首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Localization of mRNA is a well-described mechanism to account for the asymmetric distribution of proteins in polarized somatic cells and embryos of animals. In zygotes of the brown alga Fucus, F-actin is localized at the site of polar growth and accumulates at the cell plates of the first two divisions of the embryo. We used a nonradioactive, whole-mount in situ hybridization protocol to show the pattern of actin mRNA localization. Until the first cell division, the pattern of actin mRNA localization is identical to that of total poly(A)+ RNA, that is, a symmetrical distribution in the zygote followed by an actin-dependent accumulation at the thallus pole at the time of polar axis fixation. At the end of the first division, actin mRNA specifically is redistributed from the thallus pole to the cell plates of the first two divisions in the rhizoid. This specific pattern of localization in the zygote and embryo involves the redistribution of previously synthesized actin mRNA. The initial asymmetry of actin mRNA at the thallus pole of the zygote requires polar axis fixation and microfilaments but not microtubules, cell division, or polar growth. However, redistribution of actin mRNA from the thallus pole to the first cell plate is insensitive to cytoskeletal inhibitors but is dependent on cell plate formation. The F-actin that accumulates at the rhizoid tip is not accompanied by the localization of actin mRNA. However, maintenance of an accumulation of actin protein at the cell plates of the rhizoid could be explained, at least partially, by a mechanism involving localization of actin mRNA at these sites. The pattern and requirements for actin mRNA localization in the Fucus embryo may be relevant to polarization of the embryo and asymmetric cell divisions in higher plants as well as in other tip-growing plant cells.  相似文献   

2.
The role of Ca2+ in zygote polarization in fucoid algae (Fucus, Ascophyllum, and Pelvetia species) zygote polarization is controversial. Using a local source of Fucus serratus, we established that zygotes form a polar axis relative to unilateral light (photopolarization) between 8 and 14 h after fertilization (AF), and become committed to this polarity at approximately 15 to 18 h AF. We investigated the role of Ca2+, calmodulin, and actin during photopolarization by simultaneously exposing F. serratus zygotes to polarizing light and various inhibitors. Neither removal of Ca2+ from the culture medium or high concentrations of EGTA and LaCl3 had any effect on photopolarization. Bepridil, 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester, nifedipine, and verapamil, all of which block intracellular Ca2 release, reduced photopolarization from 75 to 30%. The calmodulin antagonists N-(6-aminohexyl)-5-chloro-L-naphthalenesulfonamide and trifluoperazine inhibited photopolarization in all zygotes, whereas N-(6-aminohexyl)-L-naphthalenesulfonamide had no effect. Cytochalasin B, cytochalasin D, and latrunculin B, all of which inhibit actin polymerization, had no effect on photopolarization, but arrested polar axis fixation. The role of calmodulin during polarization was investigated further. Calmodulin mRNA from the closely related brown alga Macrocystis pyrifera was cloned and the protein was expressed in bacteria. Photopolarization was enhanced following microinjections of this recombinant calmodulin into developing zygotes. Confocal imaging of fluorescein isothiocyanate-labeled recombinant calmodulin in photopolarized zygotes showed a homogenous signal distribution at 13 h AF, which localized to the presumptive rhizoid site at 15 h AF.  相似文献   

3.
Multicellular development has evolved independently on numerous occasions and there is great interest in the developmental mechanisms utilized by each of the divergent lineages. Fucoid algae, in the stramenopile lineage (distinct from metazoans, fungi and green plants) have long been used as a model for early development based on unique life cycle characteristics. The initially symmetric fucoid zygote generates a developmental axis that determines not only the site of growth, but also the orientation of the first cell division, whose products have distinct developmental fates. Establishment and maintenance of this growth axis is dependent on formation of a filamentous actin array that directs vesicular movement, depositing new membrane and wall material for development of the rhizoid. What is not well known, is how formation and placement of the actin array is regulated in fucoid algae. A candidate for this function is Rac1, a small GTPase of the highly conserved Rho family, which has been implicated in controlling the formation of actin arrays in diverse eukaryotes. We demonstrate that Rac1 is not only present during formation of the filamentous actin array, but that its localization overlaps with the array in polarizing zygotes. Pharmacologically inhibiting Rac1 activity was shown to impede formation and maintenance of the actin array, and ultimately polar growth. Evidence is provided that a requirement of Rac1 function is its ability to associate with membranes via a post-translationally added lipid tail. Taken together, the data indicate that Rac1 is a necessary participant in establishment of the growth pole, presumably by regulating the placement and formation of the actin array. A role for Rac1 and related proteins in regulating actin is shared by animals, plants, fungi and with this work, brown algae, thus a conserved mechanism for generating polarity is in operation in unique eukaryotic lineages.  相似文献   

