首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhao X  Liu E  Chen FP  Sullender WM 《Journal of virology》2006,80(23):11651-11657
Respiratory syncytial virus (RSV) is the only infectious disease for which a monoclonal antibody (MAb) is used in humans. Palivizumab (PZ) is a humanized murine MAb to the F protein of RSV. PZ-resistant viruses appear after in vitro and in vivo growth of RSV in the presence of PZ. Fitness for replication could be a determinant of the likelihood of dissemination of resistant viruses. We assessed the fitness of two PZ-resistant viruses (F212 and MP4). F212 grew less well in cell culture than the parent A2 virus and was predicted to be less fit than A2. Equal amounts of F212 and A2 were mixed and passaged in cell culture. F212 disappeared from the viral population, indicating it was less fit than the A2 virus. The MP4 virus grew as well as A2 in culture and in cotton rats. A2/MP4 virus input ratios of 1:1, 10:1, 100:1, and 1,000:1 were compared in competitive replication. For all input ratios except 1,000:1, the MP4 virus became dominant, supplanting the A2 virus. The MP4 virus also dominated the A2 virus during growth in cotton rats. Thus, the mutant MP4 virus was more fit than A2 virus in both in vitro and in vivo competitive replication. Whether this fitness difference was due to the identified nucleotide substitutions in the F gene or to mutations elsewhere in the genome is unknown. Understanding the mechanisms by which mutant virus fitness increased or decreased could prove useful for consideration in attenuated vaccine design efforts.  相似文献   

2.
Respiratory Syncytial Virus (RSV) is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F) surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.  相似文献   

3.
The ability of recombinant vaccinia viruses that separately encoded 9 of the 10 known respiratory syncytial virus (RSV) proteins to induce resistance to RSV challenge was studied in BALB/c mice. Resistance was examined at two intervals following vaccination to examine early (day 9) as well as late (day 28) immunity. BALB/c mice were inoculated simultaneously by the intranasal and intraperitoneal routes with a recombinant vaccinia virus encoding one of the following RSV proteins: F, G, N, P, SH, M, 1B, 1C, or M2 (22K). A parainfluenza virus type 3 HN protein recombinant (Vac-HN) served as a negative control. One half of the mice were challenged with RSV intranasally on day 9, and the remaining animals were challenged on day 28 postvaccination. Mice previously immunized by infection with RSV, Vac-F, or Vac-G were completely or almost completely resistant to RSV challenge on both days. In contrast, immunization with Vac-HN, -P, -SH, -M, -1B, or -1C did not induce detectable resistance to RSV challenge. Mice previously infected with Vac-M2 or Vac-N exhibited significant but not complete resistance on day 9. However, in both cases resistance had largely waned by day 28 and was detectable only in mice immunized with Vac-M2. These results demonstrate that F and G proteins expressed by recombinant vaccinia viruses are the most effective RSV protective antigens. This study also suggests that RSV vaccines need only contain the F and G glycoproteins, because the immunity conferred by the other proteins is less effective and appears to wane rapidly with time.  相似文献   

4.
In young infants who possess maternally derived respiratory syncytial virus (RSV) antibodies, the antibody response to RSV glycoproteins is relatively poor, despite extensive replication of RSV. In the present study, it was found that cotton rat RSV hyperimmune antiserum suppressed the antibody response to the RSV glycoproteins but not the response to vaccinia virus antigens when the antiserum was passively transferred to cotton rats prior to infection with vaccinia recombinant viruses expressing the RSV envelope glycoproteins. The cotton rats which had their immune responses suppressed by passively transferred antibodies were more susceptible to infection with RSV than were animals inoculated with control serum lacking RSV antibodies. Furthermore, many of the immunosuppressed animals infected with the vaccinia recombinant viruses developed RSV glycoprotein antibodies which had abnormally low neutralizing activities. Thus, preexisting serum RSV antibodies had dramatic quantitative and qualitative effects on the immune response to RSV glycoproteins, which may explain, in part, the poor RSV antibody response of young human infants to infection with RSV. Our observations also suggest that immunosuppression by preexisting, passively acquired RSV antibodies may constitute a major obstacle to RSV immunoprophylaxis during early infancy, when immunization is most needed.  相似文献   

