首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分枝的数量及角度是决定作物株型的重要农艺性状。有效分枝数决定着作物的穗数或荚果数,进而决定着作物的产量;而分枝角度与光合效率、种植密度和抗病性密切相关,不仅影响作物的产量,也会影响作物的品质。由于分枝在作物生产中具有十分重要的作用,吸引了越来越多的研究者的注意,多个与分枝性状相关的关键基因被鉴定,分枝数目调控的分子机制研究取得了重要进展。过去的研究表明作物分枝受严格的遗传调控,同时也受环境条件的影响。综述了与作物分枝性状相关的基因克隆、表达、功能和分子调控机理方面的研究进展,以及环境因素对分枝的影响,探讨分枝调控在作物品种改良中的应用。  相似文献   

2.
分蘖是禾本科植物特有的分枝类型, 是影响作物产量的关键因素之一。分枝/分蘖数由叶腋处侧生分生组织的数量和侧芽的活性共同决定。表观遗传修饰调控植物生长发育的各个方面, 但是如何调控植物的分枝/分蘖数还未见系统报道。该综述归纳了表观遗传调控侧生分生组织的形成和侧芽向外生长两个方面, 并展望了表观遗传在调控植物分枝/分蘖中的研究方向, 以期为通过表观遗传修饰改良作物品种的育种途径提供理论指导。  相似文献   

3.
Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops.  相似文献   

4.
Multiple lateral branching (MLB) is a quantitatively inherited trait associated with yield in cucumber (Cucumis sativus L.; 2n = 2x = 14). Although quantitative trait loci (QTL) have been identified for MLB and QTL-marker associations have been verified by marker-assisted selection, the individual effects of these QTL have not been characterized. To test the effects of pyramiding QTL for MLB, molecular genotyping was utilized to create two sets (standard- and little-leaf types) of inbred backcross (IBC) lines possessing various numbers of QTL that promote branching. These IBC lines were evaluated for lateral branch number in two Wisconsin environments at three plant densities. Highly significant differences in the number of primary lateral branches were detected between spacings, leaf types, and lines, but not between locations. Lateral branch number decreased at higher plant densities in all genotypes, while genotype by environment and QTL by environment interactions were marginally non-significant. As the number of QTL increased among IBC lines, the number of branches did not generally change in the little-leaf lines, but decreased in the standard-leaf lines, demonstrating an epistatic effect related to genetic background during lateral branch development. The genomic location with the greatest effect on MLB was confirmed as the QTL that was previously mapped near the little-leaf locus (ll), while the addition of one specific QTL consistently decreased the number of lateral branches in standard-leaf lines. Although pyramiding QTL for MLB did not uniformly increase the number of lateral branches, pyramiding QTL in IBC lines allowed further characterization of individual QTL involved in MLB. Our results, coupled with those of previous studies indicate that lateral branch development in cucumber is determined by growing environment (i.e., plant spacing), genetic background, and QTL composition.  相似文献   

5.

Background and Aims

The growth of crops in a mixture is more variable and difficult to predict than that in pure stands. Light partitioning and crop leaf area expansion play prominent roles in explaining this variability. However, in many crops commonly grown in mixtures, including the forage species alfalfa, the sensitivity and relative importance of the physiological responses involved in the light modulation of leaf area expansion are still to be established. This study was designed to assess the relative sensitivity of primary shoot development, branching and individual leaf expansion in alfalfa in response to light availability.

Methods

Two experiments were carried out. The first studied isolated plants to assess the potential development of different shoot types and growth periods. The second consisted of manipulating the intensity of competition for light using a range of canopies in pure and mixed stands at two densities so as to evaluate the relative effects on shoot development, leaf growth, and plant and shoot demography.

Key Results

Shoot development in the absence of light competition was deterministic (constant phyllochrons of 32·5 °Cd and 48·2 °Cd for primary axes and branches, branching probability of 1, constant delay of 1·75 phyllochron before axillary bud burst) and identical irrespective of shoot type and growth/regrowth periods. During light competition experiments, changes in plant development explained most of the plant leaf area variations, with average leaf size contributing to a lesser extent. Branch development and the number of shoots per plant were the leaf area components most affected by light availability. Primary axis development and plant demography were only affected in situations of severe light competition.

