首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rainbow trout, Oncorhynchus mykiss, and crayfish, Orconectes virilis, have been introduced for the last century into North American streams inhabited by native fishes. We sought to determine the behavioral response of a federally threatened cyprinid, Little Colorado spinedace, Lepidomeda vittata, in the concurrent presence of multiple nonnative predators (rainbow trout and crayfish), as well as the response to the presence of a combination of native (Apache trout, Oncorhynchus apache) and nonnative (crayfish) predators. We held spinedace in artificial streams and exposed them to four treatments: (1) control, (2) crayfish added, (3) trout added, and (4) both crayfish and trout added. Only a single spinedace was consumed over the course of the experiments; it was captured and preyed upon by a crayfish. When both crayfish and Apache trout were present, spinedace response was similar to what it was when only Apache trout were present (decreased movement in and out of refuge), suggesting that crayfish and Apache trout did not mutually influence spinedace behavior. However, when both rainbow trout and crayfish were present, spinedace not only decreased movements in and out of refuge, but also decreased activity rates. We suggest that crayfish and rainbow trout mutually influence spinedace behavior and recommend control or elimination of crayfish and rainbow trout from spinedace critical habitat or potential reintroduction sites. In addition, potential reintroduction sites for Apache trout should be evaluated based on presence of crayfish and spinedace to avoid potential multiple predator interactions and negative effects on spinedace.  相似文献   

2.
Many arthropods possess escape-triggering neural mechanisms that help them evade predators. These mechanisms are important neuroethological models, but they are rarely investigated using predator-like stimuli because there is often insufficient information on real predator attacks. Locusts possess uniquely identifiable visual neurons (the descending contralateral movement detectors, DCMDs) that are well-studied looming motion detectors. The DCMDs trigger ‘glides’ in flying locusts, which are hypothesised to be appropriate last-ditch responses to the looms of avian predators. To date it has not been possible to study glides in response to stimuli simulating bird attacks because such attacks have not been characterised. We analyse video of wild black kites attacking flying locusts, and estimate kite attack speeds of 10.8±1.4 m/s. We estimate that the loom of a kite’s thorax towards a locust at these speeds should be characterised by a relatively low ratio of half size to speed (l/|v|) in the range 4–17 ms. Peak DCMD spike rate and gliding response occurrence are known to increase as l/|v| decreases for simple looming shapes. Using simulated looming discs, we investigate these trends and show that both DCMD and behavioural responses are strong to stimuli with kite-like l/|v| ratios. Adding wings to looming discs to produce a more realistic stimulus shape did not disrupt the overall relationships of DCMD and gliding occurrence to stimulus l/|v|. However, adding wings to looming discs did slightly reduce high frequency DCMD spike rates in the final stages of object approach, and slightly delay glide initiation. Looming discs with or without wings triggered glides closer to the time of collision as l/|v| declined, and relatively infrequently before collision at very low l/|v|. However, the performance of this system is in line with expectations for a last-ditch escape response.  相似文献   

3.
Many animals assess their risk of predation by listening to and evaluating predators' vocalizations. We reviewed the literature to draw generalizations about predator discrimination abilities, the retention of these abilities over evolutionary time, and the potential underlying proximate mechanisms responsible for discrimination. Broadly, we found that some prey possess an ability to respond to a predator after having been evolutionarily isolated from a specific predator (i.e., predators are allopatric) and that some prey are predisposed to respond to certain types of predators that they coevolved with but without having ecological experience. However, these types of studies are lacking, and relatively, few studies have examined predator discrimination abilities in ungulates. To begin addressing these knowledge gaps, we performed field experiments on Mule deer (Odocoileus hemionus) in which we investigated the ability of deer to discriminate among familiar predators [coyotes (Canis latrans) and mountain lions (Puma concolor)] and an evolutionary relevant predator with which deer have had no recent exposure [locally extinct wolves (Canis lupus)]. We found that Mule deer respond to and discriminate among predators based on predator vocalizations and have retained an ability to respond to wolves that have been extinct from the study area since the early 20th century. Previous playback studies have shown that responses vary among human‐habituated and non‐habituated populations and differ according to human proximity. Deer greater than 0.5 km from human residences allocated more time to heightened responses both before and after stimulus playback. Our findings may help predict how prey–predator interactions may change as a result of the recovering wolf population with a basis in ecological and evolutionary experience in predator discrimination and desensitization.  相似文献   

