首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RFLPs (restriction fragment length polymorphisms) of PCR (polymerase chain reaction) -amplified fragments were used to trace the pattern of plastid DNA inheritance in the genus Actinidia. A total of 51 progeny originating from interspecific crosses between three A. arguta cultivars and A. deliciosa, the kiwifruit, and 12 progeny originating from the cross between A. kolomikta and A. chinensis were analysed together with their parents. No reciprocal crosses could be tested since they all failed to set viable seeds. Attempts to rescue immature embryos failed in all cases as well. The A. arguta×A. deliciosa crosses were checked for the RFLP patterns of a sequence encoding part of the Rubisco large subunit (rbcL), using either AluI or MseI, and for a sequence encoding part of the photosystem II D1 protein (psbA), using HinfI. The A. kolomikta×A. chinensis cross was checked for the RFLP patterns of sequences encoding the spacers between trnT and the 5-trnL exon (a-b spacer DNA) and the trnL 3 exon and trnF (e-f spacer DNA), respectively. The first spacer revealed a natural polymorphism between the two parent species due to a large deletion occurring in A. kolomikta detectable without further restriction enzyme treatment. The e-f spacer DNA was digested with HinfI. The comparison of the RFLP patterns in the parents and their progeny showed a strictly paternal inheritance of chloroplast DNA in Actinidia, with no exception found in any of the crosses examined. As the reciprocal crosses were not available, we do not know whether paternal inheritance of plastids is restricted to the crosses we analysed or if this is the general rule for plastid inheritance in the genus Actinidia. Actinidia is dioecious and is the first purely outbreeding species for which a paternal plastid inheritance has so far been documented.  相似文献   

2.
Organelle inheritance in intergeneric hybrids of Festuca pratensis and Lolium perenne was investigated by restriction enzyme and Southern blot analyses of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA). All F1 hybrids exhibited maternal inheritance of both cpDNA and mtDNA. However, examination of backcross hybrids, obtained by backcrossing the intergeneric F1 hybrids to L. Perenne, indicated that both uniparental maternal organelle inheritance and uniparental paternal organelle inheritance can occur in different backcross hybrids.  相似文献   

3.
Summary A partially purified algal protein mixture which supports in vitro DNA replication consists of soluble proteins and proteins extracted from thylakoid membrane. The membrane extract is essential for the specific initiation of replication at a displacement loop (D-loop) site previously mapped by electron microscopy. D-loop site and its flanking sequences have been cloned and sequenced. In this study, fragment-retention assays using various subclones of the sequenced region indicate that some proteins in the membrane extract bind strongly and specifically with a 494 bp restriction fragment which partially overlaps the D-loop site. Protein gel analyses of the protein-DNA complex identify three DNA-binding polypeptides with apparent molecular weights of 18, 24 and 26 kDa, respectively. Treatment with chloramphenicol, an inhibitor of chloroplast protein synthesis, for 1 h has no obvious effect on the contents of the 24 or 26 kDa polypeptides but significantly reduces the content of the 18 kDa polypeptide in the membrane extract.  相似文献   

4.
Kremer A  Le Corre V 《Heredity》2012,108(4):375-385
We dissected the relationship between genetic differentiation (Q(ST)) for a trait and its underlying genes (G(STq), differentiation for a quantitative locus) in an evolutionary context, with the aim of identifying the conditions in which these two measurements are decoupled. We used two parameters (θ(B) and θ(W)) scaling the contributions of inter- and intrapopulation allelic covariation between genes controlling the trait of interest. We monitored the changes in θ(B) and θ(W), Q(ST) and G(STq) over successive generations of divergent and stabilizing selection, in simulations for an outcrossing species with extensive gene flow. The dynamics of these parameters are characterized by two phases. Initially, during the earliest generations, differentiation of the trait increases very rapidly and the principal and immediate driver of Q(ST) is θ(B). During subsequent generations, G(STq) increases steadily and makes an equal contribution to Q(ST). These results show that selection first captures beneficial allelic associations at different loci at different populations, and then targets changes in allelic frequencies. The same patterns are observed when environmental change modifies divergent selection, as shown by the very rapid response of θ(B) to the changes of selection regimes. We compare our results with previous experimental findings and consider their relevance to the detection of molecular signatures of natural selection.  相似文献   

