首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligonucleotide-directed mutagenesis was used to produce a serine 89 to cysteine 89 substitution in the C-terminal globular domain of Escherichia coli ribosomal protein L7/L12. Cys-89 represented the only cysteine residue in the protein. L7/L12Cys89 was overproduced in E. coli and purified. An allele replacement strain was also constructed. Growth of this strain was indistinguishable from that of wild type. Ribosomes from the allele replacement strain were used to determine the location of the C-terminal domains of L7/L12 by disulfide cross-linking. A new homobifunctional cysteine-specific cross-linking reagent, 1,4-di[3'-(2'-pyridyldithio)-propionamido]butane, and diagonal gel electrophoresis were used to identify ribosomal proteins cross-linked to L7/L12Cys89. A cross-link between L7/L12 and the single cysteine in L10 was found, in addition to L7/L12 dimers. The L7/L12Cys89-L10 cross-link locates the C-terminal domain of at least one L7/L12 dimer on the body of the large subunit and supports our previous model (Olson, H. M., Sommer, A., Tewari, D. S., Traut, R. R., and Glitz, D. G. (1986) J. Biol. Chem. 261, 6924-6932) that depicts one of the two dimers of L7/L12 on the surface of the body of the 50 S subunit in a bent conformation with the C-terminal domain in close proximity to the N-terminal domain at the base of the stalk.  相似文献   

2.
1. Polyclonal antibodies (pAb 1-73 and pAb 26-120) have been raised against both an N-terminal fragment of Escherichia coli ribosomal protein L7/L12 (amino acids 1-73), and a fragment lacking part of the N-terminal domain (amino acids 26-120). 2. Only pAb 26-120 inhibited release-factor-dependent in vitro termination functions on the ribosome. This antibody binds over the length of the stalk of the large subunit of the ribosome as determined by immune electron microscopy, thereby not distinguishing between the C-terminal domains of the two L7/L12 dimers, those in the stalk or those in the body of the subunit. 3. A monoclonal antibody against an epitope of the C-terminal two thirds of the protein (mAb 74-120), which binds both to the distal tip of the stalk as well as to a region at its base, reflecting the positions of the two dimers is strongly inhibitory of release factor function. 4. A monoclonal antibody against an epitope of the N-terminal fragment of L7/L12 (mAb 1-73), previously shown to remove the dimer of L7/L12 in the 50S subunit stalk but still bind to the body of the particle, partially inhibited release-factor-mediated events. 5. The mAb 74-120 inhibited in vitro termination with a similar profile when the stalk dimer of L7/L12 was removed with mAb 1-73, indicating that the body L7/L12 dimer, and in particular its C-terminal domains, are important for release factor/ribosome interaction. 6. The two release factors have subtle differences in their binding domains with respect to L7/L12.  相似文献   

3.
All large ribosomal subunits contain two dimers composed of small acidic proteins that are involved in binding elongation factors during protein synthesis. The ribosomal location of the C-terminal globular domain of the Escherichia coli ribosomal acidic protein L7/L12 has been determined by protein cross-linking with a new heterobifunctional, reversible, photoactivatable reagent, N-[4-(p-azidosalicylamido)-butyl]-3-(2'-pyridyldithio)propionamide . Properties of this reagent are described. It was first radiolabeled with 125I and then attached through the formation of a disulfide bond to a unique cysteine of L7/L12, introduced by site-directed mutagenesis at residue 89. Intact 50S ribosomal subunits were reconstituted from L7/L12-depleted cores and the radiolabeled L7/L12Cys89. Irradiation of the reconstituted subunits resulted in photo-cross-linking between residue 89 and other ribosomal components. Reductive cleavage of the disulfide cross-link resulted in transfer of the 125I label from L7/L12Cys89 to the other cross-linked components. Two radiolabeled proteins were identified, L11 and L10. The location of both of these proteins is well established to be at the base of the L7/L12 stalk near the binding sites for the N-terminal domain of both L7/L12 dimers, and for elongation factors. The result indicates that L7/L12 can have a bent conformation bringing the C-terminal domain of at least one of the L7/L12 dimers at or near the factor-binding domain. The cross-linking method with radiolabeled N-[4-(p-azidosalicylamido)butyl]-3-(2'-pyridyldithio)propionamide should be applicable for studies of other multicomponent complexes that can be reconstituted.  相似文献   

