首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Both PTH and IL-6 signaling play pivotal roles in hematopoiesis and skeletal biology, but their interdependence is unclear. The purpose of this study was to evaluate the effect of IL-6 and soluble IL-6 receptor (sIL-6R) on hematopoietic and skeletal actions of PTH. In the bone microenvironment, PTH stimulated sIL-6R protein levels in primary osteoblast cultures in vitro and bone marrow in vivo in both IL-6+/+ and IL-6−/− mice. PTH-mediated hematopoietic cell expansion was attenuated in IL-6−/− compared with IL-6+/+ bone marrow, whereas sIL-6R treatment amplified PTH actions in IL-6−/− earlier than IL-6+/+ marrow cultures. Blocking sIL-6R signaling with sgp130 (soluble glycoprotein 130 receptor) inhibited PTH-dependent hematopoietic cell expansion in IL-6−/− marrow. In the skeletal system, although intermittent PTH administration to IL-6+/+ and IL-6−/− mice resulted in similar anabolic actions, blocking sIL-6R significantly attenuated PTH anabolic actions. sIL-6R showed no direct effects on osteoblast proliferation or differentiation in vitro; however, it up-regulated myeloid cell expansion and production of the mesenchymal stem cell recruiting agent, TGF-β1 in the bone marrow microenvironment. Collectively, sIL-6R demonstrated orphan function and mediated PTH anabolic actions in bone in association with support of myeloid lineage cells in the hematopoietic system.  相似文献   

3.
Tachykinins are a large group of neuropeptides with both central and peripheral activity. Despite the increasing number of studies reporting a growth supportive effect of tachykinin peptides in various in vitro stem cell systems, it remains unclear whether these findings are applicable in vivo. To determine how neurokinin-1 receptor (NK-1R) deficient hematopoietic stem cells would behave in a normal in vivo environment, we tested their reconstitution efficiency using competitive bone marrow repopulation assays. We show here that bone marrow taken from NK-1R deficient mice (Tacr1−/−) showed lineage specific B and T cell engraftment deficits compared to wild-type competitor bone marrow cells, providing evidence for an involvement of NK-1R signalling in adult hematopoiesis. Tachykinin knockout mice lacking the peptides SP and/or HK-1 (Tac1 −/−, Tac4 −/− and Tac1 −/−/Tac4 −/− mice) repopulated a lethally irradiated wild-type host with similar efficiency as competing wild-type bone marrow. The difference between peptide and receptor deficient mice indicates a paracrine and/or endocrine mechanism of action rather than autocrine signalling, as tachykinin peptides are supplied by the host environment.  相似文献   

4.
5.
A tightly controlled balance between hematopoietic stem and progenitor cell compartments is required to maintain normal blood cell homeostasis throughout life, and this balance is regulated by intrinsic and extrinsic cellular factors. Cav-1 is a 22-kDa protein that is located in plasma membrane invaginations and is implicated in regulating neural stem cell and embryonic stem cell proliferation. However, the role of Cav-1 in hematopoietic stem cell (HSC) function is largely unknown. In this study, we used Cav-1−/− mice to investigate the role of Cav-1 in HSCs function during aging. The results showed that Cav-1−/− mice displayed a decreased percentage of B cells and an increased percentage of M cells in the bone marrow and peripheral blood, and these changes were due to an increased number of HSCs. FACS analysis showed that the numbers of LinSca1+c-kit+ cells (LSKs), long-term HSCs (LT-HSCs), short-term HSCs and multipotent progenitors were increased in Cav-1−/− mice compared with Cav-1+/+ mice, and this increase became more pronounced with aging. An in vitro clonogenic assay showed that LT-HSCs from Cav-1−/− mice had reduced ability to self-renew. Consistently, an in vivo competitive transplantation assay showed that Cav-1−/− mice failed to reconstitute hematopoiesis. Moreover, a Cav-1 deletion disrupted the quiescence of LSKs and promoted cell cycle progression through G2/M phase. In addition, we found that Cav-1 deletion impaired the ability of HSCs to differentiate into mature blood cells. Taken together, these data suggest that Cav-1-deficient cells impaired HSCs quiescence and induced environmental alterations, which limited HSCs self-renewal and function.  相似文献   

6.
External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients'' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1−/− hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1−/− leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.  相似文献   