5.
Summary Plastids are plant cellular organelles that are generally inherited from the maternal parent in the angiosperms. Many species exhibit biparental inheritance of plastids, but usually with a predominantly maternal influence. In contrast to this, we report strong paternal inheritance of plastids in reciprocal crosses of alfalfa, Medicago sativa, by following restriction fragment length polymorphisms for plastid DNA in two normal green plastids. Mitochondrial inheritance remained exclusively maternal.  相似文献   

6.
Summary The cloning of white spruce (Picea glauca) mitochondrial DNA homologous to the cytochrome oxidase II and ATPase genes of maize is described. These probes were used to define restriction fragment length polymorphisms which distinguish the white, Engelmann (P. engelmannii) and Sitka spruce (P. sitchensis) populations that occur in British Columbia. Analysis of progeny from crosses between the species revealed that mitochondrial DNA was maternally inherited in all cases (32 progeny from five independent crosses). The inheritance of chloroplast DNA was determined using a probe described previously; in this case, all progeny exhibited paternal inheritance (27 progeny from four crosses). Mitochondrial and chloroplast probes were used to test trees from zones of introgression between coastal (Sitka) and interior spruces (white and Engelmann). In most cases mitochondria and chloroplasts within individuals were contributed by different species. The data shows that there is a significant Sitka spruce component in trees east of the coastal watershed in British Columbia.  相似文献   

7.
Reduced levels of genetic variability and a prominent differentiation in both neutral marker genes and phenotypic traits are typical for many island populations as compared to their mainland conspecifics. However, whether genetic diversity in neutral marker genes reflects genetic variability in quantitative traits, and thus, their evolutionary potential, remains typically unclear. Moreover, the phenotypic differentiation on islands could be attributable to phenotypic plasticity, selection or drift; something which seldom has been tested. Using eight polymorphic microsatellite loci and quantitative genetic breeding experiments we conducted a detailed comparison on genetic variability and differentiation between Nordic islands (viz. Gotland, Öland and Læsø) and neighbouring mainland populations of moor frogs (Rana arvalis). As expected, the neutral variation was generally lower in island than in mainland populations. But as opposed to this, higher levels of additive genetic variation (V A) in body size and tibia length were found on the island of Gotland as compared to the mainland population. When comparing the differentiation seen in neutral marker genes (F ST) with the differentiation in genes coding quantitative traits (Q ST) two different evolutionary scenarios were found: while selection might explain a smaller size of moor frogs on Gotland, the differentiation seen in tibia length could be explained by genetic drift. These results highlight the limited utility of microsatellite loci alone in inferring the causes behind an observed phenotypic differentiation, or in predicting the amount of genetic variation in ecologically important quantitative traits.  相似文献   

8.
Summary Continuous observation of organelles and other cytoplasmic inclusions in the older stretches of living pollen tubes of Iris pseudacorus shows that in the more attentuated parts of the protoplast they move along single, mainly longitudinally oriented fibrils, corresponding to those previously isolated from other species and shown to contain bundles of uniformly polarised actin microfilaments. The traffic associated with each fibril is unidirectional, but organelles move along them independently, sometimes with conspicuously different velocities. Larger columns of cytoplasm passing along the tube are associated with several such fibrils, as revealed in occasional discontinuities and also in columns isolated from the tube in suitable medium without fixation. The dimensions of the individual fibrils suggest that the bundles of actin microfilaments are not likely to be enclosed in a unit membrane corresponding to a tonoplast. If so, the nature of the continuous cavities traversed by numerous fibrils in the older parts of the pollen tube requires reappraisal, since these are more likely to be volumes of attentuated cytoplasm comparable with that of the central cavity of the sieve tube than vacuoles of the normal plant-cell type.  相似文献   

