首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Chorioamnionitis (CAM), as a common intrauterine infectious disease, is the leading cause of premature birth, stillbirth, neonatal infection and sepsis. The formyl peptide receptor 2 (FPR2) is a member of GPCRs widely distributed in a variety of tissues and is associated with many inflammatory diseases. With the discovery of FPR2 in human placenta, the possibility of exploring the function of FPR2 in obstetrics is evolving. The Resolvin D1 (RvD1) plays an important role in the resolution of inflammation by combining with FPR2. In this study, we evaluated the role of FPR2 and RvD1 in CAM, not only in the human placenta but also in mouse models. The expression of FPR2 increased in the placenta of CAM patients and the downstream PPARγ/NF‐κB signalling changed accordingly. Moreover, Fpr2−/− mice were highly susceptible to LPS, displaying a worse CAM symptom, compared with WT mice. By establishing a model of trophoblast inflammation in vitro, it was confirmed that RvD1 rescued the effect of LPS on inflammation by combining with FPR2 and its downstream PPARγ/NF‐κB pathway. Otherwise, RvD1 improved the preterm labour in a mouse model of CAM induced by LPS. Altogether, these findings show that RvD1 alleviated the inflammation of trophoblast in vivo and in vitro through FPR2/PPARγ/NF‐κB pathway, suggesting RvD1/FPR2 might be a novel therapeutic strategy to alleviate CAM.  相似文献   

2.
3.
Mouse formylpeptide receptor 2 (Fpr2) is a homologue of the human G-protein coupled chemoattractant receptor FPR2, which interacts with pathogen and host-derived chemotactic agonists. Our previous studies revealed reduced allergic airway inflammation and immune responses in Fpr2-deficient (Fpr2−/−) mice in association with diminished dendritic cell (DC) recruitment into the airway and draining lymph nodes. These defects prompted us to investigate the potential changes in the differentiation and maturation of DCs caused by Fpr2 deficiency. Bone marrow monocytes from Fpr2−/− mouse mice incubated with GM-CSF and IL-4 in vitro showed normal expression of markers of immature DCs. However, upon stimulation with the TLR4 agonist LPS, Fpr2−/− mouse DCs failed to express normal levels of maturation markers with reduced production of IL-12 and diminished chemotaxis in response to the DC homing chemokine CCL21. Fpr2−/− DCs also failed to induce allogeneic T-cell proliferation in vitro, and their recruitment into the T-cell zones of the spleen was reduced after antigen immunization. The capacity of Fpr2 to sustain normal DC maturation was dependent on its interaction with an endogenous ligand CRAMP expressed by DCs, because neutralization of either Fpr2 or CRAMP inhibited DC maturation in response to LPS. We additionally observed that the presence of exogenous CRAMP in culture increased the sensitivity of WT mouse DCs to LPS stimulation. The importance of CRAMP for DC maturation was further demonstrated by the observations that DCs from CRAMP−/− mice expressed lower levels of costimulatory molecules and MHC II and exhibited poor chemotaxis in response to CCL21 after LPS stimulation. Our observations indicate a nonredundant role for Fpr2 and its agonist CRAMP in DC maturation in immune responses.  相似文献   

4.
As impaired insulin signalling (IIS) is a risk factor for Alzheimer’s disease we crossed mice (Tg2576) over-expressing human amyloid precursor protein (APP), with insulin receptor substrate 2 null (Irs2−/−) mice which develop insulin resistance. The resulting Tg2576/Irs2−/− animals had increased tau phosphorylation but a paradoxical amelioration of Aβ pathology. An increase of the Aβ binding protein transthyretin suggests that increased clearance of Aβ underlies the reduction in plaques. Increased tau phosphorylation correlated with reduced tau-phosphatase PP2A, despite an inhibition of the tau-kinase glycogen synthase kinase-3. Our findings demonstrate that disruption of IIS in Tg2576 mice has divergent effects on pathological processes—a reduction in aggregated Aβ but an increase in tau phosphorylation. However, as these effects are accompanied by improvement in behavioural deficits, our findings suggest a novel protective effect of disrupting IRS2 signalling in AD which may be a useful therapeutic strategy for this condition.  相似文献   