4.
Recent studies indicate that fucoid zygotes establish developmental polarity much earlier than previously thought. A growth axis is first set in place at fertilization, with the site of sperm entry defining the rhizoid pole of the axis. This initial axis is a default axis, which is only used as the final growth axis if the zygote fails to detect spatial cues (such as sunlight) in its intertidal environment. However, the zygote usually senses vectorial information; it then abandons the sperm-induced axis and assembles a new axis de novo in accordance with the perceived vector(s).  相似文献   

5.
We studied the effects of auxin (indolyl-3 acetic acid) on formation of the primary polarity axis in zygotes of the brown algae Fucus vesiculosus. Within the first 2.5 h after fertilization, the zygotes release this phytohormone in the environment. The treatment of developing zygotes with the inhibitor of indolyl-3-acetic acid transport from the cell triiodobenzoic acid at 5 mg/l arrests the auxin secretion and leads to its accumulation in the cells. This causes a significant delay in zygote polarization. The treatment of zygotes with the exogenous indolyl-3-acetic acid at 1 mg/l stimulates cell polarization and formation of a rhizoid process. When auxin was added to the medium with triiodobenzoic acid, the inhibitory effect of the latter was fully relieved. It has been proposed that the content of indolyl-3-acetic acid in the environment is a key factor in the induction of polarity of the F. vesiculosus zygotes.  相似文献   

6.
Hable WE  Miller NR  Kropf DL 《Protoplasma》2003,221(3-4):193-204
Summary.  Previous work has demonstrated that actin plays important roles in axis establishment and polar growth in fucoid zygotes. Distinct actin arrays are associated with fertilization, polarization, growth, and division, and agents that depolymerize actin filaments (cytochalasins, latrunculin B) perturb these stages of the first cell cycle. Rearrangements of actin arrays could be accomplished by transport of intact filaments and/or by actin dynamics involving depolymerization of the old array and polymerization of a new array. To investigate the requirement for dynamic actin during early development, we utilized the actin-stabilizing agent jasplakinolide. Immunofluorescence of actin arrays showed that treatment with 1–10 μM jasplakinolide stabilized existing arrays and induced polymerization of new filaments. In young zygotes, a cortical actin patch at the rhizoid pole was stabilized, and in some cells supernumerary patches were formed. In older zygotes that had initiated tip growth, massive filament assembly occurred in the rhizoid apex, and to a lesser degree in the perinuclear region. Treatment disrupted polarity establishment, polar secretion, tip growth, spindle alignment, and cytokinesis but did not affect the maintenance of an established axis, mitosis, or cell cycle progression. This study suggests that dynamic actin is required for polarization, growth, and division. Rearrangements in actin structures during the first cell cycle are likely mediated by actin depolymerization within old arrays and polymerization of new arrays. Received July 15, 2002; accepted November 27, 2002; published online June 13, 2003 RID="*" ID="*" Correspondence and reprints: Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, U.S.A.  相似文献   

7.
Actin Localization during Fucus Embryogenesis   总被引:15,自引:4,他引:11       下载免费PDF全文
Embryogenesis in the Fucales serves as a model system for studying the acquisition of cellular and developmental polarity. Fertilized eggs bear no asymmetry, yet within 16 hours, a developmental axis is formed and the unicellular zygote germinates in accordance with this axis. Microfilaments (actin) play a crucial role in establishing the axis as evidenced by the inhibitory effects of cytochalasins on axis fixation. The cellular content of actin was determined by immunoblot, whereas the localization of F-actin was investigated using the fluorescent probe rhodamine phalloidin. Three isoforms of actin were detected in constant amounts at all developmental stages. Actin networks were found to be distributed uniformly in eggs and zygotes through the period of early zygote development when the polar axis was formed. However, as the polar axis became irreversibly fixed in space, actin was localized at the presumptive germination site by a cytochalasin-sensitive process. This correlation supports the proposal that actin networks play a critical role in axis fixation, and is consistent with our hypothesis that this process involves stabilization of membrane components by transmembrane bridges from the cell wall to the microfilament cytoskeleton.  相似文献   