4.
5.
Freshwater Copepods and Rotifers: Predators and their Prey   总被引:1,自引:0,他引:1  
Three main groups of planktonic animals inhabit the limnetic zone of inland waters and compete for common food resources: rotifers, cladocerans and copepods. In addition to competition, their mutual relationships are strongly influenced by the variable, herbivorous and carnivorous feeding modes of the copepods. Most copepod species, at least in their later developmental stages, are efficient predators. They exhibit various hunting and feeding techniques, which enable them to prey on a wide range of planktonic animals from protozoans to small cladocerans. The rotifers are often the most preferred prey. The scope of this paper is limited to predation of freshwater copepods on rotifer prey. Both cyclopoid and calanoid copepods (genera Cyclops, Acanthocyclops, Mesocyclops, Diacyclops, Tropocyclops, Diaptomus, Eudiaptomus, Boeckella, Epischura and others) as predators and several rotifer species (genera Synchaeta, Polyarthra, Filinia, Conochilus, Conochiloides, Brachionus, Keratella, Asplanchna and others) as prey are reported in various studies on the feeding relationships in limnetic communities. Generally, soft-bodied species are more vulnerable to predation than species possessing spines or external structures or loricate species. However, not only morphological but also behavioural characteristics, e.g., movements and escape reactions, and temporal and spatial distribution of rotifer species are important in regulating the impact of copepod predation. The reported predation rates are high enough to produce top-down control and often achieve or even exceed the reproductive rates of the rotifer populations. These findings are discussed and related to the differences between the life history strategies of limnetic rotifer species, with their ability to quickly utilize seasonally changing food resources, and adjust to the more complicated life strategies of copepods.  相似文献   

6.

Background

Predator attraction to prey social signals can force prey to trade-off the social imperatives to communicate against the profound effect of predation on their future fitness. These tradeoffs underlie theories on the design and evolution of conspecific signalling systems and have received much attention in visual and acoustic signalling modes. Yet while most territorial mammals communicate using olfactory signals and olfactory hunting is widespread in predators, evidence for the attraction of predators to prey olfactory signals under field conditions is lacking.

Methodology/Principal Findings

To redress this fundamental issue, we examined the attraction of free-roaming predators to discrete patches of scents collected from groups of two and six adult, male house mice, Mus domesticus, which primarily communicate through olfaction. Olfactorily-hunting predators were rapidly attracted to mouse scent signals, visiting mouse scented locations sooner, and in greater number, than control locations. There were no effects of signal concentration on predator attraction to their prey''s signals.

Conclusions/Significance

This implies that communication will be costly if conspecific receivers and eavesdropping predators are simultaneously attracted to a signal. Significantly, our results also suggest that receivers may be at greater risk of predation when communicating than signallers, as receivers must visit risky patches of scent to perform their half of the communication equation, while signallers need not.  相似文献   

7.
8.
Invasive species cause catastrophic alterations to communities worldwide by changing the trophic balance within ecosystems. Ever since their introduction in the mid 1980''s common red lionfish, Pterois volitans, are having dramatic impacts on the Caribbean ecosystem by displacing native species and disrupting food webs. Introduced lionfish capture prey at extraordinary rates, altering the composition of benthic communities. Here we demonstrate that the extraordinary success of the introduced lionfish lies in its capacity to circumvent prey risk assessment abilities as it is virtually undetectable by prey species in its native range. While experienced prey damselfish, Chromis viridis, respond with typical antipredator behaviours when exposed to a common predatory rock cod (Cephalopholis microprion) they fail to visibly react to either the scent or visual presentation of the red lionfish, and responded only to the scent (not the visual cue) of a lionfish of a different genus, Dendrochirus zebra. Experienced prey also had much higher survival when exposed to the two non-invasive predators compared to P. volitans. The cryptic nature of the red lionfish has enabled it to be destructive as a predator and a highly successful invasive species.  相似文献   

9.
研究脉冲捕获捕食者与食饵具阶段结构的捕食-食饵模型.利用频闪映射理论,得到食饵灭绝的周期解是全局吸引的;运用时滞脉冲微分方程理论,证明了此系统是持久的.本文的结论为生态保护提供了可靠的策略依据.  相似文献   