5.
F2L (formylpeptide receptor (FPR)-like (FPRL)-2 ligand), a highly conserved acetylated peptide derived from the amino-terminal cleavage of heme-binding protein, is a potent chemoattractant for human monocytes and dendritic cells, and inhibits LPS-induced human dendritic cell maturation. We recently reported that F2L is able to activate the human receptors FPRL-1 and FPRL2, two members of the FPR family, with highest selectivity and affinity for FPRL2. To facilitate delineation of mechanisms of F2L action in vivo, we have now attempted to define its mouse receptors. This is complicated by the nonequivalence of the human and mouse FPR gene families (three vs at least eight members, respectively). When cell lines were transfected with plasmids encoding the eight mouse receptors, only the one expressing the receptor Fpr2 responded to F2L (EC(50) approximately 400 nM for both human and mouse F2L in both calcium flux and cAMP inhibition assays). This value is similar to F2L potency at human FPRL1. Consistent with this, mouse neutrophils, which like macrophages and dendritic cells express Fpr2, responded to human and mouse F2L in both calcium flux and chemotaxis assays with EC(50) values similar to those found for Fpr2-expressing cell lines ( approximately 500 nM). Moreover, neutrophils from mice genetically deficient in Fpr2 failed to respond to F2L. Thus, Fpr2 is a mouse receptor for F2L, and can be targeted for the study of F2L action in mouse models.  相似文献   

6.
Unlike formyl peptide receptor 1 (FPR1), FPR2/ALX (FPR2) interacts with peptides of diverse sequences but has low affinity for the Escherichia coli-derived chemotactic peptide fMet-Leu-Phe (fMLF). Using computer modeling and site-directed mutagenesis, we investigated the structural requirements for FPR2 to interact with formyl peptides of different length and composition. In calcium flux assay, the N-formyl group of these peptides is necessary for activation of both FPR2 and FPR1, whereas the composition of the C-terminal amino acids appears more important for FPR2 than FPR1. FPR2 interacts better with pentapeptides (fMLFII, fMLFIK) than tetrapeptides (fMLFK, fMLFW) and tripeptide (fMLF) but only weakly with peptides carrying negative charges at the C terminus (e.g. fMLFE). In contrast, FPR1 is less sensitive to negative charges at the C terminus. A CXCR4-based homology model of FPR1 and FPR2 suggested that Asp-2817.32 is crucial for the interaction of FPR2 with certain formyl peptides as its negative charge may be repulsive with the terminal COO- group of fMLF and negatively charged Glu in fMLFE. Asp-2817.32 might also form a stable interaction with the positively charged Lys in fMLFK. Site-directed mutagenesis was performed to remove the negative charge at position 281 in FPR2. The D2817.32G mutant showed improved affinity for fMLFE and fMLF and reduced affinity for fMLFK compared with wild type FPR2. These results indicate that different structural determinants are used by FPR1 and FPR2 to interact with formyl peptides.  相似文献   

7.
Chemoattractant receptors regulate leukocyte accumulation at sites of inflammation. In allergic airway inflammation, although a chemokine receptor CCR2 was implicated in mediating monocyte-derived dendritic cell (DC) recruitment into the lung, we previously also discovered reduced accumulation of DCs in the inflamed lung in mice deficient in formylpeptide receptor Fpr2 (Fpr2−/−). We therefore investigated the role of Fpr2 in the trafficking of monocyte-derived DCs in allergic airway inflammation in cooperation with CCR2. We report that in allergic airway inflammation, CCR2 mediated the recruitment of monocyte-derived DCs to the perivascular region, and Fpr2 was required for further migration of the cells into the bronchiolar area. We additionally found that the bronchoalveolar lavage liquid from mice with airway inflammation contained both the CCR2 ligand CCL2 and an Fpr2 agonist CRAMP. Furthermore, similar to Fpr2−/− mice, in the inflamed airway of CRAMP−/− mice, DC trafficking into the peribronchiolar areas was diminished. Our study demonstrates that the interaction of CCR2 and Fpr2 with their endogenous ligands sequentially mediates the trafficking of DCs within the inflamed lung.  相似文献   