Conclusions

Plant leaf area components differed with regard to their sensitivity to light competition. The potential shoot development model presented in this study could serve as a framework to integrate light responses in alfalfa crop models.  相似文献   

6.
光是影响植物分枝的重要外在环境因素,但光信号因子HY5(ELONGATED HYPOCOTYL5)是否调控植物分枝目前尚不清楚。创制了HY5转基因超表达植株,并获得商业化T-DNA插入突变体纯合植株。通过比较野生型(WT)、超表达植株(HY5-OE)、突变体(hy5-215)的分枝数目发现,与野生型相比,超表达植株分枝数目显著增加,而突变体分枝数目则显著减少。进一步比较这些遗传材料的拟南芥植株分枝的负调控关键因子BRC1BRANCHED1)转录本水平差异,发现与野生型相比,超表达植株中BRC1转录本显著下调、突变体中显著上调。研究结果表明,HY5通过抑制拟南芥分枝关键负调控因子BRC1的转录水平,进而促进拟南芥的分枝。研究结果为阐明HY5调控分枝的生物学功能提供了一定的理论依据。  相似文献   

7.
Many domesticated crops are derived from species whose life history includes weedy characteristics, such as the ability to vary branching patterns in response to environmental conditions. However, domesticated crop plants are characterized by less variable plant architecture, as well as by a general reduction in vegetative branching compared to their progenitor species. Here we examine weedy green millet and its domesticate foxtail millet that differ in the number of tillers (basal branches) and axillary branches along each tiller. Branch number in F(2:3) progeny of a cross between the two species varies with genotype, planting density, and other environmental variables, with significant genotype-environment interactions (GEI). This is shown by a complex pattern of reaction norms and by variation in the pattern of significant quantitative trait loci (QTL) amongst trials. Individual and joint analyses of high and low density trials indicate that most QTL have significant GEI. Dominance and epistasis also explain some variation in branching. Likely candidate genes underlying the QTL (based on map position and phenotypic effect) include teosinte branched1 and barren stalk1. Phytochrome B, which has been found to affect response to shading in other plants, explains little or no variation. Much variation in branching is explained by QTL that do not have obvious candidate genes from maize or rice.  相似文献   

8.
The branching system of higher plants plays a very important role in plant morphogenesis, and the number of branches can directly affect crop yield and the ornamental value of plants. It is a complicated development process involving complex molecular mechanisms. The ‘Cailinghong’ variety of Salvia splendens is characterized by its great branching ability with the ability to grow into a spherical form naturally, without pinching. To gain insight into the molecular events during the branching development of S. splendens, suppressive subtractive hybridization (SSH) technology was used to screen differentially expressed genes between the erect plant type (strain 35) and the spherical plant type (‘Cailinghong’). In total, 96 and 116 unigenes were annotated. Four and eight unigenes up-regulated in ‘Cailinghong’ and strain 35, respectively, were associated with plant hormone anabolism and signal transduction, suggesting that they participate in the branching process. One of these genes, phytoene synthase (PSY), is a precursor of the new plant hormone group strigolactones. Using the PSY fragment (192 bp) as a template, the cDNA sequence of PSY in S. splendens was cloned and named SsPSY. A relative expression analysis and transgenic test results indicated that SsPSY plays an important role in lateral branch development in ‘Cailinghong’. These results provide new insight into the molecular mechanisms underlying branching in S. splendens.  相似文献   

9.
We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm‐expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch‐free background and with the wild‐type plants. Each of the maize‐derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more‐than‐trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.  相似文献   

10.
The objectives of this research were to identify auxin gene, AUX1, and to determine the plant auxin content and their role in conferring branching on Kenaf. PCR analysis using AUX1 primer capable to amplify the DNA of non branching (KR11) and branching kenaf mutant, resulting in 800 bp PCR product. The sequence of the PCR product showed high degree of homology with the sequence of AUX1 gene of other plants in the NCBI GenBank database, confirming kenaf possession of the gene AUX1. However, some variation on the DNA sequence was found between branching and non branching phenotype indicated allele differences of the same gene which were responsible for the variation in the type of branching. Identification of auxin content in the roots, apical shoot, and axillary branches using spectrophotometry method showed that the branching plant has higher auxin content in the apical shoot compared to the content in the branches. This indicate that AUX1 controls the formation of branches by controlling either the content of auxin in the apical shoot and branches, or the ratio of auxin content in the shoot and branches.  相似文献   

