首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local biodiversity has traditionally been estimated with taxonomic diversity metrics such as species richness. Recently, the concept of biodiversity has been extended beyond species identity by ecological traits determining the functional role of a species in a community. This interspecific functional diversity typically responds more strongly to local environmental variation compared with taxonomic diversity, while taxonomic diversity may mirror more strongly dispersal processes compared with functional metrics. Several trait‐based indices have been developed to measure functional diversity for various organisms and habitat types, but studies of their applicability on aquatic microbial communities have been underrepresented. We examined the drivers and covariance of taxonomic and functional diversity among diatom rock pool communities on the Baltic Sea coast. We quantified three taxonomic (species richness, Shannon''s diversity, and Pielou''s evenness) and three functional (functional richness, evenness, and divergence) diversity indices and determined abiotic factors best explaining variation in these indices by generalized linear mixed models. The six diversity indices were highly collinear except functional evenness, which merely correlated significantly with taxonomic evenness. All diversity indices were always explained by water conductivity and temperature–sampling month interaction. Taxonomic diversity was further consistently explained by pool distance to the sea, and functional richness and divergence by pool location. The explained variance in regression models did not markedly differ between taxonomic and functional metrics. Our findings do not clearly support the superiority of neither set of diversity indices in explaining coastal microbial diversity, but rather highlight the general overlap among the indices. However, as individual metrics may be driven by different factors, the greatest advantage in assessing biodiversity is nevertheless probably achieved with a simultaneous application of the taxonomic and functional diversity metrics.  相似文献   

2.
AimAlthough patterns of biodiversity across the globe are well studied, there is still a controversial debate about the underlying mechanisms and their generality across biogeographic scales. In particular, it is unclear to what extent diversity patterns along environmental gradients are directly driven by abiotic factors, such as climate, or indirectly mediated through biotic factors, such as resource effects on consumers.LocationAndes, Southern Ecuador; Mt. Kilimanjaro, Tanzania.MethodsWe studied the diversity of fleshy‐fruited plants and avian frugivores at the taxonomic level, that is, species richness and abundance, as well as at the level of functional traits, that is, functional richness and functional dispersion. We compared two important biodiversity hotspots in mountain systems of the Neotropics and Afrotropics. We used field data of plant and bird communities, including trait measurements of 367 plant and bird species. Using structural equation modeling, we disentangled direct and indirect effects of climate and the diversity of plant communities on the diversity of bird communities.ResultsWe found significant bottom‐up effects of fruit diversity on frugivore diversity at the taxonomic level. In contrast, climate was more important for patterns of functional diversity, with plant communities being mostly related to precipitation, and bird communities being most strongly related to temperature.Main conclusionsOur results illustrate the general importance of bottom‐up mechanisms for the taxonomic diversity of consumers, suggesting the importance of active resource tracking. Our results also suggest that it might be difficult to identify signals of ecological fitting between functional plant and animal traits across biogeographic regions, since different species groups may respond to different climatic drivers. This decoupling between resource and consumer communities could increase under future climate change if plant and animal communities are consistently related to distinct climatic drivers.  相似文献   

3.
Body size may be more important than species identity in determining species interactions and community structure. However, co‐occurrence of organisms has commonly been analysed from a taxonomic perspective and the body size is rarely taken into account. On six sampling occasions, we analysed patterns of killifish co‐occurrences in nestedness (tendency for less rich communities to be subsamples of the richest), checkerboard structure (tendency for species segregation), and modularity (tendency for groups to co‐occur more frequently than random expectation) in a pond metacommunity located in Uruguay. We contrasted co‐occurrence patterns among species and body size‐classes (individuals from different species were combined into size categories). The analysis was performed at two spatial scales: ponds (communities) and sample units within ponds. Observed nestedness was frequently smaller than the null expectation, with significantly greater deviations for body size‐classes than for species, and for sample units than for communities. At the sample unit level, individuals tended to segregate (i.e. clump into a checkerboard pattern) to a larger extent by body size rather than by taxonomy. Modularity was rarely detected, but nevertheless indicated a level of taxonomic organization not evident in nestedness or checkerboard indices. Identification of the spatial scale and organization at which ecological forces determine community structure is a basic requirement for advancement of robust theory. In our study system, these ecological forces probably structured the community by body sizes of interacting organisms rather than by species identities.  相似文献   

