首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Castor bean (Ricinus communis L.), is one of the top 10 oilseed crops in the world and, therefore, of high economic value. Hybridization is one of the most effective ways to breed new varieties with high yield, high oil content, and better stress resistance. Therefore, prediction of desired traits in castor hybrid offspring is particularly important. In this study, proteomic analysis was performed to identify differentially expressed proteins (DEPs) in seeds between castor hybrid offspring and their female (Lm female line aLmAB2) and male parents (CSR·181). Among the DEPs upregulated in the seeds of hybrid offspring, the majority were related to seed yield and stress tolerance, while some were related to oil synthesis and fatty acid synthesis and metabolism in seeds. In other words, the hybrid offspring showed heterosis for seed yield, stress tolerance, oil synthesis, and fatty acid synthesis and metabolism when compared with their parents. Further, real-time quantitative polymerase chain reaction assays were performed on 12 genes encoding DEPs involved in oil synthesis, pollen abortion, yield, and stress tolerance of seeds. The results showed that the expression levels of the 12 genes were consistent with those of the DEPs.  相似文献   

2.
Nitrogen (N) is one of the basic nutrients and signals for plant development and deficiency of it would always limit the productions of crops in the field. Quantitative research on expression of N-stress responsive proteins on a proteome level remains elusive. In order to gain a deep insight into the proteins responding to nitrogen stress in rapeseed (Brassica napus L.), comparative proteomic analysis was performed to investigate changes of protein expression profiles from the root, stem and leaf under different N concentrations, respectively. More than 200 differential abundance proteins (DAPs) were detected and categorized into groups according to annotations, including “binding and catalytic activity”, “involved in primary metabolism and cellular processes”, “stress-response” and so on. Variation in chlorophyll (Chl) content and antioxidant activities further revealed that oxidative stress raised with the increase of N concentration. Bioinformatics analysis based on the expression level of total proteins suggested these DAPs might play important roles in adaptation to N-stress conditions. Generally, these results provides a new aspect into N-stress responding proteins in Brassica plants.  相似文献   

3.
4.
5.
6.
Grape pistil has an important influence on fruit size and quality. However, there were few studies on grape ovary, and the development process of the ovary is still unclear. Therefore, in this paper, four different grape varieties with different lengths of small inflorescences, namely ‘Musct Hambourg’ grape (Vitis vinifera), ‘Concord’ grape (Vitis labrusca), ‘ShanPuTao’ grape (Vitis amurensis) and ‘GongNiang2Hao’ grape (Vitis amurensis × Vitis vinifera) were used as test materials. Four varieties ovary were significant differences by means of stereomicroscope, paraffin section. The expression of ovary determining gene VvAGAMOUS (VvAG) and its development related genes VvCRABS CLAW (VvCRC) andVvAGAMOUS-LIKE 11 (VvAGL11) with similar functions during the development of different grape varieties were preliminarily explored using fluorescence quantitative test. The relationship between VvAG and VvCRC, VvAG and VvAGL11 were analyzed using Y1H assay. Our results showed that there were obvious abdominal sutures on the surface of expect for ‘Musct Hambourg’ grape, and existing poly carpels. The ovary development of ‘ShanPuTao’ and ‘GongNiang2Hao’ grape was completed when the inflorescence length was less than 1 cm, while the ‘Concord’ and ‘Musct Hambourg’ grape were fully developed when the length of inflorescence was 3–4 and 4–5 cm, respectively. VvAG and VvCRC began to express in large quantities after the formation of stamen primordia, while VvAGL11 during the forming of ovule primordia. Therefore, VvAG and VvCRC mainly regulated the development of stamens and carpels and also promote the development of ovules, while VvAGL11 major regulated the development of ovules. The promoters of VvCRC and VvAGL11 were bound by VvAG. This study provides an important theoretical basis for further research on the molecular mechanism of grape ovary development.  相似文献   

