首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 462 毫秒
1.
We studied the pattern of selenium accumulation inLycopersicum esculentumMill plants under conditions of selenium-enriched root and extraroot nutrition. Against the background of a general trend toward predominant selenium accumulation in the fruit skin, a higher level of accumulation of selenates (Se+6) than selenites (Se+4) was observed in the pulp. Application of Epin growth stimulant promoted selenium accumulation in the plants; its concentration in the pulp was comparable to the concentration after selenate application, while the level of the microelement accumulation in the fruit skin, leaves, and roots was 2.2, 2.4, and 1.4 times lower, respectively. Combined application of Epin and sodium selenate had virtually no effect on selenium accumulation in the pulp but increased the microelement content in the fruit skin and roots. Biological significance of the observed boundary effect of selenium as a manifestation of plant antioxidant protection is discussed.  相似文献   

2.
The poplar hybrid Populus tremula x alba was shown to volatilize significant amounts of selenium. The volatilization rates were 230-fold higher from selenomethionine compared to selenite, and 1.5-fold higher from selenite than from selenate. X-ray absorption spectroscopy showed that selenate was metabolized slowly, but selenite was quickly converted to organic selenium.  相似文献   

3.
The antimutagenic effect of selenium as sodium selenite, sodium selenate, selenium dioxide, and seleno-methionine was studied in the AmesSalmonella/microsome mutagenicity test using 7,12-dimethylbenz(a)anthracene (DMBA) and some of its metabolites. Selenium (20 ppm) as sodium selenite reduced the number of histidine revertants on plates containing up to 100 μg DMBA/plate. Increasing concentrations of selenium as sodium selenite, sodium selenate, and selenium dioxide up to 40 ppm Se progressively decreased the number of revertants caused by 50 μg DMBA. DMBA and its metabolites 7-hydroxymethyl-12-methylbenz(a)anthracene, 12-hydroxymethyl-7-methylbenz(a)anthracene, and 3-hydroxy-7,12-dimethylbenz(a)anthracene were mutagenic forSalmonella typhimurium TA100 in the presence of an S-9 mixture. Selenium supplementation as Na2SeO3 reduced the number of revertants induced by these metabolites to background levels. The antimutagenic effect of inorganic selenium compounds cannot be explained by toxicity of selenium as determined by viability tests withSalmonella typhimurium TA100. Selenium supplementation in all forms examined, except sodium selenate, decreased the rate of spontaneous reversion. Selenium as sodium selenate was slightly mutagenic at concentrations of 4 ppm or less. Higher concentration of Na2SeO4 inhibited the mutagenicity of DMBA. The present studies support the anticarcinogenic potential of selenium and indicate that form and concentration are important factors in this trace element's efficacy.  相似文献   

4.
The biological reduction of selenium oxyanions is capable of reducing both selenate and selenite to insoluble elemental selenium. In this process, however, bacteria inevitably require expensive chemicals such as yeast extract in almost all cases. Therefore, the reduction of selenium oxyanions with inexpensive alcohol would be more practical. A Pseudomonas sp. strain 4C‐C isolated from a sludge in a wastewater treatment facility was able to reduce selenate to selenite using ethanol as an electron donor for its anaerobic respiration, but could not reduce selenite to elemental selenium. Paracoccus denitrificans JCM‐6892, on the other hand, was observed to be able to reduce selenite to elemental selenium in the presence of ethanol, but not selenate to selenite. Therefore, a mixture containing a suspension of Pseudomonas sp. strain 4C‐C and P. denitrificans JCM‐6892 cells allowed selenate to be reduced to insoluble elemental selenium via selenite in the presence of ethanol and was also capable of reducing nitrate to nitrogen gas. Aiming at simplicity of the recovery process of insoluble elemental selenium, a polymeric gel immobilized mixture of the two bacterial strains was examined using ethanol as an electron donor. The immobilized mixture could therefore reduce not only selenate to elemental selenium, but also nitrate to nitrogen gas in a single step. The gel that immobilized the microbial mixture changed its color during the process to bright red and no red elemental selenium was left in the wastewater. This indicates that the reduced elemental selenium was completely absorbed in the gel. This simple bacterial combination would therefore be effective in the presence of ethanol to reduce selenium oxyanions in various wastewaters containing selenium and the other oxyanions.  相似文献   

5.