10.
11.
Ciliates within the Mesodinium rubrum/Mesodinium major species complex harbor chloroplasts and other cell organelles from specific cryptophyte species. Mesodinium major was recently described, and new studies indicate that blooms of M. major are just as common as blooms of M. rubrum. Despite this, the physiology of M. major has never been studied and compared to M. rubrum. In this study, growth, food uptake, chlorophyll a and photosynthesis were measured at six different irradiances, when fed the cryptophyte, Teleaulax amphioxeia. The results show that the light compensation point for growth of Mmajor was significantly higher than for Mrubrum. Inorganic carbon uptake via photosynthesis contributed by far most of total carbon uptake at most irradiances, similar to Mrubrum. Mesodinium major cells contain ~four times as many chloroplast as M. rubrum leading to up to ~four times higher rates of photosynthesis. The responses of M. major to prey starvation and refeeding were also studied. Mesodinium major was well adapted to prey starvation, and 51 d without prey did not lead to mortality. Mesodinium major quickly recovered from prey starvation when refed, due to high ingestion rates of > 150 prey/predator/d.  相似文献   

12.
The outcome of predator-prey encounters is determined by a number of factors related to the locomotor and sensory performance of the animals. Escape responses can be triggered visually, i.e. by the magnifying retinal image of an approaching object (i.e. a predator), called the looming effect, and calculated as the rate of change of the angle subtended by the predator frontal profile as seen by the prey. A threshold of looming angle (ALT, the Apparent Looming Threshold) determines the reaction distance of a startled fish, which is proportional to the attack speed of the predator and its apparent frontal profile. Optimal tactics for predator attacks as well as consideration on their functional morphology are discussed in relation to ALT. Predator optimal attack speeds depend on predator morphology as well as the prey ALT. Predictions on the scaling of ALT suggest that ALT may increase (i.e. implying a decrease in reaction distance) with prey size in cases in which predator attack speeds are high (i.e. > 4 L/s in a 1-m long predator), while it may be relatively independent of prey size when predators attack at lower speeds. The issue of scaling of ALT is discussed using examples from field and laboratory studies. While the timing of the escape is a crucial issue for avoiding being preyed upon, the direction of escape manoeuvres may also determine the success of the escape. A simple theoretical framework for optimal escape trajectories is presented here and compared with existing data on escape trajectories of fish reacting to startling stimuli.  相似文献   

13.
Understanding how prey capture rates are influenced by feeding ecology and environmental conditions is fundamental to assessing anthropogenic impacts on marine higher predators. We compared how prey capture rates varied in relation to prey size, prey patch distribution and prey density for two species of alcid, common guillemot (Uria aalge) and razorbill (Alca torda) during the chick-rearing period. We developed a Monte Carlo approach parameterised with foraging behaviour from bird-borne data loggers, observations of prey fed to chicks, and adult diet from water-offloading, to construct a bio-energetics model. Our primary goal was to estimate prey capture rates, and a secondary aim was to test responses to a set of biologically plausible environmental scenarios. Estimated prey capture rates were 1.5±0.8 items per dive (0.8±0.4 and 1.1±0.6 items per minute foraging and underwater, respectively) for guillemots and 3.7±2.4 items per dive (4.9±3.1 and 7.3±4.0 items per minute foraging and underwater, respectively) for razorbills. Based on species'' ecology, diet and flight costs, we predicted that razorbills would be more sensitive to decreases in 0-group sandeel (Ammodytes marinus) length (prediction 1), but guillemots would be more sensitive to prey patches that were more widely spaced (prediction 2), and lower in prey density (prediction 3). Estimated prey capture rates increased non-linearly as 0-group sandeel length declined, with the slope being steeper in razorbills, supporting prediction 1. When prey patches were more dispersed, estimated daily energy expenditure increased by a factor of 3.0 for guillemots and 2.3 for razorbills, suggesting guillemots were more sensitive to patchier prey, supporting prediction 2. However, both species responded similarly to reduced prey density (guillemot expenditure increased by 1.7; razorbill by 1.6), thus not supporting prediction 3. This bio-energetics approach complements other foraging models in predicting likely impacts of environmental change on marine higher predators dependent on species-specific foraging ecologies.  相似文献   