8.
We studied the effects of auxin (indole-3-acetic acid) on formation of the primary polarity axis in zygotes of the brown algae Fucus vesiculosusL. Within the first 2.5 h after fertilization, the zygotes release this phytohormone in the ambient medium. The treatment of developing zygotes with the inhibitor of indole-3-acetic acid transport from the cell 2,3,5-triiodobenzoic acid at 5 mg/l arrests the auxin secretion and leads to its accumulation in the cells. This causes a significant delay in zygote polarization. The treatment of zygotes with the exogenous indole-3-acetic acid at 1 mg/l stimulates cell polarization and formation of a rhizoid protuberance. When auxin was added to the medium with triiodobenzoic acid, the inhibitory effect of the latter was eliminated. It has been proposed that the content of indole-3-acetic acid in the ambient medium is a key factor in the induction of polarity of the F. vesiculosus zygotes.  相似文献   

9.
C. Mondesert  D. J. Clarke    S. I. Reed 《Genetics》1997,147(2):421-434
The regulation of secretion polarity and cell surface growth during the cell cycle is critical for proper morphogenesis and viability of Saccharomyces cerevisiae. A shift from isotropic cell surface growth to polarized growth is necessary for bud emergence and a repolarization of secretion to the bud neck is necessary for cell separation. Although alterations in the actin cytoskeleton have been implicated in these changes in secretion polarity, clearly other cellular systems involved in secretion are likely to be targets of cell cycle regulation. To investigate mechanisms coupling cell cycle progression to changes in secretion polarity in parallel with and downstream of regulation of actin polarization, we implemented a screen for mutants defective specifically in polarized growth but with normal actin cytoskeleton structure. These mutants fell into three classes: those partially defective in N-glycosylation, those linked to specific defects in the exocyst, and a third class neither defective in glycosylation nor linked to the exocyst. These results raise the possibility that changes in N-linked glycosylation may be involved in a signal linking cell cycle progression and secretion polarity and that the exocyst may have regulatory functions in coupling the secretory machinery to the polarized actin cytoskeleton.  相似文献   

10.
Ustilago maydis is a dimorphic Basidiomycete fungus with a yeast-like form and a hyphal form. Here we present a comprehensive analysis of bud formation and the actin and microtubule cytoskeletons of the yeast-like form during the cell cycle. We show that bud morphogenesis entails a series of shape changes, initially a tubular or conical structure, culminating in a cigar-shaped cell connected to the mother cell by a narrow neck. Labelling of cells with concanavalin A demonstrated that growth occurs at bud tip. Indirect immunofluorescence studies revealed that the actin cytoskeleton consists of patches and cables that polarize to the presumptive bud site and the bud tip and an actin ring that forms at the neck region. Because the bud tip corresponds to the site of active cell wall growth, we hypothesize that actin is involved in secretion of cell wall components. The microtubule cytoskeleton has recently been shown to consist of a cytoplasmic network during interphase that disassembles at mitosis when a spindle and astral microtubules are formed. We have carried out studies of U. maydis cells synchronized by the microtubule-depolymerizing drug thiabendazole which allow us to construct a temporal sequence of steps in spindle formation and spindle elongation during the cell cycle. These studies suggest that astral microtubules may be involved in early stages of spindle orientation and migration of the nucleus into the bud and that the spindle pole bodies may be involved in reestablishment of the cytoplasmic microtubule network.  相似文献   