4.
Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales.  相似文献   

5.
Traditional diversity indices summarize the information about the relative abundances of species within a community without regard to differences between species. However, intuitively, a community composed of dissimilar taxa is more diverse than a community composed of more similar taxa. Therefore, useful indices of diversity should account for taxonomic relations among species. In this paper, a new parametric diversity index that combines species relative abundances and their taxonomic distinctiveness is used to quantify the way in which soil fertilization affects the diversity of a garigue community on ultramafic soils of Tuscany (central Italy). Results show that, while ultramafic soils generally host plant communities of limited taxonomic diversity with respect to similar communities on other substrates, fertilization significantly enhances the biomass production of species that are not exclusive to ultramafic soils. As a consequence, if diversity is measured combining species relative abundances with their taxonomic distinctiveness, nutrient addition tends to increase the diversity of ultramafic communities.  相似文献   

6.
Despite many studies showing biodiversity responses to warming, the generality of such responses across taxonomic groups remains unclear. Very few studies have tested for evidence of bryophyte community responses to warming, even though bryophytes are major contributors to diversity and functioning in many ecosystems. Here, we report an empirical study comparing long‐term change in bryophyte and vascular plant communities in two sites with contrasting long‐term warming trends, using “legacy” botanical records as a baseline for comparison with contemporary resurveys. We hypothesized that ecological changes would be greater in sites with a stronger warming trend and that vascular plant communities, with narrower climatic niches, would be more sensitive than bryophyte communities to climate warming. For each taxonomic group in each site, we quantified the magnitude of changes in species'' distributions along the elevation gradient, species richness, and community composition. We found contrasted temporal changes in bryophyte vs. vascular plant communities, which only partially supported the warming hypothesis. In the area with a stronger warming trend, we found a significant increase in local diversity and dissimilarity (β‐diversity) for vascular plants, but not for bryophytes. Presence–absence data did not provide sufficient power to detect elevational shifts in species distributions. The patterns observed for bryophytes are in accordance with recent literature showing that local diversity can remain unchanged despite strong changes in composition. Regardless of whether one taxon is systematically more or less sensitive to environmental change than another, our results suggest that vascular plants cannot be used as a surrogate for bryophytes in terms of predicting the nature and magnitude of responses to warming. Thus, to assess overall biodiversity responses to global change, abundance data from different taxonomic groups and different community properties need to be synthesized.  相似文献   

7.
库姆塔格沙漠南缘荒漠植物群落多样性分析   总被引:38,自引:0,他引:38       下载免费PDF全文
 根据20个样地的调查资料,应用重要值计算多样性指数、均匀度指数、丰富度指数 、优势度指数,对库姆塔格沙漠南缘荒漠植物群落物种多样性进行分析。结果表明: 1)荒漠植物群落分布随其生境地貌不同而不同,山前戈壁上分布有合头草(Sympegma regelii)群落,冲积河道低地分布有荒漠林胡杨(Populus euphratica)、多枝柽柳(Tamarix ramosissima)、胀果甘草(Glycyrrhiza inflata)群落,戈壁沙漠过渡带为梭梭(Haloxylon ammodendron)群落,低海拔的沙山上分布有沙拐枣(Calligonum mongolicum)群落、膜果麻黄(Ephedra rzewalskii)群落和梭梭群落。2)荒漠植物群落物种多样性水平较低,群落结构简单,物种组成单一。群落Shannon_Wiener物种多样性水平表现为合头草群落最高(1.706),具有草原化荒漠植被类型的成分;梭梭群落、膜果麻黄群落居中(0.875~0.890),荒漠植被类型特征明显;沙拐枣群落、胡杨群落、多枝 柽柳群落、胀果甘草群落较低(0.079~0.495),荒漠林、盐地沙生灌丛及盐化草甸植被均有零星分布。3)荒漠植物群落结构层次中,灌木层占居主导地位,群落灌木层物种多样性水平(0.769~1.451)远远大于草本层(0.193~0.254),且草本层物种多样性受灌木层影响较大。4)荒漠植物群落物种多样性分布格局表现为经向、纬向和海拔梯度的变化,经向、纬向变化为物种多样性水平较高的草原化植物合头草群落(1.706)向物种多样性水平较低的荒漠植物梭梭群落(1.379)和盐化植物多枝柽柳群落(0.376)的过渡,海拔梯度则 呈现低水平的沙拐枣群落(0.819)到高水平的膜果麻黄群落(0.890)向低水平的梭梭群落 (0.645)变化。荒漠植物群落过渡地带一般具有较高的物种多样性和较低的生态优势度。  相似文献   

