individuals could be assigned to their breeds with a success rate of more than 80%. Bayesian-based clustering analysis of allele frequencies and multivariate analysis revealed at least four discrete clusters: eastern Mediterranean (Middle East), central Mediterranean, western Mediterranean and central/northern Europe. About 41% of the genetic variability among the breeds could be explained by their geographical origin. A decrease in genetic diversity from the south-east to the north-west was accompanied by an increase in the level of differentiation at the breed level. These observations support the hypothesis that domestic livestock migrated from the Middle East towards western and northern Europe and indicate that breed formation was more systematic in north-central Europe than in the Middle East. We propose that breed differentiation and molecular diversity are independent criteria for conservation.  相似文献   

8.
Evenks and Evens, Tungusic-speaking reindeer herders and hunter-gatherers, are spread over a wide area of northern Asia, whereas their linguistic relatives the Udegey, sedentary fishermen and hunter-gatherers, are settled to the south of the lower Amur River. The prehistory and relationships of these Tungusic peoples are as yet poorly investigated, especially with respect to their interactions with neighbouring populations. In this study, we analyse over 500 complete mtDNA genome sequences from nine different Evenk and even subgroups as well as their geographic neighbours from Siberia and their linguistic relatives the Udegey from the Amur-Ussuri region in order to investigate the prehistory of the Tungusic populations. These data are supplemented with analyses of Y-chromosomal haplogroups and STR haplotypes in the Evenks, Evens, and neighbouring Siberian populations. We demonstrate that whereas the North Tungusic Evenks and Evens show evidence of shared ancestry both in the maternal and in the paternal line, this signal has been attenuated by genetic drift and differential gene flow with neighbouring populations, with isolation by distance further shaping the maternal genepool of the Evens. The Udegey, in contrast, appear quite divergent from their linguistic relatives in the maternal line, with a mtDNA haplogroup composition characteristic of populations of the Amur-Ussuri region. Nevertheless, they show affinities with the Evenks, indicating that they might be the result of admixture between local Amur-Ussuri populations and Tungusic populations from the north.  相似文献   

9.
《遗传学报》2021,48(10):899-907
Southern East Asia, including Guangxi and Fujian provinces in China, is home to diverse ethnic groups, languages, and cultures. Previous studies suggest a high complexity regarding population dynamics and the history of southern East Asians. However, large-scale genetic studies on ancient populations in this region are hindered by limited sample preservation. Here, using highly efficient DNA capture techniques, we obtain 48 complete mitochondrial genomes of individuals from Guangxi and Fujian in China and reconstruct their maternal genetic history over the past 12,000 years. We find a strong connection between southern East Asians dating to ~12,000–6000 years ago and present-day Southeast Asians. In addition, stronger genetic affinities to northern East Asians are observed in historical southern East Asians than Neolithic southern East Asians, suggesting increased interactions between northern and southern East Asians over time. Overall, we reveal dynamic connections between ancient southern East Asians and populations located in surrounding regions, as well as a shift in maternal genetic structure within the populations over time.  相似文献   

10.
The Turkic peoples represent a diverse collection of ethnic groups defined by the Turkic languages. These groups have dispersed across a vast area, including Siberia, Northwest China, Central Asia, East Europe, the Caucasus, Anatolia, the Middle East, and Afghanistan. The origin and early dispersal history of the Turkic peoples is disputed, with candidates for their ancient homeland ranging from the Transcaspian steppe to Manchuria in Northeast Asia. Previous genetic studies have not identified a clear-cut unifying genetic signal for the Turkic peoples, which lends support for language replacement rather than demic diffusion as the model for the Turkic language’s expansion. We addressed the genetic origin of 373 individuals from 22 Turkic-speaking populations, representing their current geographic range, by analyzing genome-wide high-density genotype data. In agreement with the elite dominance model of language expansion most of the Turkic peoples studied genetically resemble their geographic neighbors. However, western Turkic peoples sampled across West Eurasia shared an excess of long chromosomal tracts that are identical by descent (IBD) with populations from present-day South Siberia and Mongolia (SSM), an area where historians center a series of early Turkic and non-Turkic steppe polities. While SSM matching IBD tracts (> 1cM) are also observed in non-Turkic populations, Turkic peoples demonstrate a higher percentage of such tracts (p-values ≤ 0.01) compared to their non-Turkic neighbors. Finally, we used the ALDER method and inferred admixture dates (~9th–17th centuries) that overlap with the Turkic migrations of the 5th–16th centuries. Thus, our results indicate historical admixture among Turkic peoples, and the recent shared ancestry with modern populations in SSM supports one of the hypothesized homelands for their nomadic Turkic and related Mongolic ancestors.  相似文献   