14.
To effectively balance investment in predator defenses versus other traits, organisms must accurately assess predation risk. Chemical cues caused by predation events are indicators of risk for prey in a wide variety of systems, but the relationship between how prey perceive risk in relation to the amount of prey consumed by predators is poorly understood. While per capita predation rate is often used as the metric of relative risk, studies aimed at quantifying predator-induced defenses commonly control biomass of prey consumed as the metric of risk. However, biomass consumed can change by altering either the number or size of prey consumed. In this study we determine whether phenotypic plasticity to predator chemical cues depends upon prey biomass consumed, prey number consumed, or both. We examine the growth response of red-eyed treefrog tadpoles (Agalychnis callidryas) to cues from a larval dragonfly (Anax amazili). Biomass consumed was manipulated by either increasing the number of prey while holding individual prey size constant, or by holding the number of prey constant and varying individual prey size. We address two questions. (i) Do prey reduce growth rate in response to chemical cues in a dose dependent manner? (ii) Does the magnitude of the response depend on whether prey consumption increases via number or size of prey? We find that the phenotypic response of prey is an asymptotic function of prey biomass consumed. However, the asymptotic response is higher when more prey are consumed. Our findings have important implications for evaluating past studies and how future experiments should be designed. A stronger response to predation cues generated by more individual prey deaths is consistent with models that predict prey sensitivity to per capita risk, providing a more direct link between empirical and theoretical studies which are often focused on changes in population sizes not individual biomass.  相似文献   

15.
The activity patterns exhibited by animals are shaped by evolution, but additionally fine‐tuned by flexible responses to the environment. Predation risk and resource availability are environmental cues which influence the behavioural decisions that make both predators and prey engage in activity bursts, and depending on their local importance, can be strong enough to override the endogenous regulation of an animals’ circadian clock. In Southern Europe, wherever the European rabbit (Oryctolagus cuniculus) is abundant, it is the main prey of most mammalian mesopredators, and rodents are generally the alternative prey. We evaluated the bidirectional relation between the diel activity strategies of these mammalian mesopredators and prey coexisting in south‐western Europe. Results revealed that even though predation risk enforced by mammalian mesocarnivores during night‐time was approximately twice and five times higher than during twilight and daytime, respectively, murids consistently displayed unimodal nocturnal behaviour. Conversely, the European rabbits exhibited a bimodal pattern that peaked around sunrise and sunset. Despite the existence of some overlap between the diel rhythms of mesocarnivores and rabbits, their patterns were not synchronized. We suggest that the environmental stressors in our study areas are not severe enough to override the endogenous regulation of the circadian cycle in murids. European rabbits, however, are able to suppress their biological tendency for nocturnality by selecting a predominantly crepuscular pattern. In spite of the higher energetic input, mesocarnivores do not completely track rabbits’ activity pattern. They rather track rodents’ activity. We propose that these systems have probably evolved towards a situation where some degree of activity during high‐risk periods benefits the overall prey population survival, while the accessibility to sufficient prey prevents predators to completely track them.  相似文献   

16.
Avoidance behaviour can play an important role in structuring ecosystems but can be difficult to uncover and quantify. Remote cameras have great but as yet unrealized potential to uncover patterns arising from predatory, competitive or other interactions that structure animal communities by detecting species that are active at the same sites and recording their behaviours and times of activity. Here, we use multi-season, two-species occupancy models to test for evidence of interactions between introduced (feral cat Felis catus) and native predator (Tasmanian devil Sarcophilus harrisii) and predator and small mammal (swamp rat Rattus lutreolus velutinus) combinations at baited camera sites in the cool temperate forests of southern Tasmania. In addition, we investigate the capture rates of swamp rats in traps scented with feral cat and devil faecal odours. We observed that one species could reduce the probability of detecting another at a camera site. In particular, feral cats were detected less frequently at camera sites occupied by devils, whereas patterns of swamp rat detection associated with devils or feral cats varied with study site. Captures of swamp rats were not associated with odours on traps, although fewer captures tended to occur in traps scented with the faecal odour of feral cats. The observation that a native carnivorous marsupial, the Tasmanian devil, can suppress the detectability of an introduced eutherian predator, the feral cat, is consistent with a dominant predator – mesopredator relationship. Such a relationship has important implications for the interaction between feral cats and the lower trophic guilds that form their prey, especially if cat activity increases in places where devil populations are declining. More generally, population estimates derived from devices such as remote cameras need to acknowledge the potential for one species to change the detectability of another, and incorporate this in assessments of numbers and survival.  相似文献   

17.
Oscillations of large populations of neurons are thought to be important in the normal functioning of the brain. We have used phase response curve (PRC) methods to characterize the dynamics of single neurons and predict population dynamics. Our past experimental work was limited to special circumstances (e.g., 2-cell networks of periodically firing neurons). Here, we explore the feasibility of extending our methods to predict the synchronization properties of stellate cells (SCs) in the rat entorhinal cortex under broader conditions. In particular, we test the hypothesis that PRCs in SCs scale linearly with changes in synaptic amplitude, and measure how well responses to Poisson process-driven inputs can be predicted in terms of PRCs. Although we see nonlinear responses to excitatory and inhibitory inputs, we find that models based on weak coupling account for scaling and Poisson process-driven inputs reasonably accurately.  相似文献   