4.
Based on the (1)H-(15)N NMR spectroscopy data, the three-dimensional structure and internal dynamic properties of ribosomal protein L7 from Escherichia coli were derived. The structure of L7 dimer in solution can be described as a set of three distinct domains, tumbling rather independently and linked via flexible hinge regions. The dimeric N-terminal domain (residues 1-32) consists of two antiparallel alpha-alpha-hairpins forming a symmetrical four-helical bundle, whereas the two identical C-terminal domains (residues 52-120) adopt a compact alpha/beta-fold. There is an indirect evidence of the existence of transitory helical structures at least in the first part (residues 33-43) of the hinge region. Combining structural data for the ribosomal protein L7/L12 from NMR spectroscopy and x-ray crystallography, it was suggested that its hinge region acts as a molecular switch, initiating "ratchet-like" motions of the L7/L12 stalk with respect to the ribosomal surface in response to elongation factor binding and GTP hydrolysis. This hypothesis allows an explanation of events observed during the translation cycle and provides useful insights into the role of protein L7/L12 in the functioning of the ribosome.  相似文献   

5.
The biosynthesis of sex pheromone components in many lepidopteran insects is regulated by the interaction between pheromone biosynthesis-activating neuropeptide (PBAN) and the PBAN receptor (PBANR), a class A G-protein-coupled receptor. To identify functionally important amino acid residues in the silkmoth PBANR, a series of 27 alanine substitutions was generated using a PBANR chimera C-terminally fused with enhanced GFP. The PBANR mutants were expressed in Sf9 insect cells, and their ability to bind and be activated by a core PBAN fragment (C10PBANR2K) was monitored. Among the 27 mutants, 23 localized to the cell surface of transfected Sf9 cells, whereas the other four remained intracellular. Reduced binding relative to wild type was observed with 17 mutants, and decreased Ca2+ mobilization responses were observed with 12 mutants. Ala substitution of Glu-95, Glu-120, Asn-124, Val-195, Phe-276, Trp-280, Phe-283, Arg-287, Tyr-307, Thr-311, and Phe-319 affected both binding and Ca2+ mobilization. The most pronounced effects were observed with the E120A mutation. A molecular model of PBANR indicated that the functionally important PBANR residues map to the 2nd, 3rd, 6th, and 7th transmembrane helices, implying that the same general region of class A G-protein-coupled receptors recognizes both peptidic and nonpeptidic ligands. Docking simulations suggest similar ligand-receptor recognition interactions for PBAN-PBANR and the orthologous vertebrate pair, neuromedin U (NMU) and NMU receptor (NMUR). The simulations highlight the importance of two glutamate residues, Glu-95 and Glu-120, in silkmoth PBANR and Glu-117 and Glu-142 in human NMUR1, in the recognition of the most functionally critical region of the ligands, the C-terminal residue and amide.  相似文献   

6.
Ultracentrifuge studies of intact protein L7/L12, of its fragments 27--120, 1--74 and 74--120 and of protein L7/L12 with oxidized methionine residues, indicate that the N-terminal sequence of the protein L7/L12 is responsible for its dimerization. The symmetry model of the dimer is discussed.  相似文献   

7.
E Dufour 《Biochimie》1988,70(10):1335-1342
The comparison of the amino acid sequences of 5 cysteine proteinases: papain, actinidin, rat cathepsins B and H and chicken cathepsin L, demonstrates a striking homology among their sequences. The N-terminal region (residues 1-70 in papain) and C-terminal region (residues 118-212 in papain) display the highest sequence homologies, whereas the lowest sequence homologies are observed in the middle region (residues 71-117 in papain); a segment where most insertions/deletions are observed. The highest sequence homology is observed between rat cathepsin H and chicken cathepsin L. As shown by X-ray studies, papain and actinidin have a clearly defined double domain structure. Each domain contains a core of non-polar side chains, which are retained in cathepsins B, H and L, except for the non-polar residue 203 of the core which is replaced by glutamic acid in cathepsin B. The percentage and the location of alpha-helix and beta-sheets of cathepsins B, H and L, assessed using the methods of Garnier et al. (1978, J. Mol. Biol. 120, 97-120) and Chou and Fasman (1974, Biochemistry 13, 222-245), show that the main ordered structures in papain and actinidin are probably retained in cathepsins B, H and L. The differences observed occur essentially in the middle region, a place where sequences display the lowest homologies and which is far removed from the active site.  相似文献   