11.
在语言学研究建立的蒙古语族的多种分化谱系树中,达斡尔语均独立构成一个语言分支或语组。此前的研究表明,达斡尔语中保留了一部分13世纪蒙古语的要素。本文以遗传学数据为基础,结合历史学、民族学和语言学等学科的证据,详细地描述了蒙古语人群始祖群体的演化历史背景,并为蒙古语族语言早期分化、达斡尔语作为独立分支诞生的过程提供了较为准确的演化时间框架。父系支系M401是蒙古语人群的奠基者父系之一,达斡尔族的主要父系F5483是M401的最古老分支之一,其他蒙古语人群的M401主要集中在另一个分支F3796,两个分支的分化年代约为2.9千年前。历史学、民族学和语言学的研究也证明了公元9世纪之后迁徙到欧亚草原上的蒙古语人群与继续保留采集渔猎生活方式的亲族之间的分化。我们认为,从多学科研究所揭示的人类群体演化历史的角度看,达斡尔族确实可视为全体蒙古语人群的最古老分支。  相似文献   

12.
Derenko  M. V.  Lunkina  A. V.  Malyarchuk  B. A.  Zakharov  I. A.  Tsedev  Ts.  Park  K. S.  Cho  Y. M.  Lee  H. K.  Chu  Ch. H. 《Russian Journal of Genetics》2004,40(11):1292-1299
Using the data on mitochondrial DNA (mtDNA) restriction polymorphism, the gene pools of Koreans (N = 164) and Mongolians (N = 48) were characterized. It was demonstrated that the gene pools were represented by the common set of mtDNA haplogroups of East Asian origin (M*, M7, M8a, M10, C, D4, G*, G2, A, B*, B5, F1, and N*). In addition to this set, mtDNA haplogroups D5 and Y were identified in Koreans while Mongolians possessed haplogroup Z. Only in Mongolians, a European component with the frequency of 10.4% and represented by the mtDNA types belonging to haplogroups K, U4, and N1, was identified. Phylogenetic and statistical analyses of the data on mtDNA variation in the populations of South Siberia, Central, and East Asia suggested the existence of interpopulation differentiation within these regions, the main role in which was played by the geographical and linguistic factors. Analysis of the pairwise F ST distances demonstrated close genetic similarity of Koreans to Northern Chinese, which in turn, were clearly different from Southern Chinese populations. Mongolians occupied an intermediate position between the ethnic groups of South Siberia and Central/East Asia.  相似文献   

13.
Autosomal gene pools of 27 populations representing 12 ethnic groups of Siberia, Central Asia, and the Far East have been characterized for the first time using a set of eight polymorphic Alu insertions. The results of our analysis indicate a significant level of genetic diversity in populations of northern Eurasian and the considerable differentiation of their gene pool. It was shown that the frequency of the Alu (?) allele at the CD4 locus was inversely related to the magnitude of the Mongoloid component of the gene pool: the lowest and highest frequencies of the CD4 Alu deletion were recorded in Eskimos (0.012) and in Russians and Ukrainians (0.35), respectively. A gene flow analysis showed that Caucasoid populations (Russians, Tajiks, and Uzbeks), as well as Turkic ethnic groups of southern Siberia (Altaians and Tuvans), Khanty, and Mansi populations, in contrast to ethnic groups of eastern Siberia and the Far East, have been recipients of a considerable gene flow. A correlation analysis showed that genetic distances determined using polymorphic Alu insertions were correlated with the anthropological characteristics of the populations studied.  相似文献   