8.
Methamphetamine (METH) is a highly addictive psychostimulant, and cessation of use is associated with reduced monoamine signalling, and increased anxiety/depressive states. Neurons expressing the neuropeptide, relaxin-3 (RLN3), and its cognate receptor, RXFP3, constitute a putative ‘ascending arousal system’, which shares neuroanatomical and functional similarities with serotonin (5-HT)/dorsal raphe and noradrenaline (NA)/locus coeruleus monoamine systems. In light of possible synergistic roles of RLN3 and 5-HT/NA, endogenous RLN3/RXFP3 signalling may compensate for the temporary reduction in monoamine signalling associated with chronic METH withdrawal, which could alter the profile of ‘behavioural despair’, bodyweight reductions, and increases in anhedonia and anxiety-like behaviours observed following chronic METH administration. In studies to test this theory, Rln3 and Rxfp3 knockout (KO) mice and their wildtype (WT) littermates were injected once daily with saline or escalating doses of METH (2 mg/kg, i.p. on day 1, 4 mg/kg, i.p. on day 2 and 6 mg/kg, i.p. on day 3–10). WT and Rln3 and Rxfp3 KO mice displayed an equivalent sensitivity to behavioural despair (Porsolt swim) during the 2-day METH withdrawal and similar bodyweight reductions on day 3 of METH treatment. Furthermore, during a 3-week period after the cessation of chronic METH exposure, Rln3 KO, Rxfp3 KO and corresponding WT mice displayed similar behavioural responses in paradigms that measured anxiety (light/dark box, elevated plus maze), anhedonia (saccharin preference), and social interaction. These findings indicate that a whole-of-life deficiency in endogenous RLN3/RXFP3 signalling does not markedly alter behavioural sensitivity to chronic METH treatment or withdrawal, but leave open the possibility of a more significant interaction with global or localised manipulations of this peptide system in the adult brain.  相似文献   

9.
The gene (FPR3) encoding a novel type of peptidylpropyl-cis-trans- isomerase (PPIase) was isolated during a search for previously unidentified nuclear proteins in Saccharomyces cerevisiae. PPIases are thought to act in conjunction with protein chaperones because they accelerate the rate of conformational interconversions around proline residues in polypeptides. The FPR3 gene product (Fpr3) is 413 amino acids long. The 111 COOH-terminal residues of Fpr3 share greater than 40% amino acid identity with a particular class of PPIases, termed FK506-binding proteins (FKBPs) because they are the intracellular receptors for two immunosuppressive compounds, rapamycin and FK506. When expressed in and purified from Escherichia coli, both full-length Fpr3 and its isolated COOH-terminal domain exhibit readily detectable PPIase activity. Both fpr3 delta null mutants and cells expressing FPR3 from its own promoter on a multicopy plasmid have no discernible growth phenotype and do not display any alteration in sensitivity to the growth-inhibitory effects of either FK506 or rapamycin. In S. cerevisiae, the gene for a 112-residue cytosolic FKBP (FPR1) and the gene for a 135-residue ER-associated FKBP (FPR2) have been described before. Even fpr1 fpr2 fpr3 triple mutants are viable. However, in cells carrying an fpr1 delta mutation (which confers resistance to rapamycin), overexpression from the GAL1 promoter of the C-terminal domain of Fpr3, but not full-length Fpr3, restored sensitivity to rapamycin. Conversely, overproduction from the GAL1 promoter of full- length Fpr3, but not its COOH-terminal domain, is growth inhibitory in both normal cells and fpr1 delta mutants. In fpr1 delta cells, the toxic effect of Fpr3 overproduction can be reversed by rapamycin. Overproduction of the NH2-terminal domain of Fpr3 is also growth inhibitory in normal cells and fpr1 delta mutants, but this toxicity is not ameliorated in fpr1 delta cells by rapamycin. The NH2-terminal domain of Fpr3 contains long stretches of acidic residues alternating with blocks of basic residues, a structure that resembles sequences found in nucleolar proteins, including S. cerevisiae NSR1 and mammalian nucleolin. Indirect immunofluorescence with polyclonal antibodies raised against either the NH2- or the COOH-terminal segments of Fpr3 expressed in E. coli demonstrated that Fpr3 is located exclusively in the nucleolus.  相似文献   