7.
CXXC finger protein 1 (Cfp1), encoded by the Cxxc1 gene, binds to DNA sequences containing an unmethylated CpG dinucleotide and is an epigenetic regulator of both cytosine and histone methylation. Cxxc1-null mouse embryos fail to gastrulate, and Cxxc1-null embryonic stem cells are viable but cannot differentiate, suggesting that Cfp1 is required for chromatin remodeling associated with stem cell differentiation and embryogenesis. Mice homozygous for a conditional Cxxc1 deletion allele and carrying the inducible Mx1-Cre transgene were generated to assess Cfp1 function in adult animals. Induction of Cre expression in adult animals led to Cfp1 depletion in hematopoietic cells, a failure of hematopoiesis with a nearly complete loss of lineage-committed progenitors and mature cells, elevated levels of apoptosis, and death within two weeks. A similar pathology resulted following transplantation of conditional Cxxc1 bone marrow cells into wild type recipients, demonstrating this phenotype is intrinsic to Cfp1 function within bone marrow cells. Remarkably, the LinSca-1+c-Kit+ population of cells in the bone marrow, which is enriched for hematopoietic stem cells and multi-potential progenitor cells, persists and expands in the absence of Cfp1 during this time frame. Thus, Cfp1 is necessary for hematopoietic stem and multi-potential progenitor cell function and for the developmental potential of differentiating hematopoietic cells.  相似文献   

8.

Introduction

Treatment failure in acute myeloid leukemia is probably caused by the presence of leukemia initiating cells, also referred to as leukemic stem cells, at diagnosis and their persistence after therapy. Specific identification of leukemia stem cells and their discrimination from normal hematopoietic stem cells would greatly contribute to risk stratification and could predict possible relapses.

Results

For identification of leukemic stem cells, we developed flow cytometric methods using leukemic stem cell associated markers and newly-defined (light scatter) aberrancies. The nature of the putative leukemic stem cells and normal hematopoietic stem cells, present in the same patient''s bone marrow, was demonstrated in eight patients by the presence or absence of molecular aberrancies and/or leukemic engraftment in NOD-SCID IL-2Rγ-/- mice. At diagnosis (n = 88), the frequency of the thus defined neoplastic part of CD34+CD38- putative stem cell compartment had a strong prognostic impact, while the neoplastic parts of the CD34+CD38+ and CD34- putative stem cell compartments had no prognostic impact at all. After different courses of therapy, higher percentages of neoplastic CD34+CD38- cells in complete remission strongly correlated with shorter patient survival (n = 91). Moreover, combining neoplastic CD34+CD38- frequencies with frequencies of minimal residual disease cells (n = 91), which reflect the total neoplastic burden, revealed four patient groups with different survival.

Conclusion and Perspective

Discrimination between putative leukemia stem cells and normal hematopoietic stem cells in this large-scale study allowed to demonstrate the clinical importance of putative CD34+CD38- leukemia stem cells in AML. Moreover, it offers new opportunities for the development of therapies directed against leukemia stem cells, that would spare normal hematopoietic stem cells, and, moreover, enables in vivo and ex vivo screening for potential efficacy and toxicity of new therapies.  相似文献   

9.
Mucopolysaccharidosis I Hurler (MPSI-H) is a pediatric lysosomal storage disease caused by genetic deficiencies in IDUA, coding for α-l-iduronidase. Idua−/− mice share similar clinical pathology with patients, including the accumulation of the undegraded glycosaminoglycans (GAGs) heparan sulfate (HS), and dermatan sulfate (DS), progressive neurodegeneration, and dysostosis multiplex. Hematopoietic stem cell transplantation (HSCT) is the most effective treatment for Hurler patients, but reduced intensity conditioning is a risk factor in transplantation, suggesting an underlying defect in hematopoietic cell engraftment. HS is a co-receptor in the CXCL12/CXCR4 axis of hematopoietic stem and progenitor cell (HSPC) migration to the bone marrow (BM), but the effect of HS alterations on HSPC migration, or the functional role of HS in MPSI-H are unknown. We demonstrate defective WT HSPC engraftment and migration in Idua−/− recipient BM, particularly under reduced intensity conditioning. Both intra- but especially extracellular Idua−/− BM HS was significantly increased and abnormally sulfated. Soluble heparinase-sensitive GAGs from Idua−/− BM and specifically 2-O-sulfated HS, elevated in Idua−/− BM, both inhibited CXCL12-mediated WT HSPC transwell migration, while DS had no effect. Thus we have shown that excess overly sulfated extracellular HS binds, and sequesters CXCL12, limiting hematopoietic migration and providing a potential mechanism for the limited scope of HSCT in Hurler disease.  相似文献   

10.