14.
North African populations are distinct from sub-Saharan Africans based on cultural, linguistic, and phenotypic attributes; however, the time and the extent of genetic divergence between populations north and south of the Sahara remain poorly understood. Here, we interrogate the multilayered history of North Africa by characterizing the effect of hypothesized migrations from the Near East, Europe, and sub-Saharan Africa on current genetic diversity. We present dense, genome-wide SNP genotyping array data (730,000 sites) from seven North African populations, spanning from Egypt to Morocco, and one Spanish population. We identify a gradient of likely autochthonous Maghrebi ancestry that increases from east to west across northern Africa; this ancestry is likely derived from "back-to-Africa" gene flow more than 12,000 years ago (ya), prior to the Holocene. The indigenous North African ancestry is more frequent in populations with historical Berber ethnicity. In most North African populations we also see substantial shared ancestry with the Near East, and to a lesser extent sub-Saharan Africa and Europe. To estimate the time of migration from sub-Saharan populations into North Africa, we implement a maximum likelihood dating method based on the distribution of migrant tracts. In order to first identify migrant tracts, we assign local ancestry to haplotypes using a novel, principal component-based analysis of three ancestral populations. We estimate that a migration of western African origin into Morocco began about 40 generations ago (approximately 1,200 ya); a migration of individuals with Nilotic ancestry into Egypt occurred about 25 generations ago (approximately 750 ya). Our genomic data reveal an extraordinarily complex history of migrations, involving at least five ancestral populations, into North Africa.  相似文献   

15.
Many arctic-alpine organisms have vast present-day ranges across Eurasia, but their history of refugial isolation, differentiation and postglacial expansion is poorly understood. The mountain avens, Dryas octopetala sensu lato, is a long-lived, wind-dispersed, diploid shrub forming one of the most important components of Eurasian tundras and heaths in terms of biomass. We address differentiation and migration history of the species with emphasis on the western and northern Eurasian parts of its distribution area, also including some East Greenlandic and North American populations (partly referred to as the closely related D. integrifolia M. Vahl). We analysed 459 plants from 52 populations for 155 amplified fragment length polymorphisms (AFLP) markers. The Eurasian plants were separated into two main groups, probably reflecting isolation and expansion from two major glacial refugia, situated south and east of the North European ice sheets, respectively. Virtually all of northwestern Europe as well as East Greenland have been colonized by the Southern lineage, whereas northwest Russia, the Tatra Mountains and the arctic archipelago of Svalbard have been colonized by the Eastern lineage. The data indicate a contact zone between the two lineages in northern Scandinavia and possibly in the Tatra Mountains. The two single populations analysed from the Caucasus and Altai Mountains were most closely related to the Eastern lineage but were strongly divergent from the remaining eastern populations, suggesting survival in separate refugia at least during the last glaciation. The North American populations grouped with those from East Greenland, irrespective of their taxonomic affiliation, but this may be caused by independent hybridization with D. integrifolia and therefore not reflect the true relationship between populations from these areas.  相似文献   

16.
Current understanding of phylogeographical structure and genetic diversity of Siberian roe deer remains limited mainly due to small sample size and/or low geographical coverage in previous studies. Published data suggest at least two phylogroups: western (Ural Mountains and Western Siberia) and eastern (east from lake Baikal, including the Korean peninsula), but their phylogenetic relationship remains unclear. Combined sequences of cytochrome b (1140 bp) and the mtDNA control region (963 bp) were analyzed from 219 Siberian roe deer from 12 locations in Russia, Mongolia, and South Korea, which cover a large part of its range, to assess genetic diversity and phylogeographical status. Special emphasis was placed on the demographic history and genetic features of central, peripheral, and isolated populations. Results of median‐joining network and phylogenetic tree analyses indicate that Siberian roe deer from the Urals to the Pacific Ocean are genetically diverse and that geographical distribution and composition of haplogroups coincide with previously described ranges of the subspecies Capreolus pygargus pygargus and Capreolus pygargus tianschanicus. We found that peripheral populations in the northwestern parts of the species range (Urals), as well as the isolated population from Jeju Island, are genetically distinct from those in the core part of the range, both in terms of genetic diversity and quantitative composition of haplogroups. We also found that northwestern (Urals) and northern (Yakutia) peripheral populations share the same haplogroup and fall into the same phylogenetic clade with the isolated population from Jeju Island. This finding sheds light on the taxonomic status of the Jeju Island population and leads to hypotheses about the discordance of morphological and genetic evolution in isolated populations and specific genetic features of peripheral populations.  相似文献   