11.
Sperm entry induces polarity in fucoid zygotes   总被引:1,自引:0,他引:1  
Fucoid zygotes establish a rhizoid-thallus growth axis in response to environmental signals; however, these extrinsic cues are not necessary for polarization, suggesting that zygotes may have inherent polarity. The hypothesis that sperm entry provides a default pathway for polarization of zygotes cultured in the absence of environmental signals was tested, and was supported by several lines of evidence. First, an F-actin patch, a cortical marker of the rhizoid pole, formed at the sperm entry site within minutes of fertilization. Second, the sperm entry site predicted the site of polar adhesive secretion (the first morphological manifestation of the rhizoid pole) and the position of rhizoid outgrowth. Third, when fertilization was restricted to one hemisphere of the egg, rhizoid outgrowth always occurred from that hemisphere. Fourth, delivery of sperm to one location within a population of eggs resulted in polarization of both adhesive secretion and rhizoid outgrowth toward the sperm source. Finally, induction of polyspermy using low sodium seawater increased the frequency of formation of two rhizoids. Sperm entry therefore provides an immediate default axis that can later be overridden by environmental cues.  相似文献   

12.
During the cell cycle of the yeast Saccharomyces cerevisiae, the actin cytoskeleton and cell surface growth are polarized, mediating bud emergence, bud growth, and cytokinesis. We have determined whether p21-activated kinase (PAK)-family kinases regulate cell and actin polarization at one or several points during the yeast cell cycle. Inactivation of the PAK homologues Ste20 and Cla4 at various points in the cell cycle resulted in loss of cell and actin cytoskeletal polarity, but not in depolymerization of F-actin. Loss of PAK function in G1 depolarized the cortical actin cytoskeleton and blocked bud emergence, but allowed isotropic growth and led to defects in septin assembly, indicating that PAKs are effectors of the Rho-guanosine triphosphatase Cdc42. PAK inactivation in S/G2 resulted in depolarized growth of the mother and bud and a loss of actin polarity. Loss of PAK function in mitosis caused a defect in cytokinesis and a failure to polarize the cortical actin cytoskeleton to the mother-bud neck. Cla4-green fluorescent protein localized to sites where the cortical actin cytoskeleton and cell surface growth are polarized, independently of an intact actin cytoskeleton. Thus, PAK family kinases are primary regulators of cell and actin cytoskeletal polarity throughout most or all of the yeast cell cycle. PAK-family kinases in higher organisms may have similar functions.  相似文献   

13.
Klaus Schröter 《Planta》1978,140(1):69-73
Five hours before germination the zygotes of Pelvetia fastigiata adhere to their substrate. A jelly layer covers the entire cell but most of the transparent jelly, artificially outlined by a layer of resin beads, is secreted at the prospective rhizoid pole. If the direction of the growth-orienting light is shifted after the asymmetrical secretion has already started, the direction of the secretion is also shifted. The polarization axis can be predicted by the site of the intensive jelly secretion. The germination of Fucus vesiculosus and F. spiralis is also preceded by an intensive asymmetrical jelly secretion. However, at the rhizoid pole of F. serratus the jelly secretion does not increase until the germinating zygote becomes pear-shaped. Fucoid zygotes do not adhere, neither do they have a jelly cover as long as they develop in sulfate-free sea water.Abbreviations a.f. after fertilization  相似文献   

14.
Summary Zygotes of the brown algaFucus distichus undergo a series of intracellular changes resulting in the establishment of a polar growth axis prior to the first embryonic cell division. In order to examine the dynamics of membrane recycling which occur in the zygote during polar growth of the rhizoid, we probed living Fucus zygotes with the vital stain FM4-64, N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylammo)phenyl)hexatrienyl)pyridinium dibromide. In newly fertilized, spherical zygotes, FM4-64 staining is symmetric and predominantly in the perinuclear region which is rich in endoplasmic reticulum, Golgi, and vacuolar membranes. As rhizoid or tip growth is initiated, this population of stained membranes becomes asymmetrically redistributed, concentrating at the rhizoid tip and extending centrally to the perinuclear region. This asymmetric localization is maintained in the zygote throughout polar growth of the rhizoid and during karyokinesis. Subsequently, FM4-64 staining also begins to accumulate in a central location between the daughter nuclei. As cytokinesis proceeds, this region of stain expands laterally from this central location, perpendicular to the plane of polar rhizoid outgrowth. The staining pattern thus delineates the formation of a cell plate, similar spatially to the accumulation of nascent plate membranes of higher plants. Treatment of Fucus zygotes with brefeldin-A inhibits both asymmetric growth of the rhizoid and formation of a new cell plate. These data suggest that inF. distichus FM4-64 is labeling a Golgi-derived membrane fraction that appears to be recycling between the site of tip growth, perinuclear region, and new cell plate.Abbreviations AF after fertilization - ASW artificial seawater - BFA brefeldin A - ER endoplasmic reticulum - FM4-64 N-(3-triethylam-moniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium dibromide  相似文献   