Under changing climate, trace elements like selenium (Se) have emerged as vital constituent of agro-ecosystems enabling crop plants to off-set the adverse effects of suboptimal growth conditions. The available form of selenium is important for boosting its bioavailability to crop plants having varied agro-botanical traits and root architectural systems. As compared to selenite, the selenate has a weaker soil bonding, higher absorption in the soil solution which results in a comparatively absorption by plant roots. Various factors including dry climate, high pH, optimal ambient air temperature, less accumulation of water, and low concentration of organic matter in the soil tend to boost the selenate ratio in the soil. The use of selenium pelleted seeds has emerged as an interesting and viable alternative to alleviate selenium deficiency in agricultural eco-systems. Similarly, the co-inoculation of a mixture of Selenobacteria and Arbuscular mycorrhizal fungi represents an evolving promising strategy for the bio-fortification of wheat plants to produce selenium-rich flour to supplement human dietary needs. Furthermore, in-depth research is required to assure the effectiveness of biological fertilization procedures in field conditions as well as to explore and increase our understanding pertaining to the underlying main mechanisms and channels of selenium absorption in plants. The focus of this review is to synthesize the recent developments on Se dynamics in soil-plant systems and emerging promising strategies to optimize its levels for crop plants. Recent developments regarding the use of micro-organisms as a biotechnological mean to enhance plant nutrition and crop quality have been objectively elaborated. The study becomes even more pertinent for arid and semi-arid agro-ecosystems owing to the potential role of selenium in providing stress tolerance to crop plants. Moreover, this review synthesizes and summarizes the recent developments on climate change and bioavailability, and the protective role of selenium in crop plants.

  相似文献   

6.
The aim of the present work was to compare and estimate absorption and biotransformation of selected selenium compounds by studying their fluxes across Caco-2 cells. Five different selenium compounds, selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), selenate, selenite, and methylseleninic acid (MeSeA), were applied to Caco-2 cells in a concentration of 10 μM, and fluxes in both directions were studied for 2 h. Fluxes of selenite and MeSeA in the presence of excess reduced glutathione (selenite + GSH and MeSeA + GSH) and flux of MeSeA in the presence of excess cysteine (MeSeA + Cys) were also studied. Selenium absorptive and exsorptive fluxes and accumulation in cell cytosol were analyzed by means of flow injection inductively coupled plasma mass spectrometry (ICP-MS). Absorptive flux of SeMet, MeSeCys, and selenate showed values correlating to complete in vivo absorption, while selenite and MeSeA fluxes correlated to poor in vivo absorption. Speciation analysis of cell lysate and donor and receptor solutions by LC-ICP-MS showed limited transformation of all selenium compounds. Extensive transformation as well as significantly increased absorptive flux was observed when co-administering selenite with glutathione compared to administering selenite alone. These observations are possibly due to formation of selenodiglutathione (GS-Se-SG) which may be absorbed differently than selenite. Concomitant application of GSH or cysteine with MeSeA resulted in extensive transformation of MeSeA, including volatile species, whereas no significant increases in fluxes were observed. In summary, the absorption of selenite selenate and the selenoamino acids is considered complete under physiological conditions, but the absorption mechanisms and metabolism of the compounds are different.  相似文献   

7.

Background and aims

Selenium is an essential micro-nutrient for animals, humans and microorganisms; it mainly enters food chains through plants. This study proposes to explore effect of inorganic Se forms on its uptake and accumulation in Zea mays.

Methods

Zea mays was grown in a controlled-atmosphere chamber for 2 weeks in a hydroponic solution of low-concentration selenium (10 μg/L (i.e.0.12 μM) or 50 μg/L (i.e. 0.63 μM) of Se). For each concentration, four treatments were defined: control (without selenium), selenite alone, selenate alone and selenite and selenate mixed.

Results

At low concentrations, selenium did not affect the biomass production of Zea mays. However, for both concentrations, Se accumulation following a selenite-only treatment was always higher than with selenate-only. Moreover, in the selenate-only treatment, Se mainly accumulated in shoots whereas in the selenite-only treatment, Se was stocked more in the roots. Interactions between selenate and selenite were observed only at the higher concentration (0.63 μM of selenium in the nutrient solution).

