首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAD kinase was purified 93-fold from Escherichia coli. The enzyme was found to have a pH optimum of 7.2 and an apparent Km for NAD+, ATP, and Mg2+ of 1.9, 2.1, and 4.1 mM, respectively. Several compounds including quinolinic acid, nicotinic acid, nicotinamide, nicotinamide mononucleotide, AMP, ADP, and NADP+ did not affect NAD kinase activity. The enzyme was not affected by changes in the adenylate energy charge. In contrast, both NADH and NADPH were potent negative modulators of the enzyme, since their presence at micromolar concentrations resulted in a pronounced sigmoidal NAD+ saturation curve. In addition, the presence of a range of concentrations of the reduced nucleotides resulted in an increase of the Hill slope (nH) to 1.7 to 2.0 with NADH and to 1.8 to 2.1 with NADPH, suggesting that NAD kinase is an allosteric enzyme. These results indicate that NAD kinase activity is regulated by the availability of ATP, NAD+, and Mg2+ and, more significantly, by changes in the NADP+/NADPH and NAD+/NADH ratios. Thus, NAD kinase probably plays a role in the regulation of NADP turnover and pool size in E. coli.  相似文献   

2.
Pyridine Nucleotide Transhydrogenase from Azotobacter vinelandii   总被引:5,自引:0,他引:5       下载免费PDF全文
A method is described for the partial purification of pyridine nucleotide transhydrogenase from Azotobacter vinelandii (ATCC 9104) cells. The most highly purified preparation catalyzes the reduction of 300 mumoles of nicotinamide adenine dinucleotide (NAD(+)) per min per mg of protein under the assay conditions employed. The enzyme catalyzes the reduction of NAD(+), deamino-NAD(+), and thio-NAD(+) with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as hydrogen donor, and the reduction of nicotinamide adenine dinucleotide phosphate (NADP(+)) and thio-NAD(+) with reduced NAD (NADH) as hydrogen donor. The reduction of acetylpyridine AD(+), pyridinealdehyde AD(+), acetylpyridine deamino AD(+), and pyridinealdehydedeamino AD(+) with NADPH as hydrogen donor was not catalyzed. The enzyme catalyzes the transfer of hydrogen more readily from NADPH than from NADH with different hydrogen acceptors. The transfer of hydrogen from NADH to NADP(+) and thio-NAD(+) was markedly stimulated by 2'-adenosine monophosphate (2'-AMP) and inhibited by adenosine diphosphate (ADP), adenosine triphosphate (ATP), and phosphate ions. The transfer of hydrogen from NADPH to NAD(+) was only slightly affected by phosphate ions and 2'-AMP, except at very high concentrations of the latter reagent. In addition, the transfer of hydrogen from NADPH to thio-NAD(+) was only slightly influenced by 2'-AMP, ADP, ATP, and other nucleotides. The kinetics of the transhydrogenase reactions which utilized thio-NAD(+) as hydrogen acceptor and NADH or NADPH as hydrogen donor were studied in some detail. The results suggest that there are distinct binding sites for NADH and NAD(+) and perhaps a third regulator site for NADP(+) or 2'-AMP. The heats of activation for the transhydrogenase reactions were determined. The properties of this enzyme are compared with those of other partially purified transhydrogenases with respect to the regulatory functions of 2'-AMP and other nucleotides on the direction of flow of hydrogen between NAD(+) and NADP(+).  相似文献   

