首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Soybean (Glycine max (L.) Merr.) is an important cultivated crop, which requires much water during its growth, and drought seriously affects soybean yields. Studies have shown that the expression of small heat shock proteins can enhance drought resistance, cold resistance and salt resistance of plants. In this experiment, soybean GmHsps_p23-like gene was successfully cloned by RT-PCR, the protein encoded by the GmHsps_p23-like gene was subjected to bioinformatics analysis, and the pCAMBIA3301-GmHsps_p23-like overexpression vector and pCBSG015-GmHsps_p23-like gene editing vector were constructed. Agrobacterium-mediated method was used to transform soybeans to obtain positive plants. RT-PCR detection, rehydration experiment and drought resistance physiological and biochemical index detection were performed on the T2 generation positive transgenic soybean plants identified by PCR and Southern hybridization. The results showed that the overexpression vector plant GmHsps_p23-like gene expression increased. After rehydration, the transgenic overexpression plants returned to normal growth, and the damage to the plants was low. After drought stress, the SOD and POD activities and the PRO content of the transgenic overexpression plants increased, while the MDA content decreased. The reverse was true for soybean plants with genetically modified editing vectors. The drought resistance of the overexpressed soybeans under drought stress was higher than that of the control group, and had a stronger drought resistance. It showed that the expression of soybean GmHsps_p23-like gene can improve the drought resistance of soybean. The cloning and functional verification of soybean GmHsps_p23-like gene had not been reported yet. This is the first time that PCR technology has been used to amplify the soybean GmHsps_p23-like gene and construct an expression vector for this gene. This research has laid the foundation for transgenic technology to improve plant drought resistance and cultivate new drought-resistant transgenic soybean varieties.  相似文献   

2.
采用砂培方式,研究了外源5-氨基乙酰丙酸(ALA)对盐胁迫下菘蓝种子的萌发、幼苗叶片的可溶性糖含量、丙二醛(MDA)含量及其抗氧化酶活性的影响,探讨ALA缓解菘蓝受盐胁迫伤害的响应机制。结果显示:(1)菘蓝种子萌发及幼苗生长在100 mmol·L-1 NaCl胁迫下受到明显的抑制,种子发芽率、发芽势、发芽指数、活力指数与自然含水量均显著降低,丙二醛含量、可溶性糖含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)活性显著升高。(2)盐胁迫下适宜浓度的ALA处理显著提高了种子萌发率、自然含水量及SOD、POD和CAT活性,降低了可溶性糖和丙二醛的含量,并以16.7 mg·L-1 ALA处理盐胁迫下菘蓝种子的发芽率、发芽势最大,其幼苗的SOD、POD、CAT活性最强。研究表明,盐胁迫显著抑制菘蓝种子的萌发及幼苗生长,适宜浓度的ALA能够有效缓解盐胁迫对菘蓝种子萌发及幼苗生长的伤害,提高植株的抗盐性,并以16.7 mg·L-1 ALA处理效果最佳。  相似文献   

3.
4.
Allantoin as the metabolite of purine catabolism can store and remobilize nitrogen for plant growth and development. However, emerging evidence suggests it also contributes to plant tolerance to stress response through altering abscisic acid (ABA) and reducing reactive oxygen species (ROS) level. 1-CYS PEROXIREDOXIN (PER1) is a seed-specific antioxidant that enhances seed longevity through scavenging ROS over-accumulation. High temperature (HT) suppresses seed germination and induces seed secondary dormancy, called as seed germination thermoinhibition. However, the mechanism that allantoin and PER1 regulate seed germination thermoinhibition remains unknown. In this study, we reported that allantoin treatment enhances seed germination under HT stress. Consistently, the aln mutants displayed higher seed germination, as well as more accumulation of endogenous allantoin, than that of wild-type control. Further biochemical and genetic analyses showed that allantoin reduces ABA content under HT, and allantoin targets PER1 to efficiently scavenge HT-induced ROS accumulation, meanwhile, the function of allantoin requires PER1 during seed gemination thermotolerance. Collectively, our finding proposes a novel function of allantoin in enhancing seed germination tolerance to HT, and uncovers the underlying mechanism by which allantoin regulates seed germination through altering ABA metabolism and PER1-mediated ROS level under HT stress.  相似文献   