15.
Polarity is achieved partly through the localized assembly of the cytoskeleton. During growth in budding yeast, the bud cortex and neck localized formins Bni1p and Bnr1p nucleate and assemble actin cables that extend along the bud-mother axis, providing tracks for secretory vesicle delivery. Localized formins are believed to determine the location and polarity of cables, hence growth. However, yeast expressing the nonlocalized actin nucleating/assembly formin homology (FH) 1-FH2 domains of Bnr1p or Bni1p as the sole formin grow well. Although cables are significantly disorganized, analysis of directed transport of secretory vesicles is still biased toward the bud, reflecting a bias in correctly oriented cables, thereby permitting polarized growth. Myosin II, localized at the bud neck, contributes to polarized growth as a mutant unable to interact with F-actin further compromises growth in cells with an unlocalized formin but not with a localized formin. Our results show that multiple mechanisms contribute to cable orientation and polarized growth, with localized formins and myosin II being two major contributors.  相似文献   

16.
In multicellular eukaryotes, the zygote, a single cell, gives rise to the different cell types of the organism. The study of the mechanisms involved is a key point of developmental biology. Generally, the first stages are characterized by an orderly sequence of asymmetrical divisions resulting from an initial developmental polarity. The establishment of this initial polarity has been the subject of numerous studies in animals, but not in higher plants since the zygote is encased in several layers of tissues that prevent experimental approaches. Moreover, plant development is characterized by two successive ontogenetic steps: the construction of the embryonic apico-basal axis and the establishment of meristems in charge of organogenesis. Members of the Fucophyceae provide good models for the investigation of these processes. Any inferred homology of mechanisms must take into account the polyphyletic nature of the algae. This paper is a tentative review of two case studies: fucoid zygotes and Sphacelaria apical cells, and deals respectively with the two successive ontogenetic steps characteristic of higher plant development. The first part concerns development of the fucoid zygotes. Fucoid zygotes, including those of different species, are considered as model systems in plants for studying the establishment of the polarity axis because, at the moment of fertilization, they do not have any morphological or biochemical polarity. This report concerns progress in the identification of some cellular or molecular mechanisms involved in the settlement and/or stabilization of the polarity axis, and the consequence of this polar organisation for the control of asymmetrical divisions and the building of a functional embryo. The second part concerns the apical cell of Sphacelaria as a model for establishing and maintaining a meristematic cell. The apical cell exhibits a permanent polarized organisation throughout repetitive asymmetric divisions and can be comparatively analysed in situ and isolated as a protoplast. This allowed us to investigate the evolution of the cytoplasmic cytoskeleton, centrosomes and the mitotic apparatus during the cell cycle in relation to the cell polarity; particularly the interactions between the cytoskeleton and cell wall. For the two models, the results are compared with mechanisms involved in the development of other multicellular organisms, and their value in gaining an insight into higher plant ontogenesis is assessed.  相似文献   

17.
Generation and expression of cell polarity in brown algal zygotes of the Fucales involve regulation of the actin cytoskeleton and localized secretion. We used degenerate PCR to isolate cDNAs that encode two small GTPases, FdRac1 and FdRab8, from zygotes of Fucus distichus (L.) Powell. Sequence analysis placed FdRac1 in the Rho family, which regulates actin, and FdRab8 in the Rab family, which regulates vesicle transport. As expected, bacterially expressed forms of both proteins bound GTP in vitro. When expressed in budding yeast, FdRac1 showed some functional overlap with CDC42, the Saccharomyces cerevisiae Rho family gene required for yeast cell polarity. Immunolocalization revealed an asymmetric distribution of FdRac1 in polarized zygotes and embryos, with FdRac1 concentrated at or near the growing tip of the algal rhizoid. Our data support the hypothesis that FdRac1 regulates algal cell polarity, possibly via the actin cytoskeleton. Because brown algae belong to the heterokont group, which diverged from other groups early in eukaryotic evolution, we argue that the Rho family function of regulating cell polarity is ancient and may extend throughout the eukaryotes.Electronic Supplementary Material Supplementary material is available in the online version of this article at Abbreviations AF After fertilization - GST Glutathione-S-transferase - MBP Maltose-binding protein  相似文献   