Objective

MCPIP1 is a newly identified protein that profoundly impacts immunity and inflammation. We aim to test if MCPIP1 deficiency in hematopoietic cells results in systemic inflammation and accelerates atherogenesis in mice.

Approach and Results

After lethally irradiated, LDLR−/− mice were transplanted with bone marrow cells from either wild-type or MCPIP1−/− mice. These chimeric mice were fed a western-type diet for 7 weeks. We found that bone marrow MCPIP1−/− mice displayed a phenotype similar to that of whole body MCPIP1−/− mice, with severe systemic and multi-organ inflammation. However, MCPIP1−/− bone marrow recipients developed >10-fold less atherosclerotic lesions in the proximal aorta than WT bone marrow recipients, and essentially no lesions in en face aorta. The diminishment in atherosclerosis in bone marrow MCPIP1−/− mice may be partially attributed to the slight decrease in their plasma lipids. Flow cytometric analysis of splenocytes showed that bone marrow MCPIP1−/− mice contained reduced numbers of T cells and B cells, but increased numbers of regulatory T cells, Th17 cells, CD11b+/Gr1+ cells and CD11b+/Ly6Clow cells. This overall anti-atherogenic leukocyte profile may also contribute to the reduced atherogenesis. We also examined the cholesterol efflux capability of MCPIP1 deficient macrophages, and found that MCPIP1deficiency increased cholesterol efflux to apoAI and HDL, due to increased protein levels of ABCA1 and ABCG1.

Conclusions

Hematopoietic deficiency of MCPIP1 resulted in severe systemic and multi-organ inflammation but paradoxically diminished atherogenesis in mice. The reduced atheroegensis may be explained by the decreased plasma cholesterol levels, the anti-atherogenic leukocyte profile, as well as enhanced cholesterol efflux capability. This study suggests that, while atherosclerosis is a chronic inflammatory disease, the mechanisms underlying atherogenesis-associated inflammation in arterial wall versus the inflammation in solid organs may be substantially different.  相似文献   

11.
The Protection of telomeres 1 (POT1) protein is a single-stranded telomere binding protein that is essential for proper maintenance of telomere length. Disruption of POT1 function leads to chromosome instability and loss of cellular viability. Here, we show that targeted deletion of the mouse Pot1b gene results in increased apoptosis in highly proliferative tissues. In the setting of telomerase haploinsufficiency, loss of Pot1b results in depletion of germ cells and complete bone marrow failure due to increased apoptosis, culminating in premature death. Pot1b−/ mTR+/ hematopoietic progenitor and stem cells display markedly reduced survival potential in vitro. Accelerated telomere shortening, increased G overhang and elevated number of chromosome end-to-end fusions that initiate an ATR-dependent DNA damage response were also observed. These results indicate an essential role for Pot1b in the maintenance of genome integrity and the long-term viability of proliferative tissues in the setting of telomerase deficiency. Interestingly, these phenotypes closely resemble those found in the human disease dyskeratosis congenita (DC), an inherited syndrome characterized by bone marrow failure, hyperpigmentation, and nail dystrophy. We anticipate that this mouse will serve as a useful model to further understand the pathophysiology of DC.  相似文献   

12.
Myelodysplastic syndromes (MDS) are a group of neoplasms characterized by ineffective myeloid hematopoiesis and various risks for leukemia. SRSF2, a member of the serine/arginine-rich (SR) family of splicing factors, is one of the mutation targets associated with poor survival in patients suffering from myelodysplastic syndromes. Here we report the biological function of SRSF2 in hematopoiesis by using conditional knockout mouse models. Ablation of SRSF2 in the hematopoietic lineage caused embryonic lethality, and Srsf2-deficient fetal liver cells showed significantly enhanced apoptosis and decreased levels of hematopoietic stem/progenitor cells. Induced ablation of SRSF2 in adult Mx1-Cre Srsf2flox/flox mice upon poly(I):poly(C) injection demonstrated a significant decrease in lineage Sca+ c-Kit+ cells in bone marrow. To reveal the functional impact of myelodysplastic syndromes-associated mutations in SRSF2, we analyzed splicing responses on the MSD-L cell line and found that the missense mutation of proline 95 to histidine (P95H) and a P95-to-R102 in-frame 8-amino-acid deletion caused significant changes in alternative splicing. The affected genes were enriched in cancer development and apoptosis. These findings suggest that intact SRSF2 is essential for the functional integrity of the hematopoietic system and that its mutations likely contribute to development of myelodysplastic syndromes.  相似文献   