5.
Manganese (Mn) is one of the essential microelements in all organisms. However, high level of Mn is deleterious to plants. In this study, the effects of exogenous manganese application on mineral element, polyamine (PA) and antioxidant accumulation, as well as polyamine metabolic and antioxidant enzyme activities, were investigated in Malus robusta Rehd., a widely grown apple rootstock. High level of Mn treatments decreased endogenous Mg, Na, K and Ca contents, but increased Zn content, in a Mn-concentration-dependent manner. Polyamine metabolic assays revealed that, except the content of perchloric acid insoluble bound (PIS-bound) spermine, which increased significantly, the contents of putrescine (Put), spermidine (Spd) and spermine (Spm) all decreased progressively, accompanied with the decreased activities of arginine decarboxylase (ADC, EC 4.1.1.19) and ornithine decarboxylase (ODC, EC 4.1.1.17), and the increased activities of diamine oxidase (DAO, EC 1.4.3.6) and polyamine oxidase (PAO, EC 1.5.3.3). Further antioxidant capacity analyses demonstrated that contents of anthocyanin, non-protein thiols (NPT) and soluble sugar, and the activities of guaiacol peroxidase (POD, EC 1.11.1.7), catalase (CAT, EC 1.11.1.6) and superoxide dismutase (SOD, EC 1.15.1.1), also increased upon different concentrations of Mn treatments. Our results suggest that endogenous ion homeostasis is affected by high level of Mn application, and polyamine and antioxidant metabolism is involved in the responses of M. robusta Rehd. plants to high level of Mn stress.  相似文献   

6.
In order to investigate the function of chloroplast ascorbate peroxidase under temperature stress, the thylakoid-bound ascorbate peroxidase gene from tomato leaf (TtAPX) was introduced into tobacco. Transformants were selected for their ability to grow on medium containing kanamycin. RNA gel blot analysis confirmed that TtAPX in tomato was induced by chilling or heat stress. Over-expression of TtAPX in tobacco improved seed germination under temperature stress. Two transgenic tobacco lines showed higher ascorbate peroxidase activity, accumulated less hydrogen peroxide and malondialdehyde than wild type plants under stress condition. The photochemical efficiency of photosystem 2 in the transgenic lines was distinctly higher than that of wild type plants under chilling and heat stresses. Results indicated that the over-expression of TtAPX enhanced tolerance to temperature stress in transgenic tobacco plants.  相似文献   

7.
Soybean (Glycine max (Linn.) Merr.) annual leguminous crop is cultivated all over the world. The occurrence of diseases has a great impact on the yield and quality of soybean. In this study, based on the RNA-seq of soybean variety M18, a complete CDS (Coding sequence) GmPR1L of the pathogenesis-related protein 1 family was obtained, which has the ability to resist fungal diseases. The overexpression vector and interference expression vector were transferred into tobacco NC89, and the resistance of transgenic tobacco (Nicotiana tabacum L.) to Botrytis cinerea infection was identified. The results show that: Compared with the control, the activities of related defense enzymes SOD (Superoxide dismutase), POD (Peroxidase), PAL (L-phenylalanine ammonia-lyase) and PPO (Polyphenol oxidase) in the over-expressed transgenic tobacco OEA1 and OEA2 increased to different degrees, and increased significantly at different infection time points. The activities of defense enzymes in the interfering strains IEA1 and IEA2 were significantly lower than those in the control strains. The results of resistance level identification showed that the disease spot rate of OEA1 was significantly lower than that of the control line, and the disease spot rate of OEA2 was significantly lower than that of the control line. The plaque rate of the interfering expression line IEA1-IEA2 was significantly higher than that of the control line. It is preliminarily believed that the process related protein GmPR1L can improve the resistance of tobacco to B. cinerea.  相似文献   

8.
9.
巴东木莲原生种群天然更新差,林下鲜见更新幼苗或幼树。为探究其种子萌发和芽苗在生长期对干旱胁迫的耐受性,该文以巴东木莲种子为材料,采用不同质量浓度的聚乙二醇(PEG-6000)模拟干旱胁迫,分析干旱胁迫对其种子萌发、芽苗生长及其相关的生理生化指标的影响。结果表明:(1)不同质量浓度的PEG溶液对巴东木莲种子萌发和芽苗生长产生显著影响(P0.05),萌发率和存活率随着PEG质量浓度的增加而逐渐降低,当PEG质量浓度≥301 g·L~(-1)时,种子萌发受到抑制,且萌发时间明显推迟。(2)随着干旱胁迫程度的增加,巴东木莲芽苗叶绿素含量逐渐降低;可溶性蛋白含量和超氧化物歧化酶(SOD)活性表现出不同程度的先升高后降低趋势;而脯氨酸(Pro)和丙二醛(MDA)含量及过氧化物酶(POD)和抗坏血酸过氧化氢酶(APX)活性呈现逐渐升高的趋势。综上分析得出,巴东木莲种子萌发及芽苗的生长对水分需求明显,虽可通过渗透调节和提高保护性酶活性来适应一定程度的干旱胁迫,但在繁育过程中,需防止干旱损伤。该研究结果可为巴东木莲种子繁育更新提供理论依据,有助于巴东木莲种群的扩大。  相似文献   