8.
TAK1, a member of the MAPKKK family, is involved in the intracellular signaling pathways mediated by transforming growth factor beta, interleukin 1, and Wnt. TAK1 kinase activity is specifically activated by the TAK1-binding protein TAB1. The C-terminal 68-amino acid sequence of TAB1 (TAB1-C68) is sufficient for TAK1 interaction and activation. Analysis of various truncated versions of TAB1-C68 defined a C-terminal 30-amino acid sequence (TAB1-C30) necessary for TAK1 binding and activation. NMR studies revealed that the TAB1-C30 region has a unique alpha-helical structure. We identified a conserved sequence motif, PYVDXA/TXF, in the C-terminal domain of mammalian TAB1, Xenopus TAB1, and its Caenorhabditis elegans homolog TAP-1, suggesting that this motif constitutes a specific TAK1 docking site. Alanine substitution mutagenesis showed that TAB1 Phe-484, located in the conserved motif, is crucial for TAK1 binding and activation. The C. elegans homolog of TAB1, TAP-1, was able to interact with and activate the C. elegans homolog of TAK1, MOM-4. However, the site in TAP-1 corresponding to Phe-484 of TAB1 is an alanine residue (Ala-364), and changing this residue to Phe abrogates the ability of TAP-1 to interact with and activate MOM-4. These results suggest that the Phe or Ala residue within the conserved motif of the TAB1-related proteins is important for interaction with and activation of specific TAK1 MAPKKK family members in vivo.  相似文献   

9.
Pyruvate dehydrogenase kinase isoforms (PDK1-4) are the molecular switch that down-regulates activity of the human pyruvate dehydrogenase complex through reversible phosphorylation. We showed previously that binding of the lipoyl domain 2 (L2) of the pyruvate dehydrogenase complex to PDK3 induces a "cross-tail" conformation in PDK3, resulting in an opening of the active site cleft and the stimulation of kinase activity. In the present study, we report that alanine substitutions of Leu-140, Glu-170, and Glu-179 in L2 markedly reduce binding affinities of these L2 mutants for PDK3. Unlike wildtype L2, binding of these L2 mutants to PDK3 does not preferentially reduce the affinity of PDK3 for ADP over ATP. The inefficient removal of product inhibition associated with ADP accounts for the decreased stimulation of PDK3 activity by these L2 variants. Serial truncations of the PDK3 C-terminal tail region either impede or abolish the binding of wild-type L2 to the PDK3 mutants, resulting in the reduction or absence of L2-enhanced kinase activity. Alanine substitutions of residues Leu-27, Phe-32, Phe-35, and Phe-48 in the lipoyl-binding pocket of PDK3 similarly nullify L2 binding and L2-stimulated PDK3 activity. Our results indicate that the above residues in L2 and residues in the C-terminal region and the lipoyl-binding pocket of PDK3 are critical determinants for the cross-talk between L2 and PDK3, which up-regulates PDK3 activity.  相似文献   

10.
Procarboxypeptidase B is converted to enzymatically active carboxypeptidase B by limited proteolysis catalysed by trypsin, removing the long N-terminal activation segment of 95 amino acids. The three-dimensional crystal structure of procarboxypeptidase B from porcine pancreas has been determined at 2.3 A resolution and refined to a crystallographic R-factor of 0.169. The functional determinants of its enzymatic inactivity and of its activation by limited proteolysis have thus been unveiled. The activation segment folds in a globular region with an open sandwich antiparallel-alpha antiparallel-beta topology and in a C terminal alpha-helix which connects it to the enzyme moiety. The globular region (A7-A82) shields the preformed active site, and establishes specific interactions with residues important for substrate recognition. AspA41 forms a salt bridge with Arg145, which in active carboxypeptidase binds the C-terminal carboxyl group of substrate molecules. The connecting region occupies the putative extended substrate binding site. The scissile peptide bond cleaved by trypsin during activation is very exposed. Its cleavage leads to the release of the activation segment and to exposure of the substrate binding site. An open-sandwich folding has been observed in a number of other proteins and protein domains. One of them is the C-terminal fragment of L7/L12, a ribosomal protein from Escherichia coli that displays a topology similar to the activation domain of procarboxypeptidase.  相似文献   