13.
Bones'' strength is achieved and maintained through adaptation to load bearing. The role of the protein kinase PKCα in this process has not been previously reported. However, we observed a phenotype in the long bones of Prkca−/− female but not male mice, in which bone tissue progressively invades the medullary cavity in the mid-diaphysis. This bone deposition progresses with age and is prevented by disuse but unaffected by ovariectomy. Castration of male Prkca−/− but not WT mice results in the formation of small amounts of intramedullary bone. Osteoblast differentiation markers and Wnt target gene expression were up-regulated in osteoblast-like cells derived from cortical bone of female Prkca−/− mice compared with WT. Additionally, although osteoblastic cells derived from WT proliferate following exposure to estradiol or mechanical strain, those from Prkca−/− mice do not. Female Prkca−/− mice develop splenomegaly and reduced marrow GBA1 expression reminiscent of Gaucher disease, in which PKC involvement has been suggested previously. From these data, we infer that in female mice, PKCα normally serves to prevent endosteal bone formation stimulated by load bearing. This phenotype appears to be suppressed by testicular hormones in male Prkca−/− mice. Within osteoblastic cells, PKCα enhances proliferation and suppresses differentiation, and this regulation involves the Wnt pathway. These findings implicate PKCα as a target gene for therapeutic approaches in low bone mass conditions.  相似文献   

14.
To interrogate why redox homeostasis and glutathione S-transferase P (GSTP) are important in regulating bone marrow cell proliferation and migration, we isolated crude bone marrow, lineage negative and bone marrow derived-dendritic cells (BMDDCs) from both wild type (WT) and knockout (Gstp1/p2−/−) mice. Comparison of the two strains showed distinct thiol expression patterns. WT had higher baseline and reactive oxygen species-induced levels of S-glutathionylated proteins, some of which (sarco-endoplasmic reticulum Ca2+-ATPase) regulate Ca2+ fluxes and subsequently influence proliferation and migration. Redox status is also a crucial determinant in the regulation of the chemokine system. CXCL12 chemotactic response was stronger in WT cells, with commensurate alterations in plasma membrane polarization/permeability and intracellular calcium fluxes; activities of the downstream kinases, ERK and Akt were also higher in WT. In addition, expression levels of the chemokine receptor CXCR4 and its associated phosphatase, SHP-2, were higher in WT. Inhibition of CXCR4 or SHP2 decreased the extent of CXCL12-induced migration in WT BMDDCs. The differential surface densities of CXCR4, SHP-2 and inositol trisphosphate receptor in WT and Gstp1/p2−/− cells correlated with the differential CXCR4 functional activities, as measured by the extent of chemokine-induced directional migration and differences in intracellular signaling. These observed differences contribute to our understanding of how genetic ablation of GSTP causes higher levels of myeloproliferation and migration.  相似文献   

15.
16.
17.
Normal hematopoiesis is suppressed during the development of leukemia. In the T-ALL leukemia mouse model described in our recent study (Hu X, et al. Blood 2009), the impacts of leukemic environment on normal hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were distinct, in that normal HSCs were preserved in part because of increased mitotic quiescence of HSCs and resulting exhaustion of HPCs proliferation. Stem cell factor (SCF) secreted by leukemic cells in Nalm6 B-ALL model was previously suggested to force normal HSCs/HPCs out of their bone marrow niches and allow leukemic cells to occupy the niches (Colmone A, et al. Science 2008). Here we found that stem cell factor (SCF) expression in PB and BM of T-ALL model was increased, but SCF mRNA and protein levels in normal hematopoietic cells were higher than those in leukemia cells, which suggested that upregulated SCF was mainly contributed by non-leukemic cells in response to the leukemia development. To further elucidate the molecular mechanisms, microarray analysis was conducted on normal HSCs in this model and verified by real-time RT-PCR. The expression of Hes1 and its downstream target p21 were elevated in normal HSCs, whereas their expression showed no significant alteration in HPCs. Interestingly, although overexpression of Hes1 by retroviral infection inhibited the in vitro colony formation of normal hematopoietic cells, in vivo results demonstrated that normal Lin- cells and HSPCs were better preserved when normal Lin- cells with Hes1 overexpression were co-transplanted with T-ALL leukemia cells. Our results suggested that the differential expression of Hes1 between HSCs and HPCs resulted in the distinct responses of these cells to the leukemic condition, and that overexpression of Hes1 could enhance normal HSPCs in the leukemic environment.  相似文献   