10.
Effects of NaCl and Mycorrhizal Fungi on Antioxidative Enzymes in Soybean   总被引:12,自引:3,他引:9  
The effects of different concentrations of NaCl on the activities of antioxidative enzymes in the shoots and roots of soybean (Glycine max [L.] Merr cv. Pershing) inoculated or not with an arbuscular mycorrhizal fungus, Glomus etunicatum Becker & Gerdemann, were studied. Furthermore, the effect of salt acclimated mycorrhizal fungi on the antioxidative enzymes in soybean plants grown under salt stress (100 mM NaCl) was investigated. Activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased in the shoots of both mycorrhizal (M) and nonmycorrhizal (NM) plants grown under NaCl salinity. Salinity increased SOD activity in the roots of M and NM plants, but had no effect on CAT and polyphenol oxidase activities in the roots. M plants had greater SOD, POD and ascorbate peroxidase activity under salinity. Under salt stress, soybean plants inoculated with salt pre-treated mycorrhizal fungi showed increased SOD and POD activity in shoots, relative to those inoculated with the non pre-treated fungi.  相似文献   

11.
12.
13.

Arsenic (As) contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world. Therefore, the present study was designed to investigate the individual as well as the combined effects of exogenous silicon (Si) and sodium nitroprusside (SNP), a nitric oxide (NO) donor, on plant growth, metabolites, and antioxidant defense systems of radish (Raphanus sativus L.) plants under three different concentrations of As stress, i.e., 0.3, 0.5, and 0.7 mM in a pot experiment. The results showed that As stress reduced the growth parameters of radish plants by increasing the level of oxidative stress markers, i.e., malondialdehyde and hydrogen peroxide. However, foliar application of Si (2 mM) and pretreatment with SNP (100 µM) alone as well as in combination with Si improved the plant growth parameters, i.e., root length, fresh and dry weight of plants under As stress. Furthermore, As stress also reduced protein, and metabolites contents (flavonoids, phenolic and anthocyanin). Activities of antioxidative enzymes such as catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD), and polyphenol oxidase (PPO), as well as the content of non-enzymatic antioxidants (glutathione and ascorbic acid) decreased under As stress. In most of the parameters in radish, As III concentration showed maximum reduction, as compared to As I and II concentrations. However, the individual and combined application of Si and NO significantly alleviated the As-mediated oxidative stress in radish plants by increasing the protein, and metabolites content. Enhancement in the activities of CAT, APX, POD and PPO enzymes were recorded. Contents of glutathione and ascorbic acid were also enhanced in response to co-application of Si and NO under As stress. Results obtained were more pronounced when Si and NO were applied in combination under As stress, as compared to their individual application. In short, the current study highlights that Si and NO synergistically regulate plant growth through lowering the As-mediated oxidative stress by upregulating the metabolites content, activity of antioxidative enzymes and non-enzymatic antioxidants in radish plants.

  相似文献   

14.
《遗传学报》2022,49(5):458-468
Soil salinity inhibits seed germination and reduces seedling survival rate, resulting in significant yield reductions in crops. Here, we report the identification of a polyamine oxidase, OsPAO3, conferring salt tolerance at the germination stage in rice (Oryza sativa L.), through map-based cloning approach. OsPAO3 is up-regulated under salt stress at the germination stage and highly expressed in various organs. Overexpression of OsPAO3 increases activity of polyamine oxidases, enhancing the polyamine content in seed coleoptiles. Increased polyamine may lead to the enhance of the activity of ROS-scavenging enzymes to eliminate over-accumulated H2O2 and to reduce Na+ content in seed coleoptiles to maintain ion homeostasis and weaken Na+ damage. These changes resulted in stronger salt tolerance at the germination stage in rice. Our findings not only provide a unique gene for breeding new salt-tolerant rice cultivars but also help to elucidate the mechanism of salt tolerance in rice.  相似文献   

15.
16.
To develop cold-tolerant maize germplasms and identify the activation of INDUCER OF CRT/DRE-BINDING FACTOR EXPRESSION (ICE1) expression in response to cold stress, RT-PCR was used to amplify the complete open reading frame sequence of the ICE1 gene and construct the plant expression vector pCAMBIA3301-ICE1-Bar. Immature maize embryos and calli were transformed with the recombinant vector using Agrobacterium tumefaciens-mediated transformations. From the regenerated plantlets, three T1 lines were screened and identified by PCR. A Southern blot analysis showed that a single copy of the ICE1 gene was integrated into the maize (Zea mays L.) genomes of the three T1 generations. Under low temperature-stress conditions (4°C), the relative conductivity levels decreased by 27.51%–31.44%, the proline concentrations increased by 12.50%–17.50%, the malondialdehyde concentrations decreased by 16.78%–18.37%, and the peroxidase activities increased by 19.60%–22.89% in the T1 lines compared with those of the control. A real-time quantitative PCR analysis showed that the ICE1 gene was ectopically expressed in the roots, stems, and leaves of the T1 lines. ICE1 positively regulates the expression of the CBF genes in response to cold stress. Thus, this study showed the successful transformation of maize with the ICE1 gene, resulting in the generation of a new maize germplasm that had increased tolerance to cold stress.  相似文献   