9.
Summary The inheritance of chloroplast (cp) DNA was examined in F1 hybrid progenies of two Populus deltoides intraspecific controlled crosses and three P. deltoides × P. nigra and two P. deltoides × P. maximowiczii interspecific controlled crosses by restriction fragment analysis. Southern blots of restriction digests of parental and progeny DNAs were hybridized to cloned cpDNA fragments of Petunia hybrida. Sixteen enzymes and five heterologous cpDNA probes were used to screen restriction fragment polymorphisms among the parents. The mode of cpDNA inheritance was demonstrated in progenies of P. deltoides × P. nigra crosses with 26 restriction fragment polymorphisms of cpDNA differentiating P. deltoides from P. nigra, as revealed by 12 enzyme-probe combinations, and in progenies of P. deltoides × P. maximowiczii crosses with 12 restriction fragment polymorphisms separating P. deltoides from P. maximowiczii, as revealed by 7 restriction enzyme-probe combinations. In all cases, F1 offspring of P. deltoides × P. nigra and P. deltoides × P. maximowiczii crosses had cpDNA restriction fragments of only their maternal P. deltoides parent. The results clearly demonstrated uniparental-maternal inheritance of the chloroplast genome in interspecific hybrids of P. deltoides with P. nigra and P. maximowiczii. Intraspecific P. deltoides hybrids also had the same cpDNA restriction fragments as their maternal parent. Maternal inheritance of the chloroplast genome in Populus is in agreement with what has been observed for most other angiosperms.  相似文献   

10.
Restriction fragment analysis was used to study the inheritance of chloroplast DNA (cpDNA) in F1 progeny from crosses between Lens culinaris ssp. orientalis and L. culinaris ssp. culinaris. Twenty-five combinations of 11 restriction enzymes and three heterologous probes from Petunia hybrida cpDNA were used to screen six accessions of L.c. culinaris and one accession of L. c. orientalis for restriction fragment length polymorphisms (RFLPs). No variation in cpDNA was observed within the subspecies L. c. culinaris, but the L. c. orientalis accession was unambiguously distinguished from all six L. c. culinaris accessions by two RFLPs. Of ten F1 progeny from L. c. orientalis x L. c. culinaris crosses, nine had only maternal cpDNA restriction fragments but one F1 plant inherited cpDNA fragments from both parents. Nuclear DNA inheritance was biparental in all ten F1 progeny.  相似文献   

11.
Summary Chloroplasts and pigment granules are known to be intracellularly translocated upon discrete extracellular stimuli. The machineries transducing these signals inside cells are yet not understood. In studies investigating the motility of peroxisomes, we were able to identify both extracellular and intracellular signaling steps regulating movements of these organelles. Following simultaneous stimulation of CHO cells with both extracellular ATP and lysophosphatidic acid, an arrest of peroxisomes was observed. This block of motility was shown to be dependent on signaling cascades involving heterotrimeric G proteins of the class Gi/Go, phospholipase C, calcium influx, and activation of protein kinase C as well as of mitogen-activated protein kinase. Cytosolic phospholipase A2 is a point of convergence for these pathways, resulting in the release of arachidonic acid. This signaling pathway is specific for peroxisomes and does not influence motility of mitochondria, lysosomes, or endosomes. However, since the cytoskeleton and its associated proteins including the motor proteins play an important role in mediating motility of all cell organelles, it may well be that variant signaling cascades exist ensuring specific regulation of each distinct compartment.Abbreviations AA arachidonic acid - ATPS adenosine-5-O-(3-thiotriphosphate) - cAMP cyclic adenosine monophosphate - CaM-PK calmodulin-dependent protein kinase - CLIP cytosolic linker protein - DAG diacylglycerol - DiC8 1,2-dioctanoyl-sn-glycerol - GFP green-fluorescent protein - GTPS guanosine-5-O-(3-thiotriphosphate) - IP3 inositol trisphosphate - LPA lysophosphatidic acid - MAPK mitogen-activated protein kinase - MEK MAPK kinase - PKA protein kinase A - PKC protein kinase C - cPKC classical PKC isoforms - PLA2 phospholipase A2 - PLAP PLA2-activating proteinpeptide - PLC phospholipase C - PP2A protein phosphatase 2A  相似文献   