7.
Ecological interactions between flowers and pollinators greatly affect the reproductive success. To facilitate these interactions, many flowers are known to display their attractive qualities, such as scent emission, flower rewards and floral vertical direction, in a rhythmic fashion. However, less is known about how plants regulate the relationship between these flower traits to adapt to pollinator visiting behavior and increase reproduction success. Here we investigated the adaptive significance of the flower bending from erect to downward in Trifolium repens. We observed the flowering dynamic characteristics (changes of vertical direction of florets, flowering number, pollen grain numbers, pollen viability and stigma receptivity over time after blossom) and the factors affecting the rate of flower bending in T. repens. Then we altered the vertical direction of florets in inflorescence of different types (upright and downward), and compared the pollinator behaviors and female reproductive success. Our results showed that florets opened sequentially in inflorescence, and then bend downwards slowly after flowering. The bending speed of florets was mainly influenced by pollination, and bending angle increased with the prolongation of flowering time, while the pollen germination rate, stigma receptivity and nectar secretion has a rhythm of “low-high-low” during the whole period with the time going. The visiting frequency of all the four species of pollinators on upward flowers was significantly higher than that of downward flowers, and they especially prefer to visit flowers with a bending angle of 30°–60°, when the flowers was exactly of the highest flower rewards (nectar secretion and number of pollen grains), stigma receptivity and pollen germination rate. The seed set ratio and fruit set ratio of upward flowers were significantly higher than downward flowers, but significantly lower than unmanipulated flowers. Our results indicated that the T. repens could increase female and male fitness by accurate pollination. The most suitable flower angle saves pollinators’ visiting energy and enables them to obtain the highest nectar rewards. This coordination between plants and pollinators maximizes the interests of them, which is a crucial factor in initiating specialized plant-pollinator relationships.  相似文献   

8.
There is a positive correlation between fertility and yield, and the decrease of fertility is bound to a greatly reduced crop yield. Male sterile mutants can be used in hybrid rice. Therefore, rice male sterility has an important value in research and application, and the study of related mutants is also very vital. The mutant ms10 (male sterile 10) reported in this study was induced by ethyl methane sulfonate (EMS) in the indica maintainer line Xinong 1B. There was no significant difference between the ms10 and wild type in the vegetative growth stage. However, in the reproductive growth stage, ms10 showed that the plant became shorter, the anther became smaller and the color became lighter, and finally showed the phenotype of male sterility in comparison to the wild type. I2-KI staining showed that the pollen was malformed and only a little was active. Scanning electron microscopy observation showed that the exine waxy layer of the ms10 anther decreased, suggesting that the protective effect on pollen was decreased. This may be one of the reasons leading to the phenotype of male sterility. Finally, the pollen showed shrinkage and collapsed, and the structure of germinating pore cover disappeared. This may be the result of sterility. Genetic analysis showed that the male sterility phenotype of the mutant was controlled by a single recessive nuclear gene. MS10 was mapped between the molecular markers IND37 and IND51 on chromosome 4, with a physical distance of 178.6 kb. These results lay the foundation for further studies on MS10.  相似文献   

9.
A developmental study of the inflorescence of Liquidambar styraciflua L. was conducted to clarify morphological discrepancies reported in the literature. Salient features of development are: 1) the inflorescence apex results from the conversion of a terminal, vegetative apex; 2) partial inflorescence apices arise as ellipsoid structures in axils of leaves, bracts, or transitional phyllomes; 3) development of male heads is acropetal whereas female heads differentiate basipetally; 4) the partial inflorescence apex becomes segmented into several distinct subunits indicating an axillary branch system of the third order; 5) distinct individual floral primordia are initiated on the subunits; 6) a complete absence of perianth development; 7) inception of carpel primordia in flowers of lower male heads as well as female heads, but a failure of the gynoecium to develop beyond an incipient stage in male heads; and 8) development of sterile structures around the base of the styles of only female flowers near the time of anthesis. Carpellary characteristics of the sterile structures are described, their morphological nature is discussed, and the phylogenetic position of Liquidambar is evaluated.  相似文献   