8.
We investigated the effects of hydromorphological restoration measures (mainly the removal of bank fixations) on riparian mesohabitats, vegetation and carabid beetles by comparing 24 restored to nearby non-restored floodplain sections in Germany. Mesohabitats were recorded along ten equally-spaced transects, plant communities and riparian plant and carabid beetle species along three transects per section. Based on 18 indices including habitat and species diversity, taxonomic diversity and functional indices we compared the frequency and magnitude of changes following restoration, both for the overall dataset and for each site individually. Riparian habitat diversity doubled in restored sections compared to non-restored sections. The numbers of vegetation units and plant and carabid beetle species richness also doubled in restored sections, whereas changes in Shannon diversity were most pronounced for mesohabitats and riparian plants. Taxonomic diversity of carabid beetles decreased in restored sections reflecting post restoration dominance of riparian Bembidion species. Stress-tolerant pioneers of plant and especially carabid species benefit strongly from the re-establishment of open sand and gravel bars, while hygrophilous species, which also include non-riparian species, did not respond to restoration. We conclude that restoring river hydromorphology has almost generally positive effects on riparian habitats and riparian biodiversity. Riparian biota are thus well-suited indicators for the effects of hydromorphological restoration.  相似文献   

9.
Ricotta C  Pacini A  Avena G 《Bio Systems》2002,65(2-3):179-186
We propose a measure of divergence from species to life-form diversity aimed at summarizing the ecological similarity among different plant communities without losing information on traditional taxonomic diversity. First, species and life-form relative abundances within a given plant community are determined. Next, using Rényi's generalized entropy, the diversity profiles of the analyzed community are computed both from species and life-form relative abundances. Finally, the speed of decrease from species to life-form diversity is obtained by combining the outcome of both profiles. Interestingly, the proposed measure shows some formal analogies with multifractal functions developed in statistical physics for the analysis of spatial patterns. As an application for demonstration, a small data set from a plant community sampled in the archaeological site of Paestum (southern Italy) is used.  相似文献   

10.
Floral nectar of some animal-pollinated plants usually harbours highly adapted yeast communities which can profoundly alter nectar characteristics and, therefore, potentially have significant impacts on plant reproduction through their effects on insect foraging behaviour. Bacteria have also been occasionally observed in floral nectar, but their prevalence, phylogenetic diversity and ecological role within plant-pollinator-yeast systems remains unclear. Here we present the first reported survey of bacteria in floral nectar from a natural plant community. Culturable bacteria occurring in a total of 71 nectar samples collected from 27 South African plant species were isolated and identified by 16S rRNA gene sequencing. Rarefaction-based analyses were used to assess operational taxonomic units (OTUs) richness at the plant community level using nectar drops as sampling units. Our results showed that bacteria are common inhabitants of floral nectar of South African plants (53.5% of samples yielded growth), and their communities are characterized by low species richness (18 OTUs at a 16S rRNA gene sequence dissimilarity cut-off of 3%) and moderate phylogenetic diversity, with most isolates belonging to the Gammaproteobacteria. Furthermore, isolates showed osmotolerance, catalase activity and the ability to grow under microaerobiosis, three traits that might help bacteria to overcome important factors limiting their survival and/or growth in nectar.  相似文献   