17.
Previous studies have shown that the late embryogenesis abundant (LEA) gene of Tamarix androssowii can enhance the drought tolerance of transgenic tobacco. In this study, the cloned LEA gene was transformed into half-high bush Northland blueberry in order to enhance its ability to tolerate cold stress. The cephalosporin antibiotics ceftriaxone, cefotaxime and cefazolin were used to optimize transformation of leaf explants, and kanamycin sulfate was used to select for transgenic shoots. PCR and Southern blot analysis confirmed 8 transformants with LEA gene copy numbers ranging from 1 to 7. The LEA chimeric gene was found to be normally transcribed in 6 transgenic lines by RT-PCR. The 8 transgenic lines were tested for cold tolerance by measuring the activities of peroxidase (POD) and superoxide dismutase (SOD), malondialdehyde (MDA) content and relative electrolyte leakage (REL). Overexpression of the LEA gene enhanced the activity of both POD and SOD under low temperature stress conditions. Lipid peroxidation in the transgenic lines was significantly lower than in non-transgenic plants after cold stress, as determined by MDA content and REL. Thus, our findings indicate that the LEA gene confers increased cold tolerance in the Northland blueberry and implicate the metabolic pathways through which it exerts this effect.  相似文献   

18.
以大豆种子、幼苗为试验材料,采用砂培的方法,研究了0.2mmol·L-1外源水杨酸(SA)对100mmol·L-1 NaCl胁迫下大豆种子萌发、幼苗形态及生物量、膜脂过氧化和抗氧化酶活性的影响。结果显示:NaCl胁迫下,大豆种子萌发和幼苗生长受到显著抑制,且随着胁迫时间的延长(0~3d),大豆幼苗相对电解质渗漏率、硫代巴比妥酸活性产物(TBARS)含量显著升高,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性均明显降低。外源SA促进NaCl胁迫下大豆种子萌发和根茎生长,增加幼苗生物量积累,降低幼苗叶片相对电解质渗漏率和TBARS含量,增强其叶片SOD、CAT、APX活性。研究表明,NaCl胁迫能显著抑制大豆种子萌发和幼苗生长,而一定浓度的外源SA能有效提高NaCl胁迫下大豆种子活力及幼苗抗氧化酶活性,减轻膜脂过氧化程度,缓解NaCl胁迫所造成的伤害,提高大豆幼苗抗盐胁迫的能力。  相似文献   

19.
Barley (Hordeum vulgare) seedlings were treated with spermidine prior to water deficit to determine whether this polyamine is able to affect the activity of superoxide dismutase -SOD (EC 1.15.1.1) responsible for hydrogen peroxide and superoxide radical level. Short-term dehydration (24h) resulted in decrease of the SOD specific activity and a distinct increase in the superoxide anion and hydrogen peroxide contents. Polyamine treatment caused a substantial reduction in the contents of these two stress-raised reactive oxygen species and thereby lowered the oxidative stress in plant cells. Antioxidant system as an important component of the water-stress-protective mechanism can be changed by polyamines, able to moderate the radical scavenging system and to lessen in this way the oxidative stress.  相似文献   

20.
The effects of Ca(NO3)2 stress on biomass production, oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants were investigated. Results showed that when exposed to 80 mM Ca(NO3)2 stress, the biomass production reduction in non-grafted plants was more significant than that of grafted plants. Under Ca(NO3)2 stress, superoxide anion radical (O2) producing rate, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents of non-grafted plants roots were significantly higher than those of grafted plants, however, nitrate (NO3 ), ammonium (NH4 +) and proline contents, superoxide dismutase (SOD, EC1.15.1.1), peroxidase (POD, EC1.11.1.7), catalase (CAT, EC1.11.1.6) and arginine decarboxylase (ADC, EC 4.1.1.19) activities of grafted plants roots were significantly higher than those of non-grafted plants. Regardless of stress, free, conjugated and bound polyamine contents in roots of grafted plants were significantly higher than those of non-grafted plants. The possible roles of antioxidant enzymes, prolines and polyamines in adaptive mechanism of tomato roots to Ca(NO3)2 stress were discussed. Gu-Wen Zhang and Zheng-Lu Liu contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号