18.
We studied avoidance, by four amphibian prey species (Rana luteiventris, Ambystoma macrodactylum, Pseudacris regilla, Tarichia granulosa), of chemical cues associated with native garter snake (Thamnophis elegans) or exotic bullfrog (R. catesbeiana) predators. We predicted that avoidance of native predators would be most pronounced, and that prey species would differ in the intensity of their avoidance based on relative levels of vulnerability to predators in the wild. Adult R. luteiventris (presumably high vulnerability to predation) showed significant avoidance of chemical cues from both predators, A. macrodactylum (intermediate vulnerability to predation) avoided T. elegans only, while P. regilla (intermediate vulnerability to predation) and T. granulosa (low vulnerability to predation) showed no avoidance of either predator. We assessed if predator avoidance was innate and/or learned by testing responses of prey having disparate levels of prior exposure to predators. Wild‐caught (presumably predator‐exposed) post‐metamorphic juvenile R. luteiventris and P. regilla avoided T. elegans cues, while laboratory‐reared (predator‐naive) conspecifics did not; prior exposure to R. catesbeiana was not related to behavioural avoidance among adult or post‐metamorphic juvenile wild‐reared A. macrodactylum and P. regilla. These results imply that (i) some but not all species of amphibian prey avoid perceived risk from garter snake and bullfrog predators, (ii) the magnitude of this response probably differs according to prey vulnerability to predation in the wild, and (iii) avoidance tends to be largely learned rather than innate. Yet, the limited prevalence and intensity of amphibian responses to predation risk observed herein may be indicative of either a relatively weak predator–prey relationship and/or the limited importance of predator chemical cues in this particular system.  相似文献   