5.
Cotton rats were immunized via intranasal, intradermal, or enteric routes with respiratory syncytial virus (RSV) or a live recombinant vaccinia virus expressing the RSV F glycoprotein (vaccinia F). The animals were tested for the appearance of RSV-specific antibody responses in the serum, bronchoalveolar lavage, and nasal wash after immunization and for virus replication 4 days after intranasal challenge with RSV. RSV antibody response in the serum and respiratory tract was demonstrated in all immunization groups and was significantly increased after intranasal challenge with RSV. Immunoglobulin A (IgA) antibody response in bronchoalveolar lavage fluid after intranasal or enteric immunization was two- to threefold higher than that after intradermal immunization. Nasal-wash IgA antibody response was not significantly different among three immunization groups, although mean antibody titer was the highest in intranasal immunization group. Complete resistance to replication of RSV challenge was observed in the lungs of cotton rats immunized by the intranasal or enteric routes, whereas a low level of replication was detected in the lungs of rats immunized intradermally. Enteric or intradermal immunization conferred partial protection to the upper respiratory tract, but complete protection of the upper respiratory tract was observed in the intranasal immunization group. These observations suggest that while enteric immunization is quite effective in inducing antibody responses in the respiratory tract, the magnitude of antiviral immunity induced in the respiratory tract after intranasal immunization may be superior to that observed after enteric immunization.  相似文献   

6.
Human respiratory syncytial virus (RSV) exists as two antigenic subgroups, A and B, both of which should be represented in a vaccine. The F and G glycoproteins are the major neutralization and protective antigens, and the G protein in particular is highly divergent between the subgroups. The existing system for reverse genetics is based on the A2 strain of RSV subgroup A, and most efforts to develop a live attenuated RSV vaccine have focused on strain A2 or other subgroup A viruses. In the present study, the development of a live attenuated subgroup B component was expedited by the replacement of the F and G glycoproteins of recombinant A2 virus with their counterparts from the RSV subgroup B strain B1. This gene replacement was initially done for wild-type (wt) recombinant A2 virus to create a wt AB chimeric virus and then for a series of A2 derivatives which contain various combinations of A2-derived attenuating mutations located in genes other than F and G. The wt AB virus replicated in cell culture with an efficiency which was comparable to that of the wt A2 and B1 parents. AB viruses containing temperature-sensitive mutations in the A2 background exhibited levels of temperature sensitivity in vitro which were similar to those of A2 viruses bearing the same mutations. In chimpanzees, the replication of the wt AB chimera was intermediate between that of the A2 and B1 wt viruses and was accompanied by moderate rhinorrhea, as previously seen in this species. An AB chimeric virus, rABcp248/404/1030, which was constructed to contain a mixture of attenuating mutations derived from two different biologically attenuated A2 viruses, was highly attenuated in both the upper and lower respiratory tracts of chimpanzees. This attenuated AB chimeric virus was immunogenic and conferred a high level of resistance on chimpanzees to challenge with wt AB virus. The rABcp248/404/1030 chimeric virus is a promising vaccine candidate for RSV subgroup B and will be evaluated next in humans. Furthermore, these results suggest that additional attenuating mutations derived from strain A2 can be inserted into the A2 background of the recombinant chimeric AB virus as necessary to modify the attenuation phenotype in a reasonably predictable manner to achieve an optimal balance between attenuation and immunogenicity in a virus bearing the subgroup B antigenic determinants.  相似文献   