10.
11.
Soybean (Glycine max (Linn.) Merr.) annual leguminous crop is cultivated all over the world. The occurrence of diseases has a great impact on the yield and quality of soybean. In this study, based on the RNA-seq of soybean variety M18, a complete CDS (Coding sequence) GmPR1L of the pathogenesis-related protein 1 family was obtained, which has the ability to resist fungal diseases. The overexpression vector and interference expression vector were transferred into tobacco NC89, and the resistance of transgenic tobacco (Nicotiana tabacum L.) to Botrytis cinerea infection was identified. The results show that: Compared with the control, the activities of related defense enzymes SOD (Superoxide dismutase), POD (Peroxidase), PAL (L-phenylalanine ammonia-lyase) and PPO (Polyphenol oxidase) in the over-expressed transgenic tobacco OEA1 and OEA2 increased to different degrees, and increased significantly at different infection time points. The activities of defense enzymes in the interfering strains IEA1 and IEA2 were significantly lower than those in the control strains. The results of resistance level identification showed that the disease spot rate of OEA1 was significantly lower than that of the control line, and the disease spot rate of OEA2 was significantly lower than that of the control line. The plaque rate of the interfering expression line IEA1-IEA2 was significantly higher than that of the control line. It is preliminarily believed that the process related protein GmPR1L can improve the resistance of tobacco to B. cinerea.  相似文献   

12.
The molecular and genetic control of inflorescence and flower development has been studied in great detail in model dicotyledonous plants such as Arabidopsis and Antirrhinum . In contrast, little is known about these important developmental steps in monocotyledonous species. Here we report the analysis of the Zea mays mutant branched silkless1–2 (bd1–2) , allelic to bd1 , which we have used as a tool to study the transition from spikelet to floret development in maize. Floret development is blocked in the female inflorescence (the ear) of bd1–2 plants, whereas florets develop almost normally in the male inflorescence (the tassel). Detailed phenotypic analyses indicate that in bd1–2 mutants ear inflorescence formation initiates normally, however, the spikelet meristems do not proceed to form floret meristems. The ear spikelets, at anthesis, contain various numbers of spikelet-like meristems and glume-like structures. Furthermore, growth of branches from the base of the ear is often observed. Expression analyses show that the floral-specific MADS box genes Zea mays AGAMOUS1 ( ZAG1 ), ZAG2 and Zea mays MADS 2 ( ZMM2 ) are not expressed in ear florets in bd1–2 mutants, whereas their expression in tassel florets is similar to that of wild type. Taken together, these data indicate that the development from spikelet to floret meristem is differentially controlled in the ear and tassel in the monoecious grass species Zea mays , and that BRANCHED SILKLESS plays an important role in regulating the transition from spikelet meristem to floral meristem during the development of the female inflorescence of maize.  相似文献   

13.
14.
Halophytes are an excellent choice for the study of genes conferring salt tolerance to salt-sensitive plants and, they are suitable for reclamation and remediation of saline soil. We develop an in vitro plant propagation protocol and studies of genes involved with GB and Pro biosynthesis in Suaeda edulis. Axillary buds were used as explants and cultured in different treatments on Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of plant growth regulators. The highest number of multiple shoots was on MS medium containing 1 mg/L Benzyladenine (BA) and / or 2 g/L activated carbon with 5.5 ± 06 shoots per explant. The identification and expression analysis of genes involved in glycine betaine (GB) biosynthesis were S-adenosylmethionine synthetase (SAMS), choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), and for proline (Pro) was pyrroline 5-carboxylate synthetase (P5CS). These sequences shared 90–95% of identity with others plant homologous in public databases. The amino acids sequence analysis showed that all these peptides contain some of the conserved motifs of those kinds of enzymes. The qRT-PCR analysis revealed a higher expression of SeBADH, SeCMO, and, SeP5CS genes in the roots and leaves from plants collected in the field in contrast with from in vitro plants. However, the expression level of SeSAMS was higher only in the leaves of plants collected in the field when compared to those cultivated in vitro.  相似文献   