18.
We determined the distribution of F-actin in fucoid (Pelvetia, Fucus) embryos with nitrobenzoxadiazole-phallacidin, and studied the effect of cytochalasin upon the endogenous currents associated with cell polarization by using the vibrating probe. F-actin is not localized at the presumptive rhizoid immediately after experimental induction of the polar axis with a light gradient; however, a preferential distribution of F-actin develops at the presumptive rhizoid by the time the position of the polar axis is fixed. F-actin continues to be localized at the tip of the rhizoid after germination, except during cytokinesis, when the furrow is the only brightly staining region of the embryo. Incubation with cytochalasin can result in either an enhanced or a diminished pool of F-actin in the embryonic cortex (see Results). Cytochalasin D (100 micrograms/ml) significantly reduces the inward current at the rhizoid pole (n = 11) after a 2.5-h incubation. This drop is concentration dependent and occurs within approximately 30 min at 100 micrograms/ml and approximately 60 min at 10 micrograms/ml. Cytochalasin treatment eliminates the pulsatile component of the current. Preliminary results suggest that 100 micrograms/ml cytochalasin D prevents development of inward current at the presumptive rhizoid but does not completely delocalize this locus if added after photopolarization. We conclude that microfilaments are required for the establishment and maintenance of the pattern of endogenous currents observed during early embryogenesis. This suggests a new model for axis formation and fixation.  相似文献   

19.
Aip3p is an actin-interacting protein that regulates cell polarity in budding yeast. The Schizosaccharomyces pombe-sequencing project recently led to the identification of a homologue of Aip3p that we have named spAip3p. Our results confirm that spAip3p is a true functional homologue of Aip3p. When expressed in budding yeast, spAip3p localizes similarly to Aip3p during the cell cycle and complements the cell polarity defects of an aip3Delta strain. Two-hybrid analysis shows that spAip3p interacts with actin similarly to Aip3p. In fission yeast, spAip3p localizes to both cell ends during interphase and later organizes into two rings at the site of cytokinesis. spAip3p localization to cell ends is dependent on microtubule cytoskeleton, its localization to the cell middle is dependent on actin cytoskeleton, and both patterns of localization require an operative secretory pathway. Overexpression of spAip3p disrupts the actin cytoskeleton and cell polarity, leading to morphologically aberrant cells. Fission yeast, which normally rely on the microtubule cytoskeleton to establish their polarity axis, can use the actin cytoskeleton in the absence of microtubule function to establish a new polarity axis, leading to the formation of branched cells. spAip3p localizes to, and is required for, branch formation, confirming its role in actin-directed polarized cell growth in both Schizosaccharomyces pombe and Saccharomyces cerevisiae.  相似文献   

20.
Previous work has demonstrated that dynamic actin arrays are important for axis establishment and polar growth in the fucoid zygote, Silvetia compressa. Transitions between these arrays are mediated by depolymerization of an existing array and polymerization of a new array. To begin to understand how polymerization of new arrays might be regulated, we investigated the role of the highly conserved, actin-nucleating, Actin-related protein 2/3 (Arp2/3) complex. Arp2, a subunit of the complex, was cloned and peptide antibodies were raised to the C-terminal domain. In immunolocalization studies of polarizing zygotes, actin and Arp2 colocalized around the nucleus and in a patch at the rhizoid pole. In germinated zygotes, a cone of Arp2 and actin extended from the nucleus to the subapex. Within the rhizoid tip, three structural zones were observed in the majority of zygotes: the extreme apex was devoid of label, the subapex was enriched for Arp2, and further back both actin and Arp2 were present. This zonation suggests that actin nucleation occurs at the leading edge of the cone, in the Arp2-enriched region. In two sets of experiments, we showed that tip zonation is important for growth. First, pharmacological treatments that disrupted Arp2/actin zonation arrested tip growth. Second, changes in the direction of tip growth during negative phototropism were preceded by a reorientation of the zonation in accordance with the new growth direction. This work represents the first investigation of Arp2/3 complex localization in tip-growing algal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号