Conclusions

Se form and concentration in the nutrient solution strongly influenced the absorption, allocation and metabolism of Se in Zea mays. Selenate seems to inhibit selenite absorption by the roots.  相似文献   

8.
9.
Sodium selenite and sodium selenate, fed by gavaging to age-matched male Swiss albino mice and observed after 24 h following a colchicine-fixative-air drying-Giemsa schedule, were found to induce chromosome breaks and spindle disturbances in bone marrow cells. The four concentrations used were fractions of LD50 and the effects were directly proportionate to the concentration of the chemical. Sodium selenite induced a slightly higher frequency of chromosomal aberrations than sodium selenate.  相似文献   

10.
Summary The ability of several filamentous, polymorphic and unicellular fungi to reduce selenite to elemental selenium on solid medium was examined.Fusarium sp. andTrichoderma reeii were the only filamentous fungi, of those tested, which reduced selenite to elemental selenium on Czapek-Dox agar resulting in a red colouration of colonies. Other organisms (Aspergillus niger, Coriolus versicolor, Mucor SK, andRhizopus arrhizus) were able to reduce selenite only on malt extract agar. Several fungi were able to grow in the presence of sodium selenite but were apparently unable to reduce selenite to elemental selenium, indicating that other mechanisms of selenite tolerance were employed, such as reduced uptake and/or biomethylation to less toxic, volatile derivatives. Sodium selenate was more toxic toFusarium sp. than selenite, and the toxicity of both oxyanions was increased in sulphur-free medium, with this effect being more marked for selenate. Scanning electron microscopy ofAspergillus funiculosus andFusarium sp. incubated with sodium selenite showed the presence of needle-like crystals of elemental selenium on the surfaces of hyphae and conidia, while transmission electron microscopy ofA. funiculosus revealed the deposition of electron-dense granules in vacuoles of selenite-treated fungi. Several yeasts were able to grow on MYGP agar containing sodium selenate or sodium selenite at millimolar concentrations. Sone, notablyRhodotorula rubra andCandida lipolytica, and the polymorphic fungusAureobasidium pullulans were also effective at reducing selenite to elemental selenium, resulting in red-coloured colonies.Schizosaccharomyces pombe was able to grow at selenite concentrations up to 5 mmol L–1 without any evidence of reduction, again indicating the operation of other tolerance mechanisms.  相似文献   

11.
The aim of the study was to define possible differences between selenite, selenate and selenium yeast on various aspects of selenium status in growing cattle. Twenty-four Swedish Red and White dairy heifers were fed no supplementary selenium for 6 months. The basic diet contained 0.026 mg selenium/kg feed dry matter (DM). After the depletion period the animals were divided into 4 groups; group I–III received 2 mg additional selenium daily as sodium selenite, sodium selenate, and a selenium yeast product, respectively. Group IV, the control group, received no additional selenium. The total dietary selenium content for groups I–III during the supplementation period was 0.25 mg/kg DM. After the depletion period the mean concentration of selenium in blood (640 nmol/l) and plasma (299 nmol/l) and the activity of GSH-Px in erythrocytes (610 µkat/l) were marginal, but after 3 months of supplementation they were adequate in all 3 groups. The concentration of selenium in blood and plasma was significantly higher in group III than in groups I and II, but there was no significant difference between groups I and II. The activity of GSH-Px in erythrocytes did not differ between any of the supplemented groups. The animals in the control group had significantly lower concentrations of selenium in blood and plasma and lower activities of GSH-Px in erythrocytes than those in the supplemented groups. The activity of GSH-Px in platelets was also increased by the increased selenium intake. There was no difference in the concentration of triiodothyronine (T3) between any of the groups, but the concentration of thyroxine (T4) was significantly higher in the unsupplemented control group.  相似文献   