10.
Accumulation, activation, and control of neutrophils at inflammation sites is partly driven by N-formyl peptide chemoattractant receptors (FPRs). Occupancy of these G-protein-coupled receptors by formyl peptides has been shown to induce regulatory phosphorylation of cytoplasmic serine/threonine amino acid residues in heterologously expressed recombinant receptors, but the biochemistry of these modifications in primary human neutrophils remains relatively unstudied. FPR1 and FPR2 were partially immunopurified using antibodies that recognize both receptors (NFPRa) or unphosphorylated FPR1 (NFPRb) in dodecylmaltoside extracts of unstimulated and N-formyl-Met-Leu-Phe (fMLF) + cytochalasin B-stimulated neutrophils or their membrane fractions. After deglycosylation and separation by SDS-PAGE, excised Coomassie Blue-staining bands (∼34,000 Mr) were tryptically digested, and FPR1, phospho-FPR1, and FPR2 content was confirmed by peptide mass spectrometry. C-terminal FPR1 peptides (Leu312–Arg322 and Arg323–Lys350) and extracellular FPR1 peptide (Ile191–Arg201) as well as three similarly placed FPR2 peptides were identified in unstimulated and fMLF + cytochalasin B-stimulated samples. LC/MS/MS identified seven isoforms of Ala323–Lys350 only in the fMLF + cytochalasin B-stimulated sample. These were individually phosphorylated at Thr325, Ser328, Thr329, Thr331, Ser332, Thr334, and Thr339. No phospho-FPR2 peptides were detected. Cytochalasin B treatment of neutrophils decreased the sensitivity of fMLF-dependent NFPRb recognition 2-fold, from EC50 = 33 ± 8 to 74 ± 21 nm. Our results suggest that 1) partial immunopurification, deglycosylation, and SDS-PAGE separation of FPRs is sufficient to identify C-terminal FPR1 Ser/Thr phosphorylations by LC/MS/MS; 2) kinases/phosphatases activated in fMLF/cytochalasin B-stimulated neutrophils produce multiple C-terminal tail FPR1 Ser/Thr phosphorylations but have little effect on corresponding FPR2 sites; and 3) the extent of FPR1 phosphorylation can be monitored with C-terminal tail FPR1-phosphospecific antibodies.  相似文献   

11.
12.
Herpes simplex virus 1 (HSV-1)-induced encephalitis is the most common cause of sporadic, fatal encephalitis in humans. HSV-1 has at least 10 different envelope glycoproteins, which can promote virus infection. The ligands for most of the envelope glycoproteins and the significance of these ligands in virus-induced encephalitis remain elusive. Here, we show that glycoprotein E (gE) binds to the cellular protein, annexin A1 (Anx-A1) to enhance infection. Anx-A1 can be detected on the surface of cells permissive for HSV-1 before infection and on virions. Suppression of Anx-A1 or its receptor, formyl peptide receptor 2 (FPR2), on the cell surface and gE or Anx-A1 on HSV-1 envelopes reduced virus binding to cells. Importantly, Anx-A1 knockout, Anx-A1 knockdown, or treatments with the FPR2 antagonist reduced the mortality and tissue viral loads of infected mice. Our results show that Anx-A1 is a novel enhancing factor of HSV-1 infection. Anx-A1-deficient mice displayed no evident physiology and behavior changes. Hence, targeting Anx-A1 and FPR2 could be a promising prophylaxis or adjuvant therapy to decrease HSV-1 lethality.  相似文献   