18.
Telomeres are chromosome end structures and are essential for maintenance of genome stability. Highly repetitive telomere sequences appear to be susceptible to oxidative stress-induced damage. Oxidation may therefore have a severe impact on telomere integrity and function. A wide spectrum of oxidative pyrimidine-derivatives has been reported, including thymine glycol (Tg), that are primarily removed by a DNA glycosylase, Endonuclease III-like protein 1 (Nth1). Here, we investigate the effect of Nth1 deficiency on telomere integrity in mice. Nth1 null (Nth1−/−) mouse tissues and primary MEFs harbor higher levels of Endonuclease III-sensitive DNA lesions at telomeric repeats, in comparison to a non-telomeric locus. Furthermore, oxidative DNA damage induced by acute exposure to an oxidant is repaired slowly at telomeres in Nth1−/− MEFs. Although telomere length is not affected in the hematopoietic tissues of Nth1−/− adult mice, telomeres suffer from attrition and increased recombination and DNA damage foci formation in Nth1−/− bone marrow cells that are stimulated ex vivo in the presence of 20% oxygen. Nth1 deficiency also enhances telomere fragility in mice. Lastly, in a telomerase null background, Nth1−/− bone marrow cells undergo severe telomere loss at some chromosome ends and cell apoptosis upon replicative stress. These results suggest that Nth1 plays an important role in telomere maintenance and base repair against oxidative stress-induced base modifications. The fact that telomerase deficiency can exacerbate telomere shortening in Nth1 deficient mouse cells supports that base excision repair cooperates with telomerase to maintain telomere integrity.  相似文献   

19.
Differentiation of neutrophil granulocytes (neutrophils) occurs through several steps in the bone marrow and requires a coordinate regulation of factors determining survival and lineage-specific development. A number of genes are known whose deficiency disrupts neutrophil generation in humans and in mice. One of the proteins encoded by these genes, glucose-6-phosphatase-β (G6PC3), is involved in glucose metabolism. G6PC3 deficiency causes neutropenia in humans and in mice, linked to enhanced apoptosis and ER stress. We used a model of conditional Hoxb8 expression to test molecular and functional differentiation as well as survival defects in neutrophils from G6PC3−/− mice. Progenitor lines were established and differentiated into neutrophils when Hoxb8 was turned off. G6PC3−/− progenitor cells underwent substantial apoptosis when differentiation was started. Transgenic expression of Bcl-XL rescued survival; however, Bcl-XL-protected differentiated cells showed reduced proliferation, immaturity and functional deficiency such as altered MAP kinase signaling and reduced cytokine secretion. Impaired glucose utilization was found and was associated with ER stress and apoptosis, associated with the upregulation of Bim and Bax; downregulation of Bim protected against apoptosis during differentiation. ER-stress further caused a profound loss of expression and secretion of the main neutrophil product neutrophil elastase during differentiation. Transplantation of wild-type Hoxb8-progenitor cells into irradiated mice allowed differentiation into neutrophils in the bone marrow in vivo. Transplantation of G6PC3−/− cells yielded few mature neutrophils in bone marrow and peripheral blood. Transgenic Bcl-XL permitted differentiation of G6PC3−/− cells in vivo. However, functional deficiencies and differentiation abnormalities remained. Differentiation of macrophages from Hoxb8-dependent progenitors was only slightly disturbed. A combination of defects in differentiation and survival thus underlies neutropenia in G6PC3−/− deficiency, both originating from a reduced ability to utilize glucose. Hoxb8-dependent cells are a model to study differentiation and survival of the neutrophil lineage.  相似文献   

20.
Mast cells originate from pluripotent hematopoietic stem cells. Two mast cell specific antibodies, mAbsAA4 and BGD6, have previously been used to identify and study committed mast cell precursors (MCcps) in the bone marrow of adult mice and rats. However, the embryonic origin of MCcps is still not known. In the present study, we identified MCcps in rat embryos using these previously characterized mast cell specific antibodies. The MCcps were found in the AGM (aorta-gonad-mesonephros) region of rat embryos at E11.5. These cells were BGD6+, CD34+, c-kit+, CD13+, FcεRI, AA4 CD40, and Thy-1. By PCR the cells contained message for the α and β subunits of FcεRI and mast cell specific proteases. In vitro, the MCcps differentiated into metachromatic mast cells. With age of gestation the percent of MCcps diminished while the percent of mast cell progenitors increased. An increased knowledge of the biology and embryonic origin of mast cells may contribute to a greater understanding of allergy, asthma, and other mast cell related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号