3.
Exogenous NAD+ stimulated the rotenone-resistant oxidation of all the NAD+-linked tricarboxylic acid-cycle substrates in mitochondria from Jerusalem artichoke (Helianthus tuberosus L.) tubers. The stimulation was not removed by the addition of EGTA, which is known to inhibit the oxidation of exogenous NADH. It is therefore concluded that added NAD+ gains access to the matrix space and stimulates oxidation by the rotenone-resistant NADH dehydrogenase located on the matrix surface of the inner membrane. Added NAD+ stimulated the activity of malic enzyme and displaced the equilibrium of malate dehydrogenase; both observations are consistent with entry of NAD+ into the matrix space. Analysis of products of malate oxidation showed that rotenone-resistant oxygen uptake only occurred when the concentration of oxaloacetate was low and that of NADH was high. Thus it is proposed that the concentration of NADH regulates the activity of the two internal NADH dehydrogenases. Evidence is presented to suggest that the rotenone-resistant NADH dehydrogenase is engaged under conditions of high phosphorylation potential, which restricts electron flux through the rotenone-sensitive dehydrogenase (coupled to ATP synthesis).  相似文献   

4.
NAD kinase phosphorylates NAD+ to form NADP+ and is strictly specific to NAD+, whereas NADH kinase phosphorylates both NAD+ and NADH, thereby showing relaxed substrate specificity. Based on their primary and tertiary structures, the difference in the substrate specificities between NAD and NADH kinases was proposed to be caused by one aligned residue: Gly or polar amino acid (Gln or Thr) in five NADH kinases and a charged amino acid (Arg) in two NAD kinases. The substitution of Arg with Gly in the two NAD kinases relaxed the substrate specificity (i.e. converted the NAD kinases to NADH kinases). The substitution of Arg in one NAD kinase with polar amino acids also relaxed the substrate specificity, whereas substitution with charged and hydrophobic amino acids did not show a similar result. In contrast, the substitution of Gly with Arg in one NADH kinase failed to convert it to NAD kinase. These results suggest that a charged or hydrophobic amino acid residue in the position of interest is crucial for strict specificity of NAD kinases to NAD+, whereas Gly or polar amino acid residue is not the sole determinant for the relaxed substrate specificity of NADH kinases. The significance of the conservation of the residue at the position in 207 NAD kinase homologues is also discussed.  相似文献   

5.
B G Nair  T B Patel 《Life sciences》1991,49(12):915-923
Adenylate cyclase activity in isolated rat liver plasma membranes was inhibited by NADH in a concentration-dependent manner. Half-maximal inhibition of adenylate cyclase was observed at 120 microM concentration of NADH. The effect of NADH was specific since adenylate cyclase activity was not altered by NAD+, NADP+, NADPH, and nicotinic acid. The ability of NADH to inhibit adenylate cyclase was not altered when the enzyme was stimulated by activating the cyclase was not altered when the enzyme was stimulated by activating the Gs regulatory element with either glucagon or cholera toxin. Similarly, inhibition of Gi function by pertussis toxin treatment of membranes did not attenuate the ability of NADH to inhibit adenylate cyclase activity. Inhibition of adenylate cyclase activity to the same extent in the presence and absence of the Gpp (NH) p suggested that NADH directly affects the catalytic subunit. This notion was confirmed by the finding that NADH also inhibited solubilized adenylate cyclase in the absence of Gpp (NH)p. Kinetic analysis of the NADH-mediated inhibition suggested that NADH competes with ATP to inhibit adenylate cyclase; in the presence of NADH (1 mM) the Km for ATP was increased from 0.24 +/- 0.02 mM to 0.44 +/- 0.08 mM with no change in Vmax. This observation and the inability of high NADH concentrations to completely inhibit the enzyme suggest that NADH interacts at a site(s) on the enzyme to increase the Km for ATP by 2-fold and this inhibitory effect is overcome at high ATP concentrations.  相似文献   