11.
The relationship between taxonomic and functional diversity indices has been used to better describe and understand the structure of biological communities. Functional diversity is expected to have an asymptotic relationship with species richness because at some point, the addition of new species will increase some of the already established functional groups (functional redundancy). However, the asymptotic relationship may not be reached in intermediately disturbed systems once many intolerant species that would have played a redundant role or even represented some functional groups have been lost. This study aimed to address such a relationship (taxonomic and functional indices) and to evaluate the functional redundancy in intermediately disturbed streams in the Atlantic Rainforest domain. We expected a positive linear relationship between taxonomic and functional diversity; however, we did not expect to find an asymptotic relationship between richness and functional diversity because of the loss of many intolerant species caused by anthropogenic uses. The taxonomic diversity indices were Species Richness (SR) and Simpson’s Diversity (SD), while the functional diversity indices were the Functional Richness (FRic) and Functional Dispersion (FDisp). The two taxonomic and two functional diversity indices showed a significant positive relationship that never reached an asymptote, suggesting low functional redundancy in the fish communities. Our results indicate that care is needed in the management of the studied streams because assemblies with low functional redundancy are more susceptible to loss of functions in the case of species loss.  相似文献   

12.
On the measurement of species diversity incorporating species differences   总被引:3,自引:0,他引:3  
Kenichiro Shimatani 《Oikos》2001,93(1):135-147
When pairwise differences (relatedness) between species are numerically given, the average of the species differences weighted by relative frequencies can be used as a species diversity index. This paper first theoretically develops the indices of this type, then applies them to forestry data. As examples of diversity indices, this paper explores the taxonomic diversity and the newly introduced amino acid diversity, which is a modification of the nucleotide diversity in genetics. The first, mathematical part shows that both indices can be decomposed into three inner factors; evenness of relative frequencies (=the Simpson index), the simple average over species differences regardless of relative frequencies, and the taxonomic or genetic balance in relative frequencies. The taxonomic diversity has another decomposition: the sum over the Simpson indices at all the taxonomic levels. The second part examines the effects of different forest management techniques on diversity. It is shown that a thinning operation for promoting survival of specific desirable species also contributed to increasing the taxonomic diversity. If we calculated only conventional indices that do not incorporate species relatedness, we would simply conclude that the thinning did not significantly affect the diversity. The theoretical developments of the first part complement the result, leading us to a better interpretation about contrasting vegetation structures. The mathematical results also reveal that the amino acid diversity involves redundant species, which is undesirable when measuring diversity; hence, this index is used to demonstrates crucial points when we introduce species relatedness. The results suggest further possibilities of applying diversity indices incorporating species differences to a variety of ecological studies.  相似文献   

13.
Long amplicon metabarcoding has opened the door for phylogenetic analysis of the largely unknown communities of microeukaryotes in soil. Here, we amplified and sequenced the ITS and LSU regions of the rDNA operon (around 1500 bp) from grassland soils using PacBio SMRT sequencing. We tested how three different methods for generation of operational taxonomic units (OTUs) effected estimated richness and identified taxa, and how well large‐scale ecological patterns associated with shifting environmental conditions were recovered in data from the three methods. The field site at Kungsängen Nature Reserve has drawn frequent visitors since Linnaeus''s time, and its species rich vegetation includes the largest population of Fritillaria meleagris in Sweden. To test the effect of different OTU generation methods, we sampled soils across an abrupt moisture transition that divides the meadow community into a Carex acuta dominated plant community with low species richness in the wetter part, which is visually distinct from the mesic‐dry part that has a species rich grass‐dominated plant community including a high frequency of Fmeleagris. We used the moisture and plant community transition as a framework to investigate how detected belowground microeukaryotic community composition was influenced by OTU generation methods. Soil communities in both moisture regimes were dominated by protists, a large fraction of which were taxonomically assigned to Ciliophora (Alveolata) while 30%–40% of all reads were assigned to kingdom Fungi. Ecological patterns were consistently recovered irrespective of OTU generation method used. However, different methods strongly affect richness estimates and the taxonomic and phylogenetic resolution of the characterized community with implications for how well members of the microeukaryotic communities can be recognized in the data.  相似文献   