17.
In the last decade a number of studies has illustrated quite different phylogeographical patterns amongst plants with a northern present‐day geographical distribution, spanning the entire circumboreal region and/or circumarctic region and southern mountains. These works, employing several marker systems, have brought to light the complex evolutionary histories of this group. Here I focus on one circumboreal plant species, Chamaedaphne calyculata (leatherleaf), to unravel its phylogeographical history and patterns of genetic diversity across its geographical range. A survey of 29 populations with combined analyses of chloroplast DNA (cpDNA), internal transcribed spacer (ITS) and AFLP markers revealed structuring into two groups: Eurasian/north‐western North American, and north‐eastern North American. The present geographical distribution of C. calyculata has resulted from colonization from two putative refugial areas: east Beringia and south‐eastern North America. The variation of chloroplast DNA (cpDNA) and ITS sequences strongly indicated that the evolutionary histories of the Eurasian/north‐western North American and the north‐eastern North American populations were independent of each other because of a geographical disjunction in the distribution area and ice‐sheet history between north‐eastern and north‐western North America. Mismatch analysis using ITS confirmed that the present‐day population structure is the result of rapid expansion, probably since the last glacial maximum. The AFLP data revealed low genetic diversity of C. calyculata (P = 19.5%, H = 0.085) over the whole geographical range, and there was no evidence of loss of genetic diversity within populations in the continuous range, either at the margins or in formerly glaciated and nonglaciated regions. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 761–775.  相似文献   

18.
The first data are presented on mtDNA diversity in Besermyans, the Finno-Ugric ethnic group related to Udmurts. An analysis of mtDNA polymorphism showed that Besermyans stood out from the other populations of Volga-Ural region due to the presence of a large proportion of the Mongoloid component. The sample of Besermyans contained East Eurasian haplotypes not detected in ethnic populations of the Volga region and Cisurals, while they were detected in South Siberia, mostly among Turkic-speaking populations. An analysis of the genetic distances between Besermyans and the neighboring ethnic groups showed that Besermyans were distant from other populations of Volga-Ural region and close to Turkic-speaking populations of South Siberia. Thus, the data obtained favor the suggestion on the mixed Udmurto-Turkic origin of Besermyans.  相似文献   

19.
We analyzed mitochondrial DNA polymorphisms to search for evidence of the genetic structure and patterns of admixture in 124 populations (N = 1407 trees) across the distribution of Scots pine in Europe and Asia. The markers revealed only a weak population structure in Central and Eastern Europe and suggested postglacial expansion to middle and northern latitudes from multiple sources. Major mitotype variants include the remnants of Scots pine at the north-western extreme of the distribution in the Scottish Highlands; two main variants (western and central European) that contributed to the contemporary populations in Norway and Sweden; the central-eastern European variant present in the Balkan region, Finland, and Russian Karelia; and a separate one common to most eastern European parts of Russia and western Siberia. We also observe signatures of a distinct refugium located in the northern parts of the Black Sea basin that contributed to the patterns of genetic variation observed in several populations in the Balkans, Ukraine, and western Russia. Some common haplotypes of putative ancient origin were shared among distant populations from Europe and Asia, including the most southern refugial stands that did not participate in postglacial recolonization of northern latitudes. The study indicates different genetic lineages of the species in Europe and provides a set of genetic markers for its finer-scale population history and divergence inference.  相似文献   

20.
The people associated with the Jomon culture, the Neolithic inhabitants of Japan, are one of the key groups in the population history of East Asia, because they retain many archaic characters that may be traced back to Eurasian Upper Palaeolithic hunter–gatherers. In this study, the regional diversity of the Jomon skeletal series was estimated by applying the R‐matrix method to 34 craniofacial measurements. The patterns of intraregional variation indicate little effect on the genetic structure of the Jomon from long‐term gene flow stemming from an outside source. The regional diversities were further estimated by pooling all individuals into regional aggregates, and by computing the mean variance within local groups in each region. Although the pattern of phenotypic variation differs depending on the unit of analysis, the gradient of the diversity retains its identity. The Hokkaido region, the northernmost part of the Japanese archipelago, has the highest variance, followed by the regions of eastern Japan, while the southwestern regions have the lowest variance. These findings suggest that the Jomon ancestors of the northern part of Japan might have expanded southward to Honshu Island. Global analyses including samples from Eurasia, Africa, and Australia dating roughly to the same chronological periods as those of the Jomon samples, indicate that the Jomon cranial series share part of their ancestral gene pool with early northeastern Asians. The present findings support the archeologically suggested population growth and expansion in the northern half of the Eurasian continent during the late Pleistocene and early Holocene periods. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号