6.
Pyridine and adenine nucleotide levels were measured in Friend erythroleukaemia cells (FELC) stimulated to growth and induced to differentiate by hexamethylene bisacetamide (HMBA) and N'-methylnicotinamide (N'-MNAM). A three- to fourfold increase in the NADP(H) was found to parallel cell growth stimulation in both the presence and absence of differentiation inducers. NAD(H) increased about twofold in control and to a minor extent in HMBA-treated FELC but did not vary significantly in N'-MNAM-treated cells. ATP was significantly higher in control cells stimulated to growth than in resting ones, but it did not vary in inducer-treated cells. These data confirm the relationship between high NADP(H) levels and cell resumption to growth; moreover they show that NAD(H) pool reduction and NAD/NADH ratio rise are associated with the process of FELC differentiation. The activities of NAD pyrophosphorylase and NAD kinase are much more enhanced in growth-stimulated FELC than in resting ones. On the other hand transition from the quiescent to the proliferative state was accompanied by a decrease in the activity of poly(ADP-ribose) polymerase. A decrease in poly(ADP-ribose) polymerase activity was also found in differentiated cells in contrast to controls.  相似文献   

7.
Production of NADP and NADPH depends on activity of NAD and NADH kinases. Here we characterized all combinations of mutants in yeast NAD and NADH kinases to determine their physiological roles. We constructed a diploid strain heterozygous for disruption of POS5, encoding mitochondrial NADH kinase, UTR1, cytosolic NAD kinase, and YEF1, a UTR1-homologous gene we characterized as encoding a low specific activity cytosolic NAD kinase. pos5 utr1 is a synthetic lethal combination rescued by plasmid-borne copies of the POS5 or UTR1 genes or by YEF1 driven by the ADH1 promoter. Respiratory-deficient and oxidative damage-sensitive defects in pos5 mutants were not made more deleterious by yef1 deletion, and a quantitative growth phenotype of pos5 and its arginine auxotrophy were repaired by plasmid-borne POS5 but not UTR1 or ADH1-driven YEF1. utr1 haploids have a slow growth phenotype on glucose not exacerbated by yef1 deletion but reversed by either plasmid-borne UTR1 or ADH1-driven YEF1. The defect in fermentative growth of utr1 mutants renders POS5 but not POS5-dependent mitochondrial genome maintenance essential because rho-utr1 derivatives are viable. Purified Yef1 has similar nucleoside triphosphate specificity but substantially lower specific activity and less discrimination in favor of NAD versus NADH phosphorylation than Utr1. Low expression and low intrinsic NAD kinase activity of Yef1 and the lack of phenotype associated with yef1 suggest that Utr1 and Pos5 are responsible for essentially all NAD/NADH kinase activity in vivo. The data are compatible with a model in which there is no exchange of NADP, NADPH, or cytoplasmic NAD/NADH kinase between nucleocytoplasmic and mitochondrial compartments, but the cytoplasm is exposed to mitochondrial NAD/NADH kinase during the transit of the molecule.  相似文献   

8.
Accumulating data support the view that sepsis is associated with an acquired intrinsic derangement in the ability of cells to consume O(2), a phenomenon that has been termed "cytopathic hypoxia." We sought to use an in vitro "reductionist" model system using cultured cells stimulated with proinflammatory cytokines to test the hypothesis that cytopathic hypoxia is mediated, at least in part, by depletion of intracellular levels of NAD(+)/NADH secondary to activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP). We measured O(2) consumption by Caco-2 enterocytes growing on microcarrier beads after cells were incubated for 24 h under control conditions or with cytomix, a mixture of tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma. Immunostimulated cells consumed O(2) at about one-half the rate of control cells, but this effect was largely prevented if any one of the following pharmacological agents was present during the period of incubation with cytomix: 4,5-dihydroxy-1,3-benzene disulfonic acid, a superoxide radical anion scavenger; 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a nitric oxide scavenger; 5,10,15,20- tetrakis-[4-sulfonatophenyl]-porphyrinato-iron[III], a peroxynitrite (ONOO(-)) decomposition catalyst; urate, an ONOO(-) scavenger; 3-aminobenzamide, a PARP inhibitor; or N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide HCl, a chemically dissimilar and more potent PARP inhibitor. The decrease in O(2) uptake induced by cytomix was associated with decreased cellular levels of NAD(+)/NADH. The decrease in cellular NAD(+)/NADH content and the decrease in O(2) uptake induced by cytomix were completely abrogated if liposome-encapsulated NAD(+) was added to the cultures during immunostimulation. Empty liposomes also increased O(2) uptake by immunostimulated Caco-2 cells, but much less effectively than liposomes containing NAD(+). These data are consistent with the view that enterocytes exposed to proinflammatory cytokines consume less O(2) due to NAD(+)/NADH depletion secondary to activation of PARP by ONOO(-) or other oxidants.  相似文献   