11.
The number of viable shoots influences the overall architecture and productivity of wheat (Triticum aestivum L.). The development of lateral branches, or tillers, largely determines the resultant canopy. Tillers develop from the outgrowth of axillary buds, which form in leaf axils at the crown of the plant. Tiller number can be reduced if axillary buds are not formed or if the outgrowth of these buds is restricted. The teosinte branched1 (tb1) gene in maize, and homologs in rice and Arabidopsis, genetically regulate vegetative branching. In maize, increased expression of the tb1 gene restricts the outgrowth of axillary buds into lateral branches. In this study, the maize tb1 gene was introduced through transformation into the wheat cultivar "Bobwhite" to determine the effect of tb1 overexpression on wheat shoot architecture. Examination of multiple generations of plants reveals that tb1 overexpression in wheat results in reduced tiller and spike number. In addition, the number of spikelets on the spike and leaf number were significantly greater in tb1-expressing plants, and the height of these plants was also reduced. These data reveal that the function of the tb1 gene and genetic regulation of lateral branching via the tb1 mode of action is conserved between wheat, rice, maize and Arabidopsis. Thus, the tb1 gene can be used to alter plant architecture in agriculturally important crops like wheat.  相似文献   

12.
TILLING moves beyond functional genomics into crop improvement   总被引:10,自引:0,他引:10  
Transgenic methods have been successfully applied to trait improvement in a number of crops. However, reverse genetics studies by transgenic means are not practical in many commercially important crops, hampering investigations into gene function and the development of novel and improved cultivars. A nontransgenic method for reverse genetics called Targeting Induced Local Lesions IN Genomes (TILLING) has been developed as a method for inducing and identifying novel genetic variation, and has been demonstrated in the model plant, Arabidopsis thaliana. Recently, TILLING has been extended to the improvement of crop plants and shows great promise as a general method for both functional genomics and modulation of key traits in diverse crops.  相似文献   

13.
Summary The commercial multiplication of a large number of diverse plant species represents one of the major success stories of urilizing tissue culture technology profitably. Micropropagation has now become a multibillion dollar industry, practised all over the world. Of the various methods used to micropropagate plants, somatic embryogenesis and enhanced axillary branching have become the principal methods of multiplication. Long-term benefits of this enterprise, however, lie in the production of clonally uniform plants. The concept of genetic uniformity among micropropagated plants derived through organized meristems was exploded by several convincing reports of the incidence of somaclonal variation at morphological, cytological (chromosome number and structure), cytochemical (genome size), biochemical (proteins and isozymes), and molecular (nuclear and organellar genomes) levels. Somaclonal variation is not limited to any particular group of plants; it has been reported, for example, in ornamentals, plantation crops, vegetable and food crops, forest species and fruit trees. The upsurge of these reports, facilitated to a large extent by the technical developments made in molecular biology, is a matter of great concern for any micropropagation system. The economic consequences of somaclonal variation can be enormous in forest trees and woody plants, as they have long life cycles. Therefore, somaclonal variation has to be dispensed with if large-scale micropropagation of diverse plant species is to become not only successful but also accepted by end-users. In the light of the various factors (genotype, ploidy level, in vitro culture age, explant and culture type, etc.) that lead to somaclonal variation of divergent genetic changes at the cellular and molecular levels, genetic analysis of micropropagated plants using a multidisciplinary approach, especially at the DNA sequence level, initially and at various cultural stages, is essential. The results obtained at early multiplication stages from these tests could help in modifying the protocol/s for obtaining genetically true-to-type plants, and ultimate usage by entrepneneurs without any ambiguity.  相似文献   