12.
Interstitial water profiles of SeO42−, SeO32−, SO42−, and Cl in anoxic sediments indicated removal of the seleno-oxyanions by a near-surface process unrelated to sulfate reduction. In sediment slurry experiments, a complete reductive removal of SeO42− occurred under anaerobic conditions, was more rapid with H2 or acetate, and was inhibited by O2, NO3, MnO2, or autoclaving but not by SO42− or FeOOH. Oxidation of acetate in sediments could be coupled to selenate but not to molybdate. Reduction of selenate to elemental selenium was determined to be the mechanism for loss from solution. Selenate reduction was inhibited by tungstate and chromate but not by molybdate. A small quantity of the elemental selenium precipitated into sediments from solution could be resolublized by oxidation with either nitrate or FeOOH, but not with MnO2. A bacterium isolated from estuarine sediments demonstrated selenate-dependent growth on acetate, forming elemental selenium and carbon dioxide as respiratory end products. These results indicate that dissimilatory selenate reduction to elemental selenium is the major sink for selenium oxyanions in anoxic sediments. In addition, they suggest application as a treatment process for removing selenium oxyanions from wastewaters and also offer an explanation for the presence of selenite in oxic waters.  相似文献   

13.
The AIN-93 reformulation of the AIN-76A rodent diet includes a change in selenium supplement from sodium selenite to sodium selenate to reduce dietary lipid peroxidation. A change to selenate as the standard form of Se in rat diets would render results from previous work using selenite less relevant for comparison with studies using the AIN-93 formulation. To critically examine the rationale for the AIN-93 recommendation, we prepared Torula yeast basal diets patterned as closely as possible after the AIN-93 formulation and supplemented with 0, 0.15 (adequate), or 2.0 (high) mg selenium/kg diet as sodium selenite or sodium selenate. Livers isolated from male Sprague-Dawley rats fed these diets for 15 wk showed no differences in thiobarbituric acid-reactive substances or lipid hydroperoxides measured with the ferrous oxidation in xylenol orange method. Lipids isolated from samples of high-selenate and high-selenite diets showed no differences in conjugated dienes. The addition of selenate or selenite to soybean oil did not result in an altered Oil Stability Index. These results demonstrate that selenate is not less likely than selenite to cause oxidation of other dietary components. Benefits of selenate over selenite in the diets of rodents remain to be demonstrated. Results included in this paper were presented at the meeting of Experimental Biology 98, San Francisco, CA, April 18–22, 1998, and published in abstract form (Moak, M. A., Johnson, B. L., & Christensen, M. J. [1998] On the AIN-93G recommendation for selenium. FASEB J. 12, A824).  相似文献   

14.
Selenium accumulation in lettuce germplasm   总被引:1,自引:0,他引:1  
Ramos SJ  Rutzke MA  Hayes RJ  Faquin V  Guilherme LR  Li L 《Planta》2011,233(4):649-660
Selenium (Se) is an essential micronutrient for animals and humans. Increasing Se content in food crops offers an effective approach to reduce the widespread selenium deficiency problem in many parts of the world. In this study, we evaluated 30 diverse accessions of lettuce (Lactuca sativa L.) for their capacity to accumulate Se and their responses to different forms of Se in terms of plant growth, nutritional characteristics, and gene expression. Lettuce accessions responded differently to selenate and selenite treatment, and selenate is superior to selenite in inducing total Se accumulation. At least over twofold change in total Se levels between cultivars with high and low Se content was found. Synergistic relationship between Se and sulfur accumulation was observed in nearly all accessions at the selenate dosage applied. The change in shoot biomass varied between lettuce accessions and the forms of Se used. The growth-stimulated effect by selenate and the growth-inhibited effect by selenite were found to be correlated with the alteration of antioxidant enzyme activities. The different ability of lettuce accessions to accumulate Se following selenate treatment appeared to be associated with an altered expression of genes involved in Se/S uptake and assimilation. Our results provide important information for the effects of different forms of Se on plant growth and metabolism. They will also be of help in selecting and developing better cultivars for Se biofortification in lettuce.  相似文献   