13.
The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan.  相似文献   

14.
The anti-inflammatory protein annexin A1 (ANXA1) has been associated with cancer progression and metastasis, suggesting its role in regulating tumor cell proliferation. We investigated the mechanism of ANXA1 interaction with formylated peptide receptor 2 (FPR2/ALX) in control, peritumoral and tumor larynx tissue samples from 20 patients, to quantitate the neutrophils and mast cells, and to evaluate the protein expression and co-localization of ANXA1/FPR2 in these inflammatory cells and laryngeal squamous cells by immunocytochemistry. In addition, we performed in vitro experiments to further investigate the functional role of ANXA1/FPR2 in the proliferation and metastasis of Hep-2 cells, a cell line from larynx epidermoid carcinoma, after treatment with ANXA12–26 (annexin A1 N-terminal-derived peptide), Boc2 (antagonist of FPR) and/or dexamethasone. Under these treatments, the level of Hep-2 cell proliferation, pro-inflammatory cytokines, ANXA1/FPR2 co-localization, and the prostaglandin signalling were analyzed using ELISA, immunocytochemistry and real-time PCR. An influx of neutrophils and degranulated mast cells was detected in tumor samples. In these inflammatory cells of peritumoral and tumor samples, ANXA1/FPR2 expression was markedly exacerbated, however, in laryngeal carcinoma cells, this expression was down-regulated. ANXA12–26 treatment reduced the proliferation of the Hep-2 cells, an effect that was blocked by Boc2, and up-regulated ANXA1/FPR2 expression. ANXA12–26 treatment also reduced the levels of pro-inflammatory cytokines and affected the expression of metalloproteinases and EP receptors, which are involved in the prostaglandin signalling. Overall, this study identified potential roles for the molecular mechanism of the ANXA1/FPR2 interaction in laryngeal cancer, including its relationship with the prostaglandin pathway, providing promising starting points for future research. ANXA1 may contribute to the regulation of tumor growth and metastasis through paracrine mechanisms that are mediated by FPR2/ALX. These data may lead to new biological targets for therapeutic intervention in human laryngeal cancer.  相似文献   

15.
The average surface pH of the ocean is dropping at a rapid rate due to the dissolution of anthropogenic CO2, raising concerns for marine life. Additionally, some coastal areas periodically experience upwelling of CO2-enriched water with reduced pH. Previous research has demonstrated ocean acidification (OA)-induced changes in behavioural and sensory systems including olfaction, which is due to altered function of neural gamma-aminobutyric acid type A (GABAA) receptors. Here, we used a camera-based tracking software system to examine whether OA-dependent changes in GABAA receptors affect anxiety in juvenile Californian rockfish (Sebastes diploproa). Anxiety was estimated using behavioural tests that measure light/dark preference (scototaxis) and proximity to an object. After one week in OA conditions projected for the next century in the California shore (1125 ± 100 µatm, pH 7.75), anxiety was significantly increased relative to controls (483 ± 40 µatm CO2, pH 8.1). The GABAA-receptor agonist muscimol, but not the antagonist gabazine, caused a significant increase in anxiety consistent with altered Cl flux in OA-exposed fish. OA-exposed fish remained more anxious even after 7 days back in control seawater; however, they resumed their normal behaviour by day 12. These results show that OA could severely alter rockfish behaviour; however, this effect is reversible.  相似文献   

16.
Apolipoprotein A-I (apoA-I) mimetic peptides are considered a promising novel therapeutic approach to prevent and/or treat atherosclerosis. An apoA-I mimetic peptide ELK-2A2K2E was designed with a reductionist approach and has shown exceptional activity in supporting cholesterol efflux but modest anti-inflammatory and anti-oxidant properties in vitro. In this study we compared these in vitro properties with the capacity of this peptide to modify rates of reverse cholesterol transport and development of atherosclerosis in mouse models. The peptide enhanced the rate of reverse cholesterol transport in C57BL/6 mice and reduced atherosclerosis in Apoe−/− mice receiving a high fat diet. The peptide modestly reduced the size of the plaques in aortic arch, but was highly active in reducing vascular inflammation and oxidation. Administration of the peptide to Apoe−/− mice on a high fat diet reduced the levels of total, high density lipoprotein and non-high density lipoprotein cholesterol and triglycerides. It increased the proportion of smaller HDL particles in plasma at the expense of larger HDL particles, and increased the capacity of the plasma to support cholesterol efflux. Thus, ELK-2A2K2E peptide reduced atherosclerosis in Apoe−/− mice, however, the functional activity profile after chronic in vivo administration was different from that found in acute in vitro studies.  相似文献   