14.
Two morphologically distinct hyphal branching responses by the AM fungus, Glomus intraradices, were stimulated by separated components of carrot root exudate. Complex branching up to the sixth order was induced by compounds most soluble in 35 % methanol, whereas the formation of more lateral branches (second order) was stimulated by compounds most soluble in 70 % methanol. This same 70 % alcohol soluble fraction also stimulated a completely different type of branching pattern in another fungus, Gigaspora gigantea. This pattern consisted of a very periodic distribution of dense clusters of hyphal branches that had a very high degree of complexity. In contrast to exudate components, separated cytosolic components of carrot roots did not stimulate any of the observed hyphal branching patterns. Alcohol-soluble fractions actually inhibited hyphal tip growth of G. gigantea and induced the formation of “recovery” branches that were identical to those induced by an inhibitor found in the exudate of Chard (Beta vulgaris ssp. cicla), a non-host plant.  相似文献   

15.
樟子松人工林分枝结构的分析   总被引:3,自引:1,他引:2  
肖锐  李凤日  刘兆刚 《植物研究》2006,26(4):490-496
基于对6块樟子松(Pinus sylvestris var. mongolica)人工林固定标准地中的30株样木枝解析调查数据,通过分析不同林分、不同大小林木1级枝和2级枝的分枝概率、分枝格局和分枝角度,揭示了樟子松人工林树冠的分枝结构特点。研究结果表明:樟子松人工林1级枝和2级枝的平均分枝数量分别为3.84个和2.80个,两者分枝概率均呈正态分布;1级和2级枝条在光照条件好的几个区间(方位角46°~225°)分布较多,1级枝条的水平分布遵从均匀分布,而2级枝条则不遵从均匀分布;树冠上层枝条的分枝角度略小于树冠中、下层,上层平均分枝角度为45.6°,而中下层平均分枝角度都为49.4°。不同大小林木的1级枝分枝结构规律表明:Ⅰ级木和Ⅴ级木的每轮平均分枝数非常接近,分别为3.89和3.94个,比Ⅲ级木每轮分枝数大0.5个左右;1级枝水平分布在各区间内(45°间隔)相差在0.24%~2.81%之间,方差分析结果表明枝条水平分布与林木大小无关;不同大小林木的分枝角度有所差别,Ⅰ级木、Ⅲ级木和Ⅴ级木的平均分枝角度分别为48.5°、42.2°和50.7°。  相似文献   

16.
Synaptotagmin‐1 (syt1) is a Ca2+‐binding protein that functions in regulation of synaptic vesicle exocytosis at the synapse. Syt1 is expressed in many types of neurons well before synaptogenesis begins both in vivo and in vitro. To determine if expression of syt1 has a functional role in neuronal development before synapse formation, we examined the effects of syt1 overexpression and knockdown on the growth and branching of the axons of cultured primary embryonic day 8 chicken forebrain neurons. In vivo these neurons express syt1, and most have not yet extended axons. We present evidence that syt1 plays a role in regulating axon branching, while not regulating overall axon length. To study the effects of overexpression of syt1, we used adenovirus‐mediated infection to introduce a syt1‐YFP construct, or control GFP construct, into neurons. Syt1 levels were reduced using RNA interference. Overexpression of syt1 increased the formation of axonal filopodia and branches. Conversely, knockdown of syt1 decreased the number of axonal filopodia and branches. Time‐lapse analysis of filopodial dynamics in syt1‐overexpressing cells demonstrated that elevation of syt1 levels increased both the frequency of filopodial initiation and their lifespan. Taken together these data indicate that syt1 regulates the formation of axonal filopodia and branches before engaging in its conventional functions at the synapse. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