15.
Selenium accumulation and the growth of cyanobacterium Spirulina platensis (Nordst.) Geitl. were studied in a culture with sodium selenite-supplemented nutritional medium. Selenite concentrations below 20 mg/l did not inhibit the growth of S. platensis. The addition of 30 mg/l of this salt somewhat decreased the growth rate during the linear growth phase, induced the earlier suspension transition to the steady-state phase, and substantially lowered the highest optical density of the suspension. However, even at 170 mg/l Na2SeO3, the culture still demonstrated a capacity for growth. The content of selenium in the cells depended directly on its concentration in the medium, up to the lethal level. At high selenium concentrations (100–170 mg/l), S. platensis reduced Se(IV) up to Se(0). The latter was secreted onto the cell surface and into the cultural medium. The high concentrations of Na2SeO3 acidified the cytoplasmic pH as was measured by 31P-NMR spectroscopy. At the same time, the content of protein on a dry weight basis decreased and that of carbohydrates and lipids somewhat increased, just as was observed in S. platensis cells under other stress factors. In the presence of 20 mg/l Na2SeO3, the selenium content in the biomass increased by 20000 times as compared to that in the control cells, whereas the biochemical composition of biomass did not change. In this case, the selenium was incorporated almost completely in the protein fraction. The selenium concentration in this fraction increased more significantly when the sulfur content was lowered in the medium.  相似文献   

16.
Ralstonia metallidurans CH34, a soil bacterium resistant to a variety of metals, is known to reduce selenite to intracellular granules of elemental selenium (Se0). We have studied the kinetics of selenite (SeIV) and selenate (SeVI) accumulation and used X-ray absorption spectroscopy to identify the accumulated form of selenate, as well as possible chemical intermediates during the transformation of these two oxyanions. When introduced during the lag phase, the presence of selenite increased the duration of this phase, as previously observed. Selenite introduction was followed by a period of slow uptake, during which the bacteria contained Se0 and alkyl selenide in equivalent proportions. This suggests that two reactions with similar kinetics take place: an assimilatory pathway leading to alkyl selenide and a slow detoxification pathway leading to Se0. Subsequently, selenite uptake strongly increased (up to 340 mg Se per g of proteins) and Se0 was the predominant transformation product, suggesting an activation of selenite transport and reduction systems after several hours of contact. Exposure to selenate did not induce an increase in the lag phase duration, and the bacteria accumulated approximately 25-fold less Se than when exposed to selenite. SeIV was detected as a transient species in the first 12 h after selenate introduction, Se0 also occurred as a minor species, and the major accumulated form was alkyl selenide. Thus, in the present experimental conditions, selenate mostly follows an assimilatory pathway and the reduction pathway is not activated upon selenate exposure. These results show that R. metallidurans CH34 may be suitable for the remediation of selenite-, but not selenate-, contaminated environments.  相似文献   

17.
In order to observe the possible regulatory role of selenium (Se) in relation to the changes in ascorbate (AsA) glutathione (GSH) levels and to the activities of antioxidant and glyoxalase pathway enzymes, rapeseed (Brassica napus) seedlings were grown in Petri dishes. A set of 10-day-old seedlings was pretreated with 25 μM Se (Sodium selenate) for 48 h. Two levels of drought stress (10% and 20% PEG) were imposed separately as well as on Se-pretreated seedlings, which were grown for another 48 h. Drought stress, at any level, caused a significant increase in GSH and glutathione disulfide (GSSG) content; however, the AsA content increased only under mild stress. The activity of ascorbate peroxidase (APX) was not affected by drought stress. The monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) activity increased only under mild stress (10% PEG). The activity of dehydroascorbate reductase (DHAR), glutathione S-transferase (GST), glutathione peroxidase (GPX), and glyoxalase I (Gly I) activity significantly increased under any level of drought stress, while catalase (CAT) and glyoxalase II (Gly II) activity decreased. A sharp increase in hydrogen peroxide (H2O2) and lipid peroxidation (MDA content) was induced by drought stress. On the other hand, Se-pretreated seedlings exposed to drought stress showed a rise in AsA and GSH content, maintained a high GSH/GSSG ratio, and evidenced increased activities of APX, DHAR, MDHAR, GR, GST, GPX, CAT, Gly I, and Gly II as compared with the drought-stressed plants without Se. These seedlings showed a concomitant decrease in GSSG content, H2O2, and the level of lipid peroxidation. The results indicate that the exogenous application of Se increased the tolerance of the plants to drought-induced oxidative damage by enhancing their antioxidant defense and methylglyoxal detoxification systems.  相似文献   