17.
Rubimetide (Met-Arg-Trp), which had been isolated as an antihypertensive peptide from an enzymatic digest of spinach ribulose-bisphosphate carboxylase/oxygenase (Rubisco), showed anxiolytic-like activity prostaglandin (PG) D2-dependent manner in the elevated plus-maze test after administration at a dose of 0.1 mg/kg (ip.) or 1 mg/kg (p.o.) in male mice of ddY strain. In this study, we found that rubimetide has weak affinities for the FPR1 and FPR2, subtypes of formyl peptide receptor (FPR). The anxiolytic-like activity of rubimetide (0.1 mg/kg, ip.) was blocked by WRW4, an antagonist of FPR2, but not by Boc-FLFLF, an antagonist of FPR1, suggesting that the anxiolytic-like activity was mediated by the FPR2. Humanin, an endogenous agonist peptide of the FPR2, exerted an anxiolytic-like activity after intracerebroventricular (icv) administration, which was also blocked by WRW4. MMK1, a synthetic agonist peptide of the FPR2, also exerted anxiolytic-like activity. Thus, FPR2 proved to mediate anxiolytic-like effect as the first example of central effect exerted by FPR agonists. As well as the anxiolytic-like activity of rubimetide, that of MMK1 was blocked by BW A868C, an antagonist of the DP1-receptor. Furthermore, anxiolytic-like activity of rubimetide was blocked by SCH58251 and bicuculline, antagonists for adenosine A2A and GABAA receptors, respectively. From these results, it is concluded that the anxiolytic-like activities of rubimetide and typical agonist peptides of the FPR2 were mediated successively by the PGD2-DP1 receptor, adenosine-A2A receptor, and GABA-GABAA receptor systems downstream of the FPR2.  相似文献   

18.
《Animal behaviour》2002,64(4):541-546
We investigated age-related changes in exploratory drive and anxiety in a plus-maze paradigm. We observed the behaviour of outbred CD-1 mice, Mus musculus, of both sexes at three ages: juvenile (35 days), adolescent (48 days) and adult (61 days). Juvenile and adult mice strongly avoided the open arms of the apparatus, suggesting high levels of anxiety. In contrast, adolescents spent similar amounts of time in both open and closed arms. They also entered the open arms more quickly and more often than the other age groups. No age-related differences were found in the frequency of the stretched-attend posture, a behavioural pattern considered to indicate risk assessment. The data can be interpreted in terms of either an increased exploratory drive or reduced environment-related anxiety, or both, during the adolescent period. This is consistent with previous evidence of elevated levels of novelty seeking and reduced behavioural and physiological responses to stressful situations in mice and rats around this age. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

19.
Voltage-gated CaV2.1 (P/Q-type) Ca2+ channels located at the presynaptic membrane are known to control a multitude of Ca2+-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic CaV2.1 mouse models. Global CaV2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of CaV2.1 Ca2+ channels for complex behaviour in adult mice. Consequently we established a forebrain specific CaV2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of CaV2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific CaV2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional CaV2.1 knock-out model that is most suitable for analysing the in vivo functions of CaV2.1 in the adult murine forebrain.  相似文献   

20.

Background

Previous studies suggest that the responsiveness of TrkB receptor to BDNF is developmentally regulated in rats. Antidepressant drugs (AD) have been shown to increase TrkB signalling in the adult rodent brain, and recent findings implicate a BDNF-independent mechanism behind this phenomenon. When administered during early postnatal life, ADs produce long-lasting biochemical and behavioural alterations that are observed in adult animals.

Methodology

We have here examined the responsiveness of brain TrkB receptors to BDNF and ADs during early postnatal life of mouse, measured as autophosphorylation of TrkB (pTrkB).

Principal Findings

We found that ADs fail to induce TrkB signalling before postnatal day 12 (P12) after which an adult response of TrkB to ADs was observed. Interestingly, there was a temporally inverse correlation between the appearance of the responsiveness of TrkB to systemic ADs and the marked developmental reduction of BDNF-induced TrkB in brain microslices ex vivo. Basal p-TrkB status in the brain of BDNF deficient mice was significantly reduced only during early postnatal period. Enhancing cAMP (cyclic adenosine monophosphate) signalling failed to facilitate TrkB responsiveness to BDNF. Reduced responsiveness of TrkB to BDNF was not produced by the developmental increase in the expression of dominant-negative truncated TrkB.T1 because this reduction was similarly observed in the brain microslices of trkB.T1 −/− mice. Moreover, postnatal AD administration produced long-lasting behavioural alterations observable in adult mice, but the responses were different when mice were treated during the time when ADs did not (P4-9) or did (P16-21) activate TrkB.

Conclusions

We have found that ADs induce the activation of TrkB only in mice older than 2 weeks and that responsiveness of brain microslices to BDNF is reduced during the same time period. Exposure to ADs before and after the age when ADs activate TrkB produces differential long-term behavioural responses in adult mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号