11.
Deville J  Rey J  Chabbert M 《Proteins》2008,72(1):115-135
Alpha-helices are the most common secondary structures found in globular proteins. In this report, we analyze the stereochemical and sequence properties of helix-X-helix (HXH) motifs in which two alpha-helices are linked by a single residue, in search of characteristic structures and sequence signals. The analysis is carried out on a database of 837 nonredundant HXH motifs. The kinks are characterized by the bend angle between the axes of the N-terminal and C-terminal helices and the wobble angle corresponding to the rotation of C-terminal helix axis on the plane perpendicular to the N-terminal one. The phi-psi dihedral angles of the linker residue are clustered in six distinct areas of the Ramachandran plot: two areas are located in the additional allowed alpha region (alpha(1) and alpha(2)), two areas are in the additional allowed beta region (beta(1) and beta(2)) and two areas have positive phi values (alpha(L) and beta(M)). Each phi/psi region corresponds to characteristic bend and wobble angles and amino acid distributions. Bend angles can vary from 0 degrees to 160 degrees. Most wobble angles correspond to a counter-clockwise rotation of the C-terminal helix. Proline residues are rigorously excluded from the linker position X but have a high propensity at position X+1 of the beta(1) and beta(2) motifs (12 and 7, respectively) and at position X+3 of the alpha(1) motifs (9). Glycine linkers are located either in the alpha(L) region (20%) or in the beta(M) region (80%). This latter conformation is characterized by a marked bend angle (124 degrees +/- 18 degrees) and a clockwise wobble. Among other amino acids, Asn is remarkable for its high propensity (>3) at the linker position of the alpha(2), beta(1), and beta(2) motifs. Stabilization of HXH motifs by H-bonds between polar side chains of the linker and polar groups of the backbone is determined. A method based on position-specific scoring matrices is developed for conformational prediction. The accuracy of the predictions reaches 80% when the method is applied to proline-induced kinks or to kinks with bend angles in the 50 degrees-100 degrees range.  相似文献   

12.
Streptococcus mutans secretes and utilizes a 21-amino-acid signaling peptide pheromone to initiate quorum sensing for genetic competence, biofilm formation, stress responses, and bacteriocin production. In this study, we designed and synthesized a series of truncated peptides and peptides with amino acid substitutions to investigate their structure-activity relationships based on the three-dimensional structures of S. mutans wild-type signaling peptide UA159sp and C-terminally truncated peptide TPC3 from mutant JH1005 defective in genetic competence. By analyzing these peptides, we demonstrated that the signaling peptide of S. mutans has at least two functional domains. The C-terminal structural motif consisting of a sequence of polar hydrophobic charged residues is crucial for activation of the signal transduction pathway, while the core alpha-helical structure extending from residue 5 to the end of the peptide is required for receptor binding. Peptides in which three or more residues were deleted from the C terminus did not induce genetic competence but competitively inhibited quorum sensing activated by UA159sp. Disruption of the amphipathic alpha-helix by replacing the Phe-7, Phe-11, or Phe-15 residue with a hydrophilic residue resulted in a significant reduction in or complete loss of the activity of the peptide. In contrast to the C-terminally truncated peptides, these peptides with amino acid substitutions did not compete with UA159sp to activate quorum sensing, suggesting that disruption of the hydrophobic face of the alpha-helical structure results in a peptide that is not able to bind to the receptor. This study is the first study to recognize the importance of the signaling peptide C-terminal residues in streptococcal quorum sensing.  相似文献   

13.
Jeong SY  Gaume B  Lee YJ  Hsu YT  Ryu SW  Yoon SH  Youle RJ 《The EMBO journal》2004,23(10):2146-2155
Bcl-x(L) is a potent inhibitor of apoptosis. While Bcl-x(L) can be bound to mitochondria, a substantial fraction, depending on the cell type or tissue, is found in the cytosol of healthy cells. Gel filtration and crosslinking experiments reveal that, unlike monomeric Bax, Bcl-x(L) migrates in a complex of approximately 50 kDa in the cytosol. Co-immunoprecipitation experiments indicate that Bcl-x(L) in the cytosol forms homodimers. The C-terminal hydrophobic tails of two Bcl-x(L) molecules are involved in homodimer formation, and analysis of mutants demonstrates that the C-terminal lysine residue and the G138 residue lining the BH3-binding pocket are required for homodimerization. The flexible loop preceding the C-terminal tail in Bcl-x(L) is longer than that of several monomeric Bcl-2 family members and is a requisite for the homodimer formation. Bad binding to Bcl-x(L) dissociates the homodimers and triggers Bcl-x(L) binding to mitochondrial membranes. The C-terminal tail of Bcl-x(L) is also required to mediate Bcl-x(L)/Bax heterodimer formation. Both mitochondrial import and antiapoptotic activity of different Bcl-x(L) mutants correlate with their ability to form homodimers.  相似文献   