7.
Initial studies of the prophylactic effect of parenterally administered respiratory syncytial virus (RSV)-neutralizing antibodies in cotton rats indicated that virus replication in lung tissues was restricted when animals with preexisting antibody titers in serum of 1:100 or more (as measured by plaque reduction) were challenged intranasally with 10(4) PFU of virus. Subsequently, a therapeutic effect of parenterally administered RSV antibodies (present in human gamma globulin) was demonstrated in both cotton rats and owl monkeys. Parenteral inoculation of RSV-infected cotton rats or owl monkeys with purified human immunoglobulin licensed for intravenous administration in humans (IVIG) effected a 10(-1.7) to 10(-2.7) reduction in the level of pulmonary virus at the height of infection. Because of these encouraging results, we examined topical administration of IVIG to determine whether it was also effective and whether it offered an advantage over the parenteral route with regard to simplicity and the dose required for full therapeutic effect. IVIG (0.025 g/kg) administered topically by the intranasal route to anesthetized cotton rats at the height of RSV infection effected a 10(2.2)-fold reduction in viral titers of pulmonary tissues and a complete clearance of detectable virus in 92% of the animals within 24 h. In contrast, 4 g of IVIG per kg was required to produce a comparable therapeutic effect when the material was administered parenterally. Thus, the therapeutic effect of IVIG was 160 times greater by the topical route than by parenteral inoculation.  相似文献   

8.
Human respiratory syncytial virus (RSV) is a major cause of respiratory tract infections worldwide. Several novel small-molecule inhibitors of RSV have been identified, but they are still in preclinical or early clinical evaluation. One such inhibitor is a recently discovered triphenol-based molecule, VP-14637 (ViroPharma). Initial experiments suggested that VP-14637 acted early and might be an RSV fusion inhibitor. Here we present studies demonstrating that VP-14637 does not block RSV adsorption but inhibits RSV-induced cell-cell fusion and binds specifically to RSV-infected cells with an affinity corresponding to its inhibitory potency. VP-14637 is capable of specifically interacting with the RSV fusion protein expressed by a T7 vaccinia virus system. RSV variants resistant to VP-14637 were selected; they had mutations localized to two distinct regions of the RSV F protein, heptad repeat 2 (HR2) and the intervening domain between heptad repeat 1 (HR1) and HR2. No mutations arose in HR1, suggesting a mechanism other than direct disruption of the heptad repeat interaction. The F proteins containing the resistance mutations exhibited greatly reduced binding of VP-14637. Despite segregating with the membrane fraction following incubation with intact RSV-infected cells, the compound did not bind to membranes isolated from RSV-infected cells. In addition, binding of VP-14637 was substantially compromised at temperatures of < or =22 degrees C. Therefore, we propose that VP-14637 inhibits RSV through a novel mechanism involving an interaction between the compound and a transient conformation of the RSV F protein.  相似文献   

9.
Adamantanes (amantadine and rimantadine) have been used to prevent and treat influenza A virus infections for many years; however, resistance to these drugs has been widely reported in the world. To investigate the frequency and distribution of M2 gene mutations in adamantane-resistant influenza variants circulated in the world between 1902 and 2013, 31251 available M2 protein sequences from different HA-subtype influenza A viruses (H1–H17) were analyzed and adamantane resistance-associated mutations were compared (L26F, V27A, A30T, A30V, S31N, G34E, and L38F). We find that 45.2% (n = 14132) of influenza A (H1–H17) viruses circulating globally were resistant to adamantanes, and the vast majority of resistant viruses (95%) bear S31N mutations. Whereas, only about 1% have V27A mutations and other mutations (L26F, A30T, G34E, and L38F) were extremely rare (their prevalence appeared to be < 0.2%). Our results confirm that H1, H3, H5, H7, H9, and H17 subtype influenza A viruses exhibit high-level resistance to adamantanes. In contrast, the appearance of adamantane-resistant mutants in H2, H4, H6, H10, and H11 subtypes was rare. However, no adamantane resistance viruses were identified among other HA subtypes (H8, H12–H16). Our findings indicate that the frequency and distribution of adamantane-resistant influenza variants varied among different HA subtypes, host species, years of isolation, and geographical areas. This comprehensive study raises concerns about the increasing prevalence of adamantane-resistant influenza A viruses and highlights the importance of monitoring the emergence and worldwide spread of adamantane-resistant variants.  相似文献   