15.
16.
17.
18.
Hazelnut is a monoecious species characterized by mid-winter blooming and sporophytic incompatibility. The molecular mechanisms at the basis of the female flower development and of the pollen-stigma interaction are little known, although pollination in this species is a critical factor to ensure good yield. Differential display technique was used to study genes expressed during the female flower development, comparing styles before emergence from the bud and styles at full bloom. The full-length cDNA clone, designated CavPrx (Corylus avellana peroxidase) and isolated in mature styles, was characterized as a sequence encoding for a 330 amino acids protein, containing all the conserved features of class III peroxidases. CavPrx resulted expressed only in styles, with a peak in mature styles pollinated with compatible pollen. Class III peroxidases are expressed in several different plant tissue types and are involved in a broad spectrum of physiological processes. Until now, four peroxidases expressed in the stigma were identified in Arabidopsis thaliana and Senecio squalidus: they were assumed to be possibly involved in pollen–pistil interaction, pollen tube penetration/growth and/or in defence against pathogens. CavPrx is the first gene for a floral peroxidase isolated in hazelnut and its expression pattern suggests a possible role in the pollination process.  相似文献   

19.
EARLY FLOWERING 3 (ELF3), a light zeitnehmer (time-taker) gene, regulates circadian rhythm and photoperiodic flowering in Arabidopsis, rice, and barley. The three orthologs of ELF3 (TaELF3-1AL, TaELF3-1BL, and TaELF3-1DL) have been identified in wheat too, and one gene, TaELF3-1DL, has been associated with heading date. However, the basic characteristics of these three genes and the roles of the other two genes, TaELF3-1BL and, TaELF3-1AL, remain unknown. Therefore, the present study obtained the coding sequences of the three orthologs (TaELF3-1AL, TaELF3-1BL, and TaELF3-1DL) of ELF3 from bread wheat and characterized them and investigated the role of TaELF3-1BL in Arabidopsis. Protein sequence comparison revealed similarities among the three TaELF3 genes of wheat; however, they were different from the Arabidopsis ELF3. Real-time quantitative PCR revealed TaELF3 expression in all wheat tissues tested, with the highest expression in young spikes; the three genes showed rhythmic expression patterns also. Furthermore, the overexpression of the TaELF3-1BL gene in Arabidopsis delayed flowering, indicating their importance in flowering. Subsequent overexpression of TaELF3-1BL in the Arabidopsis ELF3 nonfunctional mutant (elf3 mutant) eliminated its early flowering phenotype, and slightly delayed flowering. The wild-type Arabidopsis overexpressing TaELF3-1BL demonstrated reduced expression levels of flowering-related genes, such as CONSTANS (AtCO), FLOWERING LOCUS T (AtFT), and GIGANTEA (AtGI). Thus, the study characterized the three TaELF3 genes and associated TaELF3-1BL with flowering in Arabidopsis, suggesting a role in regulating flowering in wheat too. These findings provide a basis for further research on TaELF3 functions in wheat.  相似文献   

20.
Drought stress is one of the most important abiotic stresses that plants face frequently in nature. Under drought conditions, many morphological, physiological, and molecular aspects of plants are changed and as a result plants experience a remarkable reduction in growth, yield, and reproduction. To expand our understanding of the molecular basis of the plant response to drought stress, the proteomic profile and protein-protein network of canola (Brassica napus L.) were studied. The focus was to show molecular mechanisms related to canola susceptibility to drought stress. The experiment used a completely randomized design, implemented in a hydroponic system under greenhouse conditions. To impose drought stress, plants were exposed to Hoagland’s solution supplemented with polyethylene glycol (PEG) 6000 for 7 days. The drought stress resulted in 161reproducible protein spots in twodimensional electrophoresis of canola leaves. The t-student test showed 21 differentially abundant proteins (DAP), of which 2 and 19 were up and down accumulated, respectively. Two spots identified as 1-aminocyclopropane-1-carboxylate oxidase and D-2-hydroxyglutarate dehydrogenase showed an increased abundance of 2.11 and 1.77, respectively. The extended protein-protein interaction of differentially abundant proteins and KEGG analysis showed 47 pathways directly and indirectly associated with canola response to drought stress. DAPs with increased abundance were associated with amino acid and signaling processes, whereas DAPs with decreased abundance were mostly connected with pathways responsible for energy production. The results of the study will help to elucidate further the molecular events associated with the susceptibility to drought stress in canola.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号