18.
Selenium Transport in Root Systems of Tomato   总被引:11,自引:1,他引:10  
Selenate and selenite transport through tomato root systemswere followed for periods up to 4 h after removal of the planttops, using 75Se as a tracer. With selenate, 75Se concentrations in the xylem exudate were6 to 13 times higher than in the external solution, and chromatographicanalysis showed that the selenium was transported as inorganicselenate ( ). With selenite, 75Se concentrations in the exudate were alwayslower than in the external solution. Analyses of exudate samplesshowed that negligible amounts of selenium were transportedas inorganic selenite ( except at very high external selenite concentrations (500 ?M), when up to 7 percent was transported as selenite. Most of the selenium transportin selenite-fed plants was as selenate or as an unknown seleniumcompound, the relative proportions of these two forms varyingboth with time and with external selenite concentration. Additionof a 5-fold excess of sulphate over selenite had no detectableeffect on the concentrations of selenate in the exudate, butcaused substantial decreases in the maximum concentrations ofboth total selenium (c. 47 per cent decrease) and the unknownselenium compound (c. 69 per cent decrease). Addition of a 5-foldexcess of sulphite decreased the concentration of the unknown(c. 39 per cent) but caused a large (2.7-fold) increase in themaximum total selenium concentration in the exudate and a 7.9-foldincrease in the maximum concentration of selenate. The resultssuggest metabolic involvement in the uptake and long distancetransport of solenium supplied as selenite, despite lower 75Seconcentrations in the xylem exudate than in the external solution.An attempt is made to incorporate the new and existing informationinto a selenium transport model.  相似文献   

19.
Nilaparvata lugens is one of the most notorious pest insects of cultured rice, and outbreaks of N. lugens cause high economic losses each year. While pest control by chemical pesticides is still the standard procedure for treating N. lugens infections, excessive use of these insecticides has led to the emergence of resistant strains and high pesticide residues in plants for human consumption and the environment. Therefore, novel and environment-friendly pest control strategies are needed. In previous studies, selenium was shown to protect selenium-accumulating plants from biotic stress. However, studies on nonaccumulator (crop) plants are lacking. In this study, rice plants (Oryza sativa, Nipponbare) were treated with sodium selenate by seed priming and foliar spray and then infested with N. lugens. Brown planthoppers feeding on these plants showed increased mortality compared to those feeding on control plants. Treatment of the plants with sodium selenate did not affect the enzymes involved in the biosynthesis of the plant stress hormones jasmonic acid and salicylic acid, suggesting that the observed insect mortality cannot be attributed to the activation of these hormonal plant defenses. Feeding assays using an artificial diet supplemented with sodium selenate revealed direct toxicity toward N. lugens. With a low concentration of 6.5 ± 1.5 µM sodium selenate, half of the insects were killed after 3 days. In summary, sodium selenate treatment of plants can be used as a potential alternative pest management strategy to protect rice against N. lugens infestation through direct toxicity.  相似文献   

20.
Thauera selenatis grows anaerobically with selenate, nitrate or nitrite as the terminal electron acceptor; use of selenite as an electron acceptor does not support growth. When grown with selenate, the product was selenite; very little of the selenite was further reduced to elemental selenium. When grown in the presence of both selenate and nitrate both electron acceptors were reduced concomitantly; selenite formed during selenate respiration was further reduced to elemental selenium. Mutants lacking the periplasmic nitrite reductase activity were unable to reduce either nitrite or selenite. Mutants possessing higher activity of nitrite reductase than the wild-type, reduced nitrite and selenite more rapidly than the wild-type. Apparently, the nitrite reductase (or a component of the nitrite respiratory system) is involved in catalyzing the reduction of selenite to elemental selenium while also reducing nitrite. While periplasmic cytochrome C 551 may be a component of the nitrite respiratory system, the level of this cytochrome was essentially the same in mutant and wild-type cells grown under two different growth conditions (i.e. with either selenate or selenate plus nitrate as the terminal electron acceptors). The ability of certain other denitrifying and nitrate respiring bacteria to reduce selenite will also be described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号