14.
Soil microbes are known to be key drivers of several essential ecosystem processes such as nutrient cycling, plant productivity and the maintenance of plant species diversity. However, how plant species diversity and identity affect soil microbial diversity and community composition in the rhizosphere is largely unknown. We tested whether, over the course of 11 years, distinct soil bacterial communities developed under plant monocultures and mixtures, and if over this time frame plants with a monoculture or mixture history changed in the bacterial communities they associated with. For eight species, we grew offspring of plants that had been grown for 11 years in the same field monocultures or mixtures (plant history in monoculture vs. mixture) in pots inoculated with microbes extracted from the field monoculture and mixture soils attached to the roots of the host plants (soil legacy). After 5 months of growth in the glasshouse, we collected rhizosphere soil from each plant and used 16S rRNA gene sequencing to determine the community composition and diversity of the bacterial communities. Bacterial community structure in the plant rhizosphere was primarily determined by soil legacy and by plant species identity, but not by plant history. In seven of the eight plant species the number of individual operational taxonomic units with increased abundance was larger when inoculated with microbes from mixture soil. We conclude that plant species richness can affect below‐ground community composition and diversity, feeding back to the assemblage of rhizosphere bacterial communities in newly establishing plants via the legacy in soil.  相似文献   

15.

Recent researches suggest that functional diversity represents the response of communities to environmental alterations better than taxonomic diversity. However, there is scarce information about how the functional diversity of freshwater fishes is affected by habitat type and the dominance of non-native species. To address this question, we analysed a large database containing 15 morpho-functional traits of 61 fish species from the Pannon Biogeographic region (Hungary). Based on a fish faunistic list and relative abundance of taxa, we quantified the taxonomic and functional diversity of riverine communities for?>?700 sites of six habitat types. We asked how non-native fishes affected the taxonomic and functional diversity in different river types and at the local scale (i.e. at the site level), and how the diversity measures of native fauna elements changes along the invasion gradient. Our results showed that both functional and taxonomic richness increases with habitat complexity, from small headwater streams to large rivers. Therefore taxonomic diversity served as a good proxy for functional diversity along the environmental gradient of river types. Non-natives showed considerable functional diversity relative to their species number in each habitat type. Diversity values of native fauna elements initially increased, and then showed a major decrease along the invasion gradient. River type-specific evaluations highlighted the importance of considering the proliferation of invasive species based on both taxonomic and functional diversity indices. We argue that type-specific action plans are needed in conservation management to preserve the taxonomic and functional diversity of native fishes in Hungary, but also elsewhere.

  相似文献   

16.
The diversity of easy-to-study organisms (e.g. vascular plants) is often used as a proxy for the diversity of other organisms whose investigation needs more effort, time and specialist knowledge. Some previous studies have found positive relationships between plant and macrofungal diversity and thus support this approach, while others question this practice. Our aim was to explore the possibility of using plant diversity as surrogate for macrofungal diversity in the forests of the Pannonian ecoregion. A total of 19 permanent plots in north-east Hungary were sampled for vascular plants and macrofungi. The effect on macrofungal abundance and diversity, as well as degradation level, of plant evenness and richness was tested using generalized linear models. Species richness of macrofungi assemblages proved to be independent of the diversity and naturalness of vascular plant communities; however, there was congruence in the composition of the two communities. In contrast to diversity, macrofungi abundance was significantly negatively correlated to plant species richness. There was a hump-backed relationship between the abundance of terricolous macrofungi and the degradation level estimated on the basis of the occurrence of vascular plants, although degradation did not influence the abundance of lignicolous macrofungi. Our results question the reliability of decisions on nature conservation actions based on a few groups of easy-to-observe organisms, and underline the necessity of studying as wide a range of taxonomic groups as possible.  相似文献   

17.
beta多样性反映了群落间物种组成的差异, 是生物多样性研究的热点之一。本研究通过对云南元江干热河谷41个植物群落样方进行调查, 用Jaccard相异系数表征物种beta多样性, 用样方之间的最近谱系距离(mean nearest taxon distance, MNTD)及平均谱系距离(mean pairwise distance, MPD)表征谱系beta多样性, 采用基于距离矩阵的多元回归和方差分解方法, 探讨了该区域干热河谷典型植物群落的物种beta多样性和谱系beta多样性与样方间环境差异(主要是气候)及地理距离之间的关系。结果表明: (1)群落间的地理距离和年平均温度差异对干热河谷植物群落的物种beta多样性和谱系beta多样性有显著影响; (2)地理距离对物种beta多样性和MNTD的影响最大; 地理距离和年平均温度差异对MPD的影响均较大; (3)样方间年平均温度与年平均降水量的差异和地理距离能够解释群落间beta多样性及谱系beta多样性11-13%的变异。以上结果表明, 生态位分化和扩散限制对该地区植物群落的beta多样性均有显著影响, 其中扩散限制的影响可能更大。此外, 人类活动等其他因素也很可能对元江干热河谷的群落组成具有非常重要的影响。  相似文献   