12.
Summary We studied the maternal chloroplast inheritance ofChlamydomonas reinhardtii by epifluorescence microscopy after staining with DNA specific fluorochrome DAPI and by genetic methods, using wild type cells and cells containing previously isolated mutation of cond-1 and cond-2. Wild type cells contained about 7 chloroplast (cp) nucleoids, while mutants, cond-1(+) and cond-2(+), contained about 14 and 23 cp nucleoids, respectively, after one week culture on agar plates. The total cpDNA contents were almost proportional to the numbers of cp nucleoids. When cells containing cond-1 or cond-2 mutation were used as a parental source to cross with wild type cells of the other parent, preferential digestion of cp nucleoids from male parent (mt) origin occurred in the zygotes, although the frequencies of the digestion were slightly lower than that in the zygotes from the cross between wild type cells. Western blot analysis of the protein ofzyslB gene, which has been found related to preferential digestion of mt origin cp-nucleoids DNA, showed that a high amount of this protein was detected with the initiation of preferential digestion of mt cp nucleoids and disappeared with the completion of the digestion. Cp genetic markers for antibiotic resistance were maternally inherited in all crosses. These results showed that although the preferential digestion of cp nucleoids consisting of large number and large cpDNA amount requires a slightly longer period to complete, this high ploidy of the cp nucleoids does not disturb maternal inheritance.  相似文献   

13.
Nuclear genes essential for the biogenesis of the chloroplast cytochrome b 6 f complex were identified by mutations that cause the specific loss of the complex. We describe four transposon-induced maize mutants that lack cytochrome b 6 f proteins but contain normal levels of other photosynthetic complexes. The four mutations define two nuclear genes. To identify the step at which each mutation blocks protein accumulation, mRNAs encoding each subunit were examined by Northern hybridization analysis and the rates of subunit synthesis were examined in pulse-labeling experiments. In each mutant the mRNAs encoding the known subunits of the complex were normal in size and abundance and the major subunits were synthesized at normal rates. Thus, these mutations block the biogenesis of the cytochrome b 6 f complex at a post-translational step. The two nuclear genes identified by these mutations may encode previously unknown subunits, be involved in prosthetic group synthesis or attachment, or facilitate assembly of the complex. These mutations were also used to provide evidence for the authenticity of a proposed fifth subunit of the complex and to demonstrate a role for the cytochrome b 6 f complex in protecting photosystem 11 from light-induced degradation.  相似文献   

14.
Summary EcoR1 restriction endonuclease analysis of chloroplast DNA isolated from several distinct populations of Nicotiana debneyi has revealed a naturally occurring polymorphism. The chloroplast DNA of seven of the nine populations analysed possessed an additional EcoRl site. The origin of the additional restriction endonuclease fragments was confirmed by hybridisation of [32 P]-cRNA to fractionated EcoRl restricted chloroplast-DNA fragments adsorbed to nitrocellulose filters. Reciprocal f1 hybrids between plants carrying the variant chloroplast-DNA's confirmed maternal inheritance of chloroplast-DNA.Communicated by G. Melchers and D. von Wettstein  相似文献   