9.
The binding of NAD(+) and NADH to bovine liver UDP-glucose dehydrogenase was studied by using gel-filtration and fluorescence-titration methods. The enzyme bound 0.5mol of NAD(+) and 2 mol of NADH/mol of subunit at saturating concentrations of both substrate and product. The dissociation constant for NADH was 4.3mum. The binding of NAD(+) to the enzyme resulted in a small quench of protein fluorescence whereas the binding of NADH resulted in a much larger (60-70%) quench of protein fluorescence. The binding of NADH to the enzyme was pH-dependent. At pH8.1 a biphasic profile was obtained on titrating the enzyme with NADH, whereas at pH8.8 the titration profile was hyperbolic. UDP-xylose, and to a lesser extent UDP-glucuronic acid, lowered the apparent affinity of the enzyme for NADH.  相似文献   

10.
Neoplanocin A, a cyclopentenyl analog of adenosine, has been shown recently to be a tight binding inhibitor of S-adenosylhomocysteine (AdoHcy) hydrolase (EC 3.3.1.1), exhibiting a stoichiometry of one molecule of inhibitor per molecule of the enzyme tetramer (Borchardt, R. T., Keller, B. T., and Patel-Thombre, U. (1984) J. Biol. Chem. 259, 4353-4358). In the present study a detailed analysis was performed of the possible role of the enzyme-bound NAD+ in the inactivation of AdoHcy hydrolase by neplanocin A. The NAD+/NADH content was quantitated using a fluorescence technique. The native enzyme showed intrinsic fluorescence with an emission maximum at 460 nm when excited at 340 nm, partially due to NADH bound to the enzyme. It was found that the content of NAD+ and NADH in freshly prepared, native enzyme is equal, having a stoichiometry of two nucleotides per enzyme molecule (tetramer). In addition, it was observed that the enzymatic activity of the native enzyme can be increased by about 30% following preincubation with NAD+. Furthermore, it was demonstrated that the mechanism of inhibition of AdoHcy hydrolase by neplanocin A involves the reduction of enzymatically bound NAD+ to NADH. Catalytic activity of the inactivated enzyme could be fully recovered in a time-dependent manner by further incubation with NAD+ (but not NADH). It was also found that inhibition by neplanocin A does not involve dissociation of the bound NAD+ or NADH from the enzyme, but simply reduction of the NAD+ to NADH.  相似文献   

11.
Shi F  Kawai S  Mori S  Kono E  Murata K 《The FEBS journal》2005,272(13):3337-3349
ATP-NAD kinase phosphorylates NAD to produce NADP by using ATP, whereas ATP-NADH kinase phosphorylates both NAD and NADH. Three NAD kinase homologues, namely, ATP-NAD kinase (Utr1p), ATP-NADH kinase (Pos5p) and function-unknown Yel041wp (Yef1p), are found in the yeast Saccharomyces cerevisiae. In this study, Yef1p was identified as an ATP-NADH kinase. The ATP-NADH kinase activity of Utr1p was also confirmed. Thus, the three NAD kinase homologues were biochemically identified as ATP-NADH kinases. The phenotypic analysis of the single, double and triple mutants, which was unexpectedly found to be viable, for UTR1, YEF1 and POS5 demonstrated the critical contribution of Pos5p to mitochondrial function and survival at 37 degrees C and the critical contribution of Utr1p to growth in low iron medium. The contributions of the other two enzymes were also demonstrated; however, these were observed only in the absence of the critical contributor, which was supported by complementation for some pos5 phenotypes by the overexpression of UTR1 and YEF1. The viability of the triple mutant suggested that a 'novel' enzyme, whose primary structure is different from those of all known NAD and NADH kinases, probably catalyses the formation of cytosolic NADP in S. cerevisiae. Finally, we found that LEU2 of Candida glabrata, encoding beta-isopropylmalate dehydrogenase and being used to construct the triple mutant, complemented some pos5 phenotypes; however, overexpression of LEU2 of S. cerevisiae did not. The complementation was putatively attributed to an ability of Leu2p of C. glabrata to use NADP as a coenzyme and to supply NADPH.  相似文献   