18.
Acoustic monitoring of Orthoptera and its potential for conservation   总被引:3,自引:0,他引:3  
Songs of Orthoptera can be used for inventorying and monitoring of individual species and communities. Acoustic parameters such as carrier frequency and pulse rates allow the definition of recognizable taxonomic units (RTUs) which help to overcome the taxonomic impediment due to our scanty knowledge, particularly of tropical faunas. Bioacoustic diversity is a first estimate for species richness and provides baseline data which can be a prerequisite for conservation. Additional ecological and behavioural information such as habitat preference and singing schedules can be inferred. Many Orthoptera are sensitive indicator species for habitat quality in temperate and tropical ecosystems. Examples are given for evaluation of habitat quality and deterioration by acoustic detection of Orthoptera.  相似文献   

19.
Within transitional/estuarine environments ‘ecosystem functioning’ has been mostly investigated with “traditional” taxonomic analysis, based on the taxonomic composition of benthic invertebrate communities. However, ‘ecosystem functioning’ depends also greatly on the functional characteristics (biological traits) of organisms.It was a priori suggested that the biological traits of the subtidal benthic invertebrate communities within an estuarine environment would respond to the high variability of environmental pressures (natural and human induced) within this type of ecosystem.For this study, traditional taxonomic analysis (species richness, species density and Shannon–Wiener diversity) as well as biological trait analysis were used together for the first time to investigate the response of the subtidal benthic invertebrate communities to the environmental pressures within the Mondego estuary (Portugal).Biological trait analysis, in addition to traditional taxonomic analysis provided a more comprehensive understanding of the functioning within this type of ecosystem. Some of the most important outcomes are: (i) the trait “salinity preference” was the most important trait that distributed the species along the estuary, (ii) the central part of the estuary appeared to be under higher environmental stress levels than the other areas, as suggested by a dominance of some “opportunistic” traits (e.g. small short-lived species), (iii) the ratio between functional diversity (FD) and Shannon–Wiener diversity (H′) indicated lower functional redundancy at the upper reaches of the estuary. Our results, suggest that the ratio (FD/H′) might be a helpful tool to visualize this functional attribute and could potentially be applied to different communities from distinct environments. Using the traditional taxonomic analysis alone, this last functional aspect would not be detectable. Therefore, the inclusion of biological traits analysis is recommendable for estuarine ecological studies.  相似文献   

20.
Invasive alien species have been revealed to drastically alter the structure of native communities; however, there is scarce information on whether taxonomic and functional spaces occupied by native species are equally filled by exotic species. We investigated the diversity of native species to understand the impact of exotic Oreochromis niloticus in the upper Kabompo River, northwest of Zambia using taxonomic and functional diversity indices. To achieve this, two tests were performed (Test 1, compared natives in invaded and uninvaded sections; Test 2, compared natives in invaded section). A total of 17 species were collected for functional diversity computation, out of which fourteen (14) functional trait measurements linked to feeding, locomotion, and life history strategy were taken. Findings revealed that taxonomic and functional diversity values changed with invasion in both tests. Taxonomic diversity was 15% more in invaded than uninvaded sections in Test 1 and was not consistent across sampling points of invaded section in Test 2. Invaded areas were taxonomically less diverse, but functionally diverse in both tests. The analysis of similarity and nonmetric multidimensional scaling revealed no difference in Bray–Curtis similarity assemblages in both tests. Our findings revealed that exotic species more often occupy unfilled gaps in the communities often occupied by the native species; this is achieved by occupying functional spaces. Overall, changes in taxonomic and functional diversity of native species documented here partially confirmed impacts of O. niloticus invasion. Therefore, we recommend a multifaceted approach to assess cumulative impacts of invasion on native species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号