15.
To study the phylogenetics of sugarcane (Saccharum officinarum L.) and its relatives we sequenced four loci on cytoplasmic genomes (two chloroplast and two mitochondrial) and analyzed mitochondrial RFLPs generated using probes for COXI, COXII, COXIII, Cob, 18S+5S, 26S, ATPase 6, ATPase 9, and ATPase (D'Hont et al. 1993). Approximately 650 bp of DNA in the intergenic spacer region between rbcL and atpB and approximately 150 bp from the chloroplast 16S rDNA through the intergenic spacer region tRNAval gene were sequenced. In the mitochondrial genome, part of the 18S rRNA gene and approximately 150 bp from the 18S gene 3 end, through an intergenic spacer region, to the 5S rRNA gene were sequenced. No polymorphisms were observed between maize, sorghum, and Saccharum complex members for the mitochondrial 18S internal region or for the intergenic tRNAval chloroplast locus. Two polymorphisms (insertion-deletion events, indels) were observed within the 18S-5S mitochondrial locus, which separated the accessions into three groups: one containing all of the Erianthus, Eccoilopus, Imperata, Sorghum, and 1 Miscanthus species; a second containing Saccharum species, Narenga porphyrocoma, Sclerostachya fusca, and 1 presumably hybrid Miscanthus sp. from New Guinea; and a third containing maize. Eighteen accessions were sequenced for the intergenic region between rbcL and atpB, which was the most polymorphic of the regions studied and contained 52 site mutations and 52 indels, across all taxa. Within the Saccharum complex, at most 7 site mutations and 16 indels were informative. The maternal lineage of Erianthus/Eccoilopus was nearly as divergent from the remaining Saccharum complex members as it was from sorghum, in agreement with a previous study. Sequences from the rbcL-atpB spacer were aligned with GENBANK sequences for wheat, rice, barley, and maize, which were used as outgroups in phylogenetic analyses. To determine whether limited intra-complex variability was caused by under sampling of taxa, we used seven restriction enzymes to digest the PCR-amplified rbcL-atpB spacer of an additional 36 accessions within the Saccharum complex. This analysis revealed ten restriction sites (none informative) and eight length variants (four informative). The small amount of variation present in the organellar DNAs of this polyploid complex suggests that either the complex is very young or that rates of evolution between the Saccharum complex and outgroup taxa are different. Other phylogenetic information will be required to resolve systematic relationships within the complex. Finally, no variation was observed in commercial sugarcane varieties, implying a world-wide cytoplasmic monoculture for this crop.  相似文献   

16.
Cleavage of Vicia faba nuclear DNA with the restriction endonuclease BamHI yielded discrete size classes of 250, 850, 900, 990, 1 150, 1 500 and 1 750 bp of highly repetitive DNA. Each of these sequence families comprised about 3% of the total genomic DNA. Some sequence members from each sequence family were cloned in pBR322 and their primary structures determined. Computer analyses of nucleotide sequences suggested the existence of about 60 bp sequence periodicity within the repeating unit of the 990 bp sequence family, though the extent of homology among the surmised shorter subrepeat units was very low. With other BamHI sequence families, however, the data did not show any clear internal sequence periodicity. The repeat units of the 850 bp and 1 750 bp sequence families contained nucleotide sequences homologous to the 250 bp family sequence. No sequence relationship between or among other sequence families was observed. There was 13–25% sequence variation among 6 cloned members of the 250 bp family and probably also among those of other BamHI repeat families. DNA sequences homologous to these V. faba BamHI repeat families were detected in Pisum sativum DNA by Southern blot hybridization. Furthermore, very weak cross-hybridization was observed with plant DNAs from Phaseolus vulgaris, Triticum aestivum, Cucumis sativus and Trillium kamtschaticum.  相似文献   

17.
Inheritance of chloroplast DNA (cpDNA) was examined in F1 progenies derived from three crosses and three corresponding reciprocal crosses betweenStellaria porsildii andS. longifolia. Chloroplast DNA restriction fragments were analyzed using methods of nonradioactive digoxigenin-11-dUTP labeling and chemiluminescent detection with Lumi-Phos 530. Distinct interspecific restriction fragment polymorphisms were identified and used to demonstrate the mode of cpDNA inheritance. Mode of cpDNA inheritance differed among crosses. Two crosses in whichS. porsildii, SP2920-21, was the maternal parent exhibited three different types of plastids, maternal, paternal and biparental, among the F1 hybrids, suggesting a biparental cpDNA inheritance and plastid sorting-out inStellaria.  相似文献   