12.
The fate of all aerobic organisms is dependent on the varying intracellular concentrations of NADH and NADPH. The former is the primary ingredient that fuels ATP production via oxidative phosphorylation, while the latter helps maintain the reductive environment necessary for this process and other cellular activities. In this study we demonstrate a metabolic network promoting NADPH production and limiting NADH synthesis as a consequence of an oxidative insult. The activity and expression of glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-isocitrate dehydrogenase, the main generators of NADPH, were markedly increased during oxidative challenge. On the other hand, numerous tricarboxylic acid cycle enzymes that supply the bulk of intracellular NADH were significantly downregulated. These metabolic pathways were further modulated by NAD(+) kinase (NADK) and NADP(+) phosphatase (NADPase), enzymes known to regulate the levels of NAD(+) and NADP(+). While in menadione-challenged cells, the former enzyme was upregulated, the phosphatase activity was markedly increased in control cells. Thus, NADK and NADPase play a pivotal role in controlling the cross talk between metabolic networks that produce NADH and NADPH and are integral components of the mechanism involved in fending off oxidative stress.  相似文献   

13.
NAD kinase catalyzes the phosphorylation of NAD+ to synthesize NADP+, whereas NADH kinase catalyzes conversion of NADH to NADPH. The mitochondrial protein Pos5 of Saccharomyces cerevisiae shows much higher NADH kinase than NAD kinase activity and is therefore referred to as NADH kinase. To clarify the structural determinant underlying the high NADH kinase activity of Pos5 and its selectivity for NADH over NAD+, we determined the tertiary structure of Pos5 complexed with NADH at a resolution of 2.0 Å. Detailed analysis, including a comparison of the tertiary structure of Pos5 with the structures of human and bacterial NAD kinases, revealed that Arg-293 of Pos5, corresponding to His-351 of human NAD kinase, confers a positive charge on the surface of NADH-binding site, whereas the corresponding His residue does not. Accordingly, conversion of the Arg-293 into a His residue reduced the ratio of NADH kinase activity to NAD kinase activity from 8.6 to 2.1. Conversely, simultaneous changes of Ala-330 and His-351 of human NAD kinase into Ser and Arg residues significantly increased the ratio of NADH kinase activity to NAD kinase activity from 0.043 to 1.39; human Ala-330 corresponds to Pos5 Ser-272, which interacts with the side chain of Arg-293. Arg-293 and Ser-272 were highly conserved in Pos5 homologs (putative NADH kinases), but not in putative NAD kinases. Thus, Arg-293 of Pos5 is a major determinant of NADH selectivity. Moreover, Ser-272 appears to assist Arg-293 in achieving the appropriate conformation.  相似文献   