17.
Reinvestigation of Nystroemia pectiniformis Halle from the Upper Shihhotze Formation of Shanxi Province, China, has led to the identification of new and important features of this enigmatic Late Permian seed plant, permitting its typification and diagnosis. After reassembling several of the previously studied specimens to form a single articulated branching system comprising at least four orders of branching, previously unknown features of its branching pattern and morphology have been characterized. First–order axes are wide and branch to one side only, bearing second–order branches either singly or in pairs and of two kinds: one fertile and bearing characteristic ovulate branching systems and the other presumably vegetative. Ovulate second–order axes are narrow and branch to one side only, producing numerous, closely spaced lateral branches in two alternate to sub–opposite rows. Lateral branches are slender and produce numerous ovulate branching systems to one side of the axis only. Ovulate branching systems divide unequally to produce 3–15 ultimate axes of different lengths that are planated. Each ultimate axis bears a single terminal ovule with 180 degree rotational symmetry and two horn–like integumentary projections distally. The other kind of second–order axes are distinct from those bearing ovules; they are wider and longer and branches occur on both sides of the secondary axis, lacking divisions in close proximity to the first–order axis. These have only been observed incomplete although their distinct morphology indicates they are unlikely to be ovulate branches from which ovules/seeds have been shed. Additional organs of the Nystroemia plant are considered, including pollen organs previously assigned by Halle to the same species (displaying its characteristic branching style), and also leaves of Chiropteris reniformis Halle that were probably borne on the larger kind of second–order branches. Implications of Nystroemia on seed plant evolution and distribution are discussed, and it is concluded that this most likely represents a late stratigraphic occurrence of a plesiomorphic hydrasperman–type seed plant with affinities closely allied to members of the Lyginopteridales.  相似文献   

18.
A major determinant of plant architecture is the arrangement of branches around the stem, known as phyllotaxis. However, the specific form of branching conditions is not known. Here we discuss this question and suggest a branching model which seems to be in agreement with biological observations. Recently, a number of models connected with the genetic network or molecular biology regulation of the processes of pattern formation appeared. Most of these models consider the plant hormone, auxin, transport and distribution in the apical meristem as the main factors for pattern formation and phyllotaxis. However, all these models do not take into consideration the whole plant morphogenesis, concentrating on the events in the shoot or root apex. On the other hand, other approaches for modeling phyllotaxis, where the whole plant is considered, usually are mostly phenomenological, and due to it, do not describe the details of plant growth and branching mechanism. In this work, we develop a mathematical model and study pattern formation of the whole, though simplified, plant organism where the main physiological factors of plant growth and development are taken into consideration. We model a growing plant as a system of intervals, which we will consider as branches. We assume that the number and location of the branches are not given a priori, but appear and grow according to certain rules, elucidated by the application of mathematical modeling. Four variables are included in our model: concentrations of the plant hormones auxin and cytokinin, proliferation and growth factor, and nutrients—we observe a wide variety of plant forms and study more specifically the involvement of each variable in the branching process. Analysis of the numerical simulations shows that the process of pattern formation in plants depends on the interaction of all these variables. While concentrations of auxin and cytokinin determine the appearance of a new bud, its growth is determined by the concentrations of nutrients and proliferation factors. Possible mechanisms of apical domination in the frame of our model are discussed.  相似文献   

19.
20.
Jatropha curcas L. (Euphorbiaceae) has the potential to become a key biofuel crop. Manual pruning (MP) is one of the major management practices in commercial plantations of this crop, resulting in production of more branches and thus increased potential for more inflorescences leading to a higher seed yield. However, this method is time-consuming, labour-intensive and expensive. This study was conducted to determine the potential of different plant growth regulators (PGRs) to increase the number of lateral branches of J. curcas. A single foliar application of N 6-benzyladenine (BA) at 12 mM significantly increased branches in both the pot (4.0) and field (13.2) trials compared to MP (1.8 and 5.7, respectively) and control (no new branches) plants. In the field, a single foliar application of 1.0 mM 2,3,5-triiodobenzoic acid (TIBA) resulted in a significant increment in the number of branches (15.9) after 7 months. Of all the PGRs examined, 2,3:4,6-di-O-isopropylidene-2-keto-l-gluconic acid (dikegulac; DK) at 2.0 mM produced the maximum number of branches (18.0) in the field 7 months after application. Concentrations of 2.0 and 3.0 mM of 1,2-dihydro-3,6-pyridazinedione (maleic hydrazide; MH) significantly increased the number of branches, 4 and 7 months after spraying in both the pot trial in the shade house and field, respectively. Under field conditions, J. curcas plants responded better to all the PGRs (DK < TIBA < BA < MH) when treated once, with insignificant variations in other growth parameters. This study indicates that a single foliar application of PGRs under field conditions can be an alternative method to MP for increasing the number of lateral branches of J. curcas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号