18.
Summary Three distinct chloroplast (cp) DNA fragments from Petunia hybrida, which promote autonomous replication in yeast, were mapped on the chloroplast genome. Sequence analysis revealed that these fragments (called ARS A, B and C) have a high AT content, numerous short direct and inverted repeats and at least one yeast ARS consensus sequence 5A/TTTTATPuTTTA/T, essential for yeast ARS activity. ARS A and B also showed the presence of (semi-)conserved sequences, present in all Chlamydomanas reinhardii cpDNA regions that promote autonomous replication in yeast (ARS sequences) or in C. reinhardii (ARC sequences). A 431 bp BamHI/EcoRI fragment, close to one of the inverted repeats and adjacent to the ARS B subfragment contains an AT-rich stretch of about 100 nucleotides that show extensive homology with an Euglena gracilis cpDNA fragment which is part of the replication origin region. This conserved region contains direct and inverted repeats, stem-and-loop structures can be folded and it contains an ARS consensus sequence. In the near vicinity a GC-rich block is present. All these features make this cpDNA region the best candidate for being the origin of replication of P. hybrida cpDNA.  相似文献   

19.
In this paper, we analyze the genetic variability in four Tunisian natural populations of Medicago ciliaris using 19 quantitative traits and six polymorphic microsatellite loci. We investigated the amplification transferability of 30 microsatellites developed in the model legume M. truncatula to M. ciliaris. Results revealed that about 56.66% of analyzed markers are valuable genetic markers for M. ciliaris. The most genetic diversity at quantitative traits and microsatellite loci was found to occur within populations (>80%). Low differentiations among populations at quantitative traits Q ST  = 0.146 and molecular markers F ST  = 0.18 were found. The majority of measured traits exhibited no significant difference in the level of Q ST and F ST . Furthermore, significant correlations established between these traits and eco-geographical factors suggested that natural selection should be invoked to explain the level of phenotypic divergence among populations rather than drift. There was no significant correlation between population differentiation at quantitative traits and molecular markers. Significant spatial genetic structure consistent with models of isolation by distance was detected within all studied populations. The site-of-origin environmental factors explain about 9.07% of total phenotypic genetic variation among populations. The eco-geographical factors that influence more the variation of measured traits among populations are the soil texture and altitude. Nevertheless, there were no consistent pattern of associations between gene diversity (He) and environmental factors.  相似文献   

20.
Summary Each wild-typeChlamydomonas reinhardtii cell has one large chloroplast containing several nuclei (nucleoids). We used DNA insertional mutagenesis to isolate Chlamydomonas mutants which contain a single, large chloroplast (cp) nucleus and which we namedmoc (monokaryotic chloroplast). DAPI-fluorescence microscopy and microphotometry observations revealed thatmoc mutant cells only contain one cp-nucleus throughout the cell division cycle, and that unequal segregation of cpDNA occurred during cell division in themoc mutant. One cell with a large amount of cpDNA and another with a small amount of cpDNA were produced after the first cell division. Unequal segregation also occurred in the second cell division, producing one cell with a large amount (about 70 copies) of cpDNA and three other cells with a small amount (only 2–8 copies) of cpDNA. However, most individualmoc cells contained several dozen cpDNA copies 12 h after the completion of cell division, suggesting that cpDNA synthesis was activated immediately after chloroplast division. In contrast to the cpDNA, the mitochondrial (mt) DNA of themoc mutants was observed as tiny granules scattered throughout the entire cell. These segregated to each daughter cell equally during cell division. Electron-microscopic observation of the ultrastructure ofmoc mutants showed that a low-electron-density area, which was identified as the cp-nucleus by immunoelectron microscopy with anti-DNA antibody, existed near the pyrenoid. However, there were no other structural differences between the chloroplasts of wild-type cells andmoc mutants. The thylakoid membranes and pyrenoid were identical. Therefore, we propose that the novelmoc mutants are only defective in the dispersion and segregation of cpDNA. This strain should be useful to elucidate the mechanism for the segregation of cpDNA.Abbreviations DAPI 4,6-diamidino-2-phenylindole - VIMPCS video-intensified microscope photon-counting system  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号