14.
A cytoplasmic NADH oxidase (NOX) was purified from a soil bacteria, Brevibacterium sp. KU1309, which is able to grow in the medium containing 2-phenylethanol as the sole source of carbon under an aerobic condition. The enzyme catalyzed the oxidation of NADH to NAD+ involving two-electron reduction of O2 to H2O2. The molecular weight of the enzyme was estimated to be 102 kDa by gel filtration and 57 kDa by SDS-PAGE, which indicates that the NOX was a homodimer consisting of a single subunit. The enzyme was stable up to 70 degrees C at a broad range of pH from 7 to 11. The enzyme activity increased about ten-fold with the addition of ammonium salt, while it was inhibited by Zn2+ (39%), Cu2+ (41%), Hg2+ (72%) and Ag+ (37%). The enzyme acts on NADH, but not on NADPH. The regeneration of NAD+ utilizing this enzyme made selective oxidation of mandelic acid or L: -phenylalanine possible. This thermostable enzyme is expected to be applicable as a useful biocatalyst for NAD+ recycling.  相似文献   

15.
An ion-pair, reverse-phase, high-performance liquid chromatography method of assay was developed and used in a series of rate studies carried out with the enzyme chicken liver NAD+ kinase (ATP:NAD+ 2'-phosphotransferase, EC 2.7.1.23). Complete separation of all products and reactants was achieved within 15 min. ATP, NAD+, ADP, and NADP+ were monitored at 260 nm as they eluted from a Zorbax (Dupont) ODS (4.6 X 250-mm) column using an acetonitrile and 0.01 mM NH4(H2PO4)/0.005 M tetrabutylammonium phosphate (pH 7.0) gradient. The enzyme shows a marked preference for ATP (and dATP) and Mg2+ (or Mn2+) relative to other trinucleotides and divalent metal ions. It exhibits residual adenylate kinase and ATPase activity, but no NADH kinase activity. When polyphosphate replaced ATP, NADP+ production dropped to 2.5%. The addition of Ca2+ and/or bovine brain calmodulin did not significantly enhance the rate of NADP+ production.  相似文献   

16.
Fungal metabolism of biphenyl.   总被引:9,自引:0,他引:9       下载免费PDF全文
gamma-Glutamyl phosphate reductase, the second enzyme of proline biosynthesis, catalyses the formation of l-glutamic acid 5-semialdehyde from gamma-glutamyl phosphate with NAD(P)H as cofactor. It was purified 150-fold from crude extracts of Pseudomonas aeruginosa PAO 1 by DEAE-cellulose chromatography and hydroxyapatite adsorption chromatography. The partially purified preparation, when assayed in the reverse of the biosynthetic direction, utilized l-1-pyrroline-5-carboxylic acid as substrate and reduced NAD(P)(+). The apparent K(m) values were: NAD(+), 0.36mm; NADP(+), 0.31mm; l-1-pyrroline-5-carboxylic acid, 4mm with NADP(+) and 8mm with NAD(+); P(i), 28mm. 3-(Phosphonoacetylamido)-l-alanine, a structural analogue of gamma-glutamyl phosphate, inhibited this enzyme competitively (K(i)=7mm). 1-Pyrroline-5-carboxylate reductase (EC 1.5.1.2), the third enzyme of proline biosynthesis, was purified 56-fold by (NH(4))(2)SO(4) fractionation, Sephadex G-150 gel filtration and DEAE-cellulose chromatography. It reduced l-1-pyrroline-5-carboxylate with NAD(P)H as a cofactor to l-proline. NADH (K(m)=0.05mm) was a better substrate than NADPH (K(m)=0.02mm). The apparent K(m) values for l-1-pyrroline-5-carboxylate were 0.12mm with NADPH and 0.09mm with NADH. The 3-acetylpyridine analogue of NAD(+) at 2mm caused 95% inhibition of the enzyme, which was also inhibited by thio-NAD(P)(+), heavy-metal ions and thiol-blocking reagents. In cells of strain PAO 1 grown on a proline-medium the activity of gamma-glutamyl kinase and gamma-glutamyl phosphate reductase was about 40% lower than in cells grown on a glutamate medium. No repressive effect of proline on 1-pyrroline-5-carboxylate reductase was observed.  相似文献   