10.
The degree of antigenic relatedness between human respiratory syncytial virus (RSV) subgroups A and B was estimated from antibody responses induced in cotton rats by respiratory tract infection with RSV. Glycoprotein-specific enzyme-linked immunosorbent assays of antibody responses induced by RSV infection demonstrated that the F glycoproteins of subgroups A and B were antigenically closely related (relatedness, R approximately 50%), whereas the G glycoproteins were only distantly related (R approximately 5%). Intermediate levels of antigenic relatedness (R approximately 25%) were seen in neutralizing antibodies from cotton rats infected with RSV of the two subgroups. Immunity against the F glycoprotein of subgroup A, induced by vaccinia-A2-F, conferred a high level of protection which was of comparable magnitude against challenge by RSV of either subgroup. In comparison, immunity against the G glycoprotein of subgroup A, induced by vaccinia-A2-G, conferred less complete, but significant, protection. Importantly, in vaccinia-A2-G-immunized animals, suppression of homologous challenge virus replication was significantly greater (13-fold) than that observed for the heterologous virus.  相似文献   

11.
12.
13.
Several formulations of a recombinant chimeric respiratory syncytial virus (RSV) vaccine consisting of the extramembrane domains of the F and G glycoproteins (FG) were tested in cotton rats to evaluate efficacy and safety. The FG vaccine was highly immunogenic, providing nearly complete resistance to pulmonary infection at doses as low as 25 ng in spite of inducing relatively low levels of serum neutralizing antibody at low vaccine doses. Upon RSV challenge animals primed with FG vaccine showed quite mild alveolitis and interstitial pneumonitis, which were eliminated by the addition of monophosphoryl lipid A to the formulation.  相似文献   

14.
15.
RD3-0028, a compound with a benzodithiin structure, was found to be a potent inhibitor of respiratory syncytial virus (RSV) replication. Its action is specific; no activity is seen against influenza A virus, measles virus, herpes simplex virus type 1 or 2, or human cytomegalovirus. A time-dependent drug addition experiment indicated that the antiviral activity occurs in the late stage of the RSV replication cycle, since this compound completely inhibited syncytium formation even when added up to 16 hr after the infection of cell monolayers at an MOI of 3. RD3-0028 had no direct virucidal effect on RSV. Western blotting analysis showed that RD3-0028 significantly decreased the amount of RSV proteins released into the cell culture medium. Moreover, five independent isolates of the RSV long strain were selected for growth in RD3-0028 (5-20 microg/ml). These resistant viruses were more than 80-fold less sensitive to RD3-0028 than the long strain. The F gene segment of each of these viruses was sequenced and in each case the mutant RNA segment contained at least one sequence alteration, converting asparagine 276 to tyrosine (F1 protein). These results suggest that RD3-0028 inhibits RSV replication by interfering with intracellular processing of the RSV fusion protein, or a step immediately thereafter, leading to loss of infectivity.  相似文献   

16.
Infants are protected from a severe respiratory syncytial virus (RSV) infection in the first months of life by maternal antibodies or by prophylactically administered neutralizing antibodies. Efforts are under way to produce RSV-specific antibodies with increased neutralizing capacity compared to the currently licensed palivizumab. While clearly beneficial during primary infections, preexisting antibodies might affect the onset of adaptive immune responses and the ability to resist subsequent RSV infections. Therefore, we addressed the question of how virus neutralizing antibodies influence the priming of subsequent adaptive immune responses. To test a possible role of the neonatal Fc receptor (FcRn) in this process, we compared the responses in C57BL/6 wild-type (WT) and FcRn−/− mice. We observed substantial virus-specific T-cell priming and B-cell responses in mice primed with RSV IgG immune complexes resulting in predominantly Th1-type CD4+ T-cell and IgG2c antibody responses upon live-virus challenge. RSV-specific CD8+ T cells were primed as well. Activation of these adaptive immune responses was independent of FcRn. Thus, neutralizing antibodies that localize to the airways and prevent infection-related routes of antigen processing can still facilitate antigen presentation of neutralized virus particles and initiate adaptive immune responses against RSV.  相似文献   