19.
Researchers agree that climate change factors such as rising atmospheric [CO2] and warming will likely interact to modify ecosystem properties and processes. However, the response of the microbial communities that regulate ecosystem processes is less predictable. We measured the direct and interactive effects of climatic change on soil fungal and bacterial communities (abundance and composition) in a multifactor climate change experiment that exposed a constructed old-field ecosystem to different atmospheric CO2 concentration (ambient, +300 ppm), temperature (ambient, +3°C), and precipitation (wet and dry) might interact to alter soil bacterial and fungal abundance and community structure in an old-field ecosystem. We found that (i) fungal abundance increased in warmed treatments; (ii) bacterial abundance increased in warmed plots with elevated atmospheric [CO2] but decreased in warmed plots under ambient atmospheric [CO2]; (iii) the phylogenetic distribution of bacterial and fungal clones and their relative abundance varied among treatments, as indicated by changes in 16S rRNA and 28S rRNA genes; (iv) changes in precipitation altered the relative abundance of Proteobacteria and Acidobacteria, where Acidobacteria decreased with a concomitant increase in the Proteobacteria in wet relative to dry treatments; and (v) changes in precipitation altered fungal community composition, primarily through lineage specific changes within a recently discovered group known as soil clone group I. Taken together, our results indicate that climate change drivers and their interactions may cause changes in bacterial and fungal overall abundance; however, changes in precipitation tended to have a much greater effect on the community composition. These results illustrate the potential for complex community changes in terrestrial ecosystems under climate change scenarios that alter multiple factors simultaneously.Soil microbial communities are responsible for the cycling of carbon (C) and nutrients in ecosystems, and their activities are regulated by biotic and abiotic factors such as the quantity and quality of litter inputs, temperature, and moisture. Atmospheric and climatic changes will impact both abiotic and biotic drivers in ecosystems and the response of ecosystems to these changes. Feedbacks from ecosystem to the atmosphere may also be regulated by soil microbial communities (3). Although microbial communities regulate important ecosystem processes, it is often unclear how the abundance and composition of microbial communities correlate with climatic perturbations and interact to effect ecosystem processes. As such, much of the ecosystem climate change research conducted to date has focused on macroscale responses to climatic change such as changes in plant growth (43, 44), plant community composition (2, 37), and coarse scale soil processes (14, 18, 21, 26), many of which may also indirectly interact to effect microbial processes. Studies that have addressed the role of microbial communities and processes have most often targeted gross parameters, such as microbial biomass, enzymatic activity, or basic microbial community profiles in response to single climate change factors (22, 28, 29, 33, 61, 63).Climate change factors such as atmospheric CO2 concentrations, warming, and altered precipitation regimes can potentially have both direct and indirect impacts on soil microbial communities. However, the direction and magnitude of these responses is uncertain. For example, the response of soil microbial communities to changes in atmospheric CO2 concentrations can be positive or negative, and consistent overall trends between sites and studies have not been observed (1, 28, 34-36). Further, depending on what limits ecosystem productivity, precipitation and soil moisture changes may increase or decrease the ratio of bacteria and fungi, as well as shift their community composition (8, 50, 58). Increasing temperatures can increase in microbial activity, processing, and turnover, causing the microbial community to shift in favor of representatives adapted to higher temperatures and faster growth rates (7, 46, 60, 64, 65). Atmospheric and climatic changes are happening in concert with one another so that ecosystems are experiencing higher levels of atmospheric CO2, warming, and changes in precipitation regimes simultaneously. Although the many single factor climate change studies described above have enabled a better understanding of how microbial communities may respond to any one factor, understanding how multiple climate change factors interact with each other to influence microbial community responses is poorly understood. For example, elevated atmospheric [CO2] and precipitation changes might increase soil moisture in an ecosystem, but this increase may be counteracted by warming (10). Similarly, warming may increase microbial activity in an ecosystem, but this increase may be eliminated if changes in precipitation lead to a drier soil condition or reduced litter quantity, quality, and turnover. Such interactive effects of climate factors in a multifactorial context have been less commonly studied even in plant communities (45), and detailed studies are rarer still in soil microbial communities (25). Clearly, understanding how microbial communities will respond to these atmospheric and climate change drivers is important to make accurate predications of how ecosystems may respond to future climate scenarios.To address how multiple climate change drivers will interact to shape soil microbial communities, we took advantage of a multifactor climatic change experiment that manipulated atmospheric CO2 (+300 ppm, ambient), warming (+3°C, ambient) and precipitation (wet and dry) in a constructed old-field ecosystem that had been ongoing for 3.5 years at the time of sampling. Previous work on this project has demonstrated direct and interactive effects of the treatments on plant community composition and biomass (15, 30), soil respiration (56), microbial activity (30), nitrogen fixation (21), and soil carbon stocks (20). These results led us to investigations of how the soil bacterial and fungal communities, important regulators of some of these processes, were responding using culture-independent molecular approaches. Our research addresses two overarching questions. (i) Do climatic change factors and their interactions alter bacterial and fungal abundance and diversity? (ii) Do climatic change factors and their interactions alter bacterial or fungal community composition?  相似文献   

20.
ABSTRACT Developing comprehensive conservation strategies requires knowledge of factors influencing population growth and persistence. Although variable prey resources are often associated with fluctuations in raptor demographic parameters, the mechanisms of food limitation are poorly understood, especially for a generalist predator like the northern goshawk (Accipiter gentilis). To determine the reproductive responses of goshawks to variable prey populations, we evaluated 823 goshawk breeding opportunities on the Kaibab Plateau, Arizona, USA, during 1994–2002. Concurrently, density was estimated for 4 prey species (2 avian, 2 mammalian). We explored the relationship between goshawk reproduction and prey density at one temporal scale (year) and 2 spatial scales (study area, forest type). Prey density for all 4 species combined accounted for 89% of the variation in goshawk reproduction within the entire study area (P < 0.001), 74% in mixed conifer forest (P = 0.003) and 85% in ponderosa pine (Pinus ponderosa) forest (P < 0.001). We found that an incremental increase in prey density resulted in a greater increase in goshawk reproduction in ponderosa pine forest than in mixed conifer forest, suggesting that the denser structural conditions of mixed conifer forest may have reduced prey availability. Red squirrel (Tamiasciurus hudsonicus) density explained more annual variation in goshawk reproduction within the study area (r2 = 0.87, P < 0.001), mixed conifer forest (r2 = 0.80, P = 0.001), and ponderosa pine forest (r2 = 0.85, P < 0.001) than did any other individual species. Although certain prey species were more strongly correlated with fluctuations in goshawk reproduction than were others, the high model selection uncertainty and the strong relationship between total prey density and number of goshawk fledglings produced indicated that alternate prey species were readily substituted for one another. Therefore, conservation strategies concerned with the status of goshawk populations should incorporate forest management practices that increase the abundance, diversity, and availability of prey resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号