17.
1. The binding parameters for NADH and NAD+ to rabbit-muscle glyceraldehyde-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) have been measured by quenching of the flourescence of the protein and the NADH. 2. The fact that the degree of protein fluorescence quenching by bound NAD+ or NADH, excited at 285 nm and measured at 340 nm ('blue' tryptophans), is not linearly related to the saturation functions of these nucleotides, leads to a slight overestimation of the interaction energy and an underestimation of the concentration of sites, if linearity is assumed. 3. This is also the case for NADH, but not for NAD+, when the protein fluorescence is excited at 305 nm and measured at 390 nm ('red' tryptophans). 4. The binding of NAD+ can be described by a model in which the binding of NAD+, via negative interactions within the dimer, induces weaker binding sites, with the result that the microscopic dissociation constant is 0.08 microM at low saturation and 0.18 microM for the holoenzyme. 5. The binding of NADH can be described on the basis of the same model, the dissociation constant at low saturation being 0.5 microM and of the holoenzyme 1.0 microM. 6. The fluorescence of bound NADH is not sensitive to the conformational changes that cause the decrease in affinity of bound NAD+ or NADH. 7. The binding of NAD+ to the 3-phosphoglyceroyl enzyme can be described by a dissociation constant that is at least two orders of magnitude greater than the dissociation constants of the unacylated enzyme. The affinity of NAD+ to this form of the enzyme is in agreement with the Ki calculated from product inhibition by NAD+ of the reductive dephosphorylation of 1,3-diphosphoglycerate.  相似文献   

18.
Characterization of NADH kinase from Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
At least two enzymes that phosphorylate diphosphopyridine nucleotides were detected in Saccharomyces cerevisiae: NADH-specific kinase was localized exclusively in the mitochondria, and NAD+-specific kinase was distributed in the microsomal and cytosol fractions but not in the mitochondria. The identity of NAD+ kinase detected in the two fractions remains equivocal. NADH kinase was highly purified 1,041-fold from the mitochondrial fraction. The Km values for NADH and ATP were 105 microM and 2.1 mM, respectively. The relative molecular mass was estimated to be 160,000 by means of molecular sieve chromatography. From inactivation studies with SH inhibitors and protection by NADH, it was demonstrated that a cysteine residue is involved in the binding site of NADH.  相似文献   

19.
Isomerization of 5-pregnene-3,20-dione to progesterone by human placental microsomes was stimulated by NAD and NADH. Concomitant oxidation or reduction of nucleotide was not detected based on absorbance at 340 nm. Concentrations giving half-maximum activity were 0.76 microM for NADH and 24.0 microM for NAD. Vmax values with 9.28 microM 5-pregnene-3,20-dione were 22.0 nmol/min/mg protein with NADH and 65.8 nmol/min/mg protein with NAD. When isomerase was assayed as a function of 5-pregnene-3,20-dione concentration, NAD increased Vmax but had no effect on the Km value for steroid. NADP, NADPH, acetylpyridine NAD and deamino NAD did not activate nor did they compete with NAD. Exposure of microsomes to trypsin, phospholipase A2 or phospholipase C resulted in the loss of isomerase activity. Approximately 30% of the initial activity was recovered after detergent solubilization of microsomes. Hydrogen peroxide did not affect activation by NAD. The data are consistent with nucleotide enhancement of a step in the isomerization reaction other than substrate binding.  相似文献   

20.
A radioisotopic, enzymatic cycling procedure was used to measure NAD, NADH, NADP and NADPH in cultured human lymphocytes at 0, 24 and 48 h after exposure to phytohemagglutinin (PHA). During the 0–24 h period after PHA addition NAD and NADH were increased in both control and test cultures leading to a decrease in the NAD: NADH ratio. During the 24–48 h period increases in NAD and NADH occurred in test cultures in parallel with increased incorporation of [3H]TdR. No change in the NAD: NADH ratio was seen. The results indicate that the levels of NAD and NADH may be affected by the culture conditions and that increases in these compounds occur in stimulated cells during a time period in which DNA turnover is elevated and cell volume is increased but before extensive cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号