14.
The E. coli ribosomal proteins L12 and its N-acetylated form L7 were cleaved into an N-terminal and C-terminal fragment of roughly comparable size. The selective cleavage at the lone arginine residue was accomplished by trypsin treatment of the citraconylated proteins, followed by removal of the citraconyl moieties. These fragments, both separately and in combination, were incapable of reconstituting elongation factor G (EF-G) dependent GTPase of CsCl ribosomal cores supplemented with L10. However, incubation of cores containing L10 with the N-terminal fragment prevented the reconstitution of GTPase activity by intact L7/L12. No inhibition was observed when CsCl cores lacking L10 were incubated with the N-terminal fragment followed by addition of a preincubated mixture of L7/L12 and L10. The results indicate that the N-terminal part of L7/L12 is responsible for its ability to bind to 50S ribosomes and that L7/L12 together with L10 form a protein cluster on the ribosome.  相似文献   

15.
Besides their classical role in alimentary protein degradation, zinc-dependant carboxypeptidases also participate in more selective regulatory processes like prohormone and neuropeptide processing or fibrinolysis inhibition in blood plasma. Human pancreatic procarboxypeptidase B (PCPB) is the prototype for those human exopeptidases that cleave off basic C-terminal residues and are secreted as inactive zymogens. One such protein is thrombin-activatable fibrinolysis inhibitor (TAFI), also known as plasma PCPB, which circulates in human plasma as a zymogen bound to plasminogen. The structure of human pancreatic PCPB displays a 95-residue pro-segment consisting of a globular region with an open-sandwich antiparallel-alpha antiparallel-beta topology and a C-terminal alpha-helix, which connects to the enzyme moiety. The latter is a 309-amino acid residue catalytic domain with alpha/beta hydrolase topology and a preformed active site, which is shielded by the globular domain of the pro-segment. The fold of the proenzyme is similar to previously reported procarboxypeptidase structures, also in that the most variable region is the connecting segment that links both globular moieties. However, the empty active site of human procarboxypeptidase B has two alternate conformations in one of the zinc-binding residues, which account for subtle differences in some of the key residues for substrate binding. The reported crystal structure, refined with data to 1.6A resolution, permits in the absence of an experimental structure, accurate homology modelling of TAFI, which may help to explain its properties.  相似文献   

16.
Tracz SM  Abedini A  Driscoll M  Raleigh DP 《Biochemistry》2004,43(50):15901-15908
Numerous polypeptides and proteins form amyloid deposits in vivo or in vitro. The mechanism of amyloid formation is not well-understood particularly in the case where unstructured polypeptides assemble to form amyloid. Aromatic-aromatic interactions are known to be important in globular proteins, and the possibility that they might play a key role in amyloid formation has been raised. The results of Ala-scanning experiments on short polypeptides derived from Amylin have suggested that aromatic interactions could be particularly important for this system. Here, we examine a set of Amylin-derived polypeptides in which the single aromatic residue has been substituted with a Leu and Ala. A peptide corresponding to residues 21-29 with a Phe-23 to Leu substitution, a free N terminus, and amidated C terminus readily forms amyloid. Shorter peptides derived from the putative minimal amyloid-forming segment of Amylin, residues 22-27, also form amyloid when Phe-23 is replaced by Leu. Amyloid formation is more facile when the N terminus is deprotonated and the peptide is uncharged. Substitution of the Phe with Ala results in a peptide that is noticeably less prone to form amyloid. A peptide corresponding to residues 10-19 of human Amylin with blocked termini and the sole aromatic residue, Phe-15, substituted by Leu readily forms amyloid. A Phe-15 to Ala substitution reduces significantly the ability to form amyloid. These results indicate that an aromatic residue is not required for amyloid formation in these systems and indicates that other factors such as size, beta-sheet propensity, and hydrophobicity of the side chain in question are also important.  相似文献   