17.
The NS2 and SH genes of respiratory syncytial virus (RSV) have been separately deleted from a recombinant wild-type RSV strain, A2 (M. N. Teng and P. L. Collins, J. Virol. 73:466-473, 1998; A. Bukreyev et al., J. Virol. 71:8973-8982, 1997; and this study). The resulting viruses, designated rA2DeltaNS2 and rA2DeltaSH, were administered to chimpanzees to evaluate their levels of attenuation and immunogenicity. Recombinant virus rA2DeltaNS2 replicated to moderate levels in the upper respiratory tract, was highly attenuated in the lower respiratory tract, and induced significant resistance to challenge with wild-type RSV. The replication of rA2DeltaSH virus was only moderately reduced in the lower, but not the upper, respiratory tract. However, chimpanzees infected with either virus developed significantly less rhinorrhea than those infected with wild-type RSV. These findings demonstrate that a recombinant RSV mutant lacking either the NS2 or SH gene is attenuated and indicate that these deletions may be useful as attenuating mutations in new, live recombinant RSV vaccine candidates for both pediatric and elderly populations. The DeltaSH mutation was incorporated into a recombinant form of the cpts248/404 vaccine candidate, was evaluated for safety in seronegative chimpanzees, and can now be evaluated as a vaccine for humans.  相似文献   

18.
It was previously demonstrated that the vaccinia virus recombinants expressing the respiratory syncytial virus (RSV) F, G, or M2 (also designated as 22K) protein (Vac-F, Vac-G, or Vac-M2, respectively) induced almost complete resistance to RSV challenge in BALB/c mice. In the present study, we sought to identify the humoral and/or cellular mediators of this resistance. Mice were immunized by infection with a single recombinant vaccinia virus and were subsequently given a monoclonal antibody directed against CD4+ or CD8+ T cells or gamma interferon (IFN-gamma) to cause depletion of effector T cells or IFN-gamma, respectively, at the time of RSV challenge (10 days after immunization). Mice immunized with Vac-F or Vac-G were completely or almost completely resistant to RSV challenge after depletion of both CD4+ and CD8+ T cells prior to challenge, indicating that these cells were not required at the time of virus challenge for expression of resistance to RSV infection induced by the recombinants. In contrast, the high level of protection of mice immunized with Vac-M2 was completely abrogated by depletion of CD8+ T cells, whereas depletion of CD4+ T cells or IFN-gamma resulted in intermediate levels of resistance. These results demonstrate that antibodies are sufficient to mediate the resistance to RSV induced by the F and G proteins, whereas the resistance induced by the M2 protein is mediated primarily by CD8+ T cells, with CD4+ T cells and IFN-gamma also contributing to resistance.  相似文献   

19.
Human metapneumovirus (hMPV) is a recently described member of the Paramyxoviridae family/Pneumovirinae subfamily and shares many common features with respiratory syncytial virus (RSV), another member of the same subfamily. hMPV causes respiratory tract illnesses that, similar to human RSV, occur predominantly during the winter months and have symptoms that range from mild to severe cough, bronchiolitis, and pneumonia. Like RSV, the hMPV virus can be subdivided into two genetic subgroups, A and B. With RSV, a single monoclonal antibody directed at the fusion (F) protein can prevent severe lower respiratory tract RSV infection. Because of the high level of sequence conservation of the F protein across all the hMPV subgroups, this protein is likely to be the preferred antigenic target for the generation of cross-subgroup neutralizing antibodies. Here we describe the generation of a panel of neutralizing monoclonal antibodies that bind to the hMPV F protein. A subset of these antibodies has the ability to neutralize prototypic strains of both the A and B hMPV subgroups in vitro. Two of these antibodies exhibited high-affinity binding to the F protein and were shown to protect hamsters against infection with hMPV. The data suggest that a monoclonal antibody could be used prophylactically to prevent lower respiratory tract disease caused by hMPV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号