17.
An Escherichia coli mutant, LL103, harboring a mutation (Ser15 to Phe) in ribosomal protein L7/L12 was isolated among revertants of a streptomycin-dependent strain. In the crystal structure of the L7/L12 dimer, residue 15 within the N-terminal domain contacts the C-terminal domain of the partner monomer. We tested effects of the mutation on molecular assembly by biochemical approaches. Gel electrophoretic analysis showed that the Phe15-L7/L12 variant had reduced ability in binding to L10, an effect enhanced in the presence of 0.05% of nonionic detergent. Mobility of Phe15-L7/L12 on gel containing the detergent was very low compared to the wild-type proteins, presumably because of an extended structural state of the mutant L7/L12. Ribosomes isolated from LL103 cells contained a reduced amount of L7/L12 and showed low levels (15-30% of wild-type ribosomes) of activities dependent on elongation factors and in translation of natural mRNA. The ribosomal activity was completely recovered by addition of an excess amount of Phe15-L7/L12 to the ribosomes, suggesting that the mutant L7/L12 exerts normal functions when bound on the ribosome. The interaction of Ser15 with the C-terminal domain of the partner molecule seems to contribute to formation of the compact dimer structure and its efficient assembly into the ribosomal GTPase center. We propose a model relating compact and elongated forms of L7/L12 dimers. Phe15-L7/L12 provides a new tool for studying the functional structure of the homodimer.  相似文献   

18.
Elongation factors (EFs) Tu and G are GTPases that have important functions in protein synthesis. The low intrinsic GTPase activity of both factors is strongly stimulated on the ribosome by unknown mechanisms. Here we report that isolated ribosomal protein L7/12 strongly stimulates GTP hydrolysis by EF-G, but not by EF-Tu, indicating a major contribution of L7/12 to GTPase activation of EF-G on the ribosome. The effect is due to the acceleration of the catalytic step because the rate of GDP-GTP exchange on EF-G, as measured by rapid kinetics, is much faster than the steady-state GTPase rate. The unique, highly conserved arginine residue in the C-terminal domain of L7/12 is not essential for the activation, excluding an "arginine finger"-type mechanism. L7/12 appears to function by stabilizing the GTPase transition state of EF-G.  相似文献   

19.
The capacity of some Escherichia coli (E. coli) ribosomal proteins to bind to tRNA and to hydrolyse their aminoacylated derivatives has been analysed. The following results were obtained: (1) The basic proteins L2, L16 and L33 and S20 bound f[3H]Met-tRNA to a similar extent as the total proteins from 30 S (TP30) or 50 S (TP50) when tested by nitrocellulose filtration, in contrast to the more acidic proteins L7/L12 and S8. (2) The proteins of the peptidyltransferase centre, L2 and L16, showed no distinct specificity, binding various charged tRNAs from E. coli and Saccharomyces cerevisiae (S. cerevisiae). (3) A number of isolated ribosomal proteins hydrolysed aminoacyl-tRNA as assessed by trichloroacetic acid precipitation, in contrast to the TP30 and TP50. (4) The loss of radiolabel from Ac[14C]Phe-tRNA and from [14C]tRNA in the presence of these proteins could not be prevented by RNasin, a ribonuclease inhibitor, whereas that mediated by a sample of non-RNase-free bovine serum albumin was inhibited. (5) When double-labelled, Ac[3H]Phe-[14C]tRNA was incubated with L2 both radiolabels were lost, indicating that this potential candidate for a peptidyltransferase enzyme does not specifically cleave the ester bond between the aminoacyl residue and the tRNA.  相似文献   

20.
Interaction between human flap endonuclease-1 (hFEN-1) and proliferating cell nuclear antigen (PCNA) represents a good model for interactions between multiple functional proteins involved in DNA metabolic pathways. A region of 9 conserved amino acid residues (residues Gln-337 through Lys-345) in the C terminus of human FEN-1 (hFEN-1) was shown to be responsible for the interaction with PCNA. Our current study indicates that 4 amino acid residues in hFEN-1 (Leu-340, Asp-341, Phe-343, and Phe-344) are critical for human PCNA (hPCNA) interaction. A conserved PCNA interaction motif in various proteins from assorted species has been defined as Q(1)X(2)X(3)(L/I)(4)X(5)X(6)F(7)(F/Y)(8), although our results fail to implicate Q(1) (Gln-337 in hFEN-1) as a crucial residue. Surprisingly, all hFEN-1 mutants, including L340A, D341A, F343A, and F344A, retained hPCNA-mediated stimulation of both exo- and flap endonuclease activities. Furthermore, our in vitro assay showed that hPCNA failed to bind to the scRad27 (yeast homolog of FEN-1) nuclease. However, its nuclease activities were significantly enhanced in the presence of hPCNA. Four additional Saccharomyces cerevisiae scRad27 mutants, including multiple alanine mutants and a deletion mutant of the entire PCNA binding region, were constructed to confirm this result. All of these mutants retained PCNA-driven nuclease activity stimulation. We therefore conclude that stimulation of eukaryotic hFEN-1 nuclease activities by PCNA is independent of its in vitro interaction via the PCNA binding region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号