首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new protein kinase C (PKC)-related cDNA with unique tissue distribution has been isolated and characterized. This cDNA encodes a protein, nPKC theta, which consists of 707 amino acid residues and showed the highest sequence similarity to nPKC delta (67.0% in total). nPKC theta has a zinc-finger-like cysteine-rich sequence (C1 region) and a protein kinase domain sequence (C3 region), both of which are common in all PKC family members. However, nPKC theta lacks a putative Ca2+ binding region (C2 region) that is seen only in the conventional PKC subfamily (cPKC alpha, -beta I, -beta II, and -gamma) but not in the novel PKC subfamily (nPKC delta, -epsilon, -zeta, and -eta). Northern (RNA) blot analyses revealed that the mRNA for nPKC theta is expressed predominantly in skeletal muscle. Furthermore, nPKC theta mRNA is the most abundantly expressed PKC isoform in skeletal muscle among the nine PKC family members. nPKC theta expressed in COS1 cells serves as a phorbol ester receptor. By the use of an antipeptide antibody specific to the D2-D3 region of the nPKC theta sequence, nPKC theta was recognized as a 79-kDa protein upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis in mouse skeletal muscle extract and also in an extract from COS1 cells transfected with an nPKC theta cDNA expression plasmid. Autophosphorylation of immunoprecipitated nPKC theta was observed; it was enhanced by phosphatidylserine and 12-O-tetradecanoylphorbol-13-acetate but attenuated by the addition of Ca2+. These results clearly demonstrate that nPKC theta should be considered a member of the PKC family of proteins that play crucial roles in the signal transduction pathway.  相似文献   

2.
Viral infection of host cells primarily depends on binding of the virus to a specific cell surface protein. In order to characterize the binding protein for group B coxsackieviruses (CVB), detergent-solubilized membrane proteins of different cell lines were tested in virus overlay protein-binding assays. A prominent virus-binding protein with a molecular mass of 100 kDa was detected in various CVB-permissive human and monkey cell lines but was not detected in nonpermissive cell lines. The specificity of CVB binding to the 100-kDa protein on permissive human cells was substantiated by binding of all six serotypes of CVB and by competition experiments. In contrast, poliovirus and Sendai virus did not bind to the 100-kDa CVB-specific protein. A fraction of HeLa membrane proteins enriched in the range of 100 kDa showed functional activity by transforming infectious CVB (160S) into A-particles (135S). In order to purify this CVB-binding protein, solubilized membrane proteins from HeLa cells were separated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by elution of the 100-kDa protein. Amino acid sequence analysis of tryptic fragments of the CVB-binding protein indicated that this 100-kDa CVB-specific protein is a cell surface protein related to nucleolin. These results were confirmed by immunoprecipitations of the CVB-binding protein with nucleolin-specific antibodies, suggesting that a nucleolin-related membrane protein acts as a specific binding protein for the six serotypes of CVB.  相似文献   

3.
The primary structure of the 32-kDa subunit of human replication protein A   总被引:19,自引:0,他引:19  
Replication protein A (RP-A) is a complex of three polypeptides of molecular mass 70, 32, and 14 kDa, which is absolutely required for simian virus 40 DNA replication in vitro. We have isolated a cDNA coding for the 32-kDa subunit of RP-A. An oligonucleotide probe was constructed based upon a tryptic peptide sequence derived from whole RP-A, and clones were isolated from a lambda gt11 library containing HeLa cDNA inserts. The amino acid sequence predicted from the cDNA contains the peptide sequence obtained from whole RP-A along with two sequences obtained from tryptic peptides derived from sodium dodecyl sulfate-polyacrylamide gel-purified 32-kDa subunit. The coding sequence predicts a protein of 29,228 daltons, in good agreement with the electrophoretically determined molecular mass of the 32-kDa subunit. No significant homology was found with any of the sequences in the GenBank data base. The protein predicted from the cDNA has an N-terminal region rich in glycine and serine along with two acidic and two basic segments. Monoclonal antibodies have been raised against the 70- and 32-kDa subunits of RP-A. The cloned cDNA has been overexpressed in bacteria using an inducible T7 expression system. The protein made in bacteria is recognized by a monoclonal antibody that is specific for the 32-kDa subunit of RP-A. This monoclonal antibody against the 32-kDa subunit inhibits DNA replication in vitro.  相似文献   

4.
Follitropin (FSH) receptors were solubilized from pure light membranes of bovine calf testis, using an optimum detergent to protein ratio of 0.01. The soluble FSH receptor fraction was gel filtered through Sepharose 6B to isolate an active fraction (6B-Fr-1) which behaved as a complex of FSH receptor and Gs protein. The 6B-Fr-1 was concentrated by ultrafiltration and further purified by sequential Sepharose 4B gel filtration, DEAE-cellulose chromatography (to separate the receptor from Gs protein), and wheat germ lectin affinity chromatography. The purified receptor had an FSH-binding capacity of approximately 3.47 nmol/mg of protein with a Kd of 1.9 X 10(-10) M. Yield was 526 micrograms/11.5 kg tested. Radioiodinated, as well as unlabeled purified FSH receptor, migrated on sodium dodecyl sulfate-polyacrylamide gels as a single major band of Mr approximately 240,000. This band was not affected by 8 M urea treatment prior to analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but treatment with dithiothreitol induced the loss of the 240-kDa band, with appearance of an Mr approximately 60,000 band. The availability of highly purified, stable FSH receptor should allow direct studies on its structure-function relationships.  相似文献   

5.
Glycoprotein III (GpIII) was purified from the soluble fraction of bovine chromaffin granules, the secretory vesicles of the adrenal medulla, by chromatography using wheat germ agglutinin-Sepharose followed by reverse-phase high performance liquid chromatography (HPLC). Characterization of this glycoprotein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, reverse-phase HPLC, amino acid analysis and partial NH2-terminal sequence analysis indicated that GPIII was a disulfide-linked heterodimer with 37-kDa subunits. Analysis of in vitro translation products of adrenal medullary poly(A)+ RNA by immunoprecipitation using an anti-GpIII serum and sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that both subunits are synthesized from a single precursor. Partial NH2-terminal sequence analysis allowed construction of oligonucleotides which were used as primers for a polymerase chain reaction to generate a GpIII-specific DNA probe. This probe was used to isolate a cDNA clone encoding the GpIII precursor from a bovine adrenal medullary cDNA library. The predicted amino acid sequence of GpIII has greater than 80% similarity to human serum protein-40,40, a protein implicated in the complement system, and to a major secretory product of Sertoli cells, glycoprotein 2, which is thought to play a role in spermatogenesis. Northern blot analysis confirmed that RNA encoding GpIII is also abundant in liver, testis, and brain.  相似文献   

6.
The alpha 2-macroglobulin (alpha 2M) receptor complex as purified by affinity chromatography contains three polypeptides: a 515-kDa heavy chain, an 85-kDa light chain, and a 39-kDa associated protein. Previous studies have established that the 515/85-kDa components are derived from a 600-kDa precursor whose complete sequence has been determined by cDNA cloning (Herz, J., Hamann, U., Rogne, S., Myklebost, O., Gassepohl, H., and Stanley, K. (1988) EMBO J. 7,4119-4127). We have now determined the primary structure of the human 39-kDa polypeptide, termed alpha 2M receptor-associated protein, by cDNA cloning. The deduced amino acid sequence contains a putative signal sequence that precedes the 323-residue mature protein. Comparative sequence analysis revealed that alpha 2M receptor-associated protein has 73% identity with a rat protein reported to be a pathogenic domain of Heymann nephritis antigen gp 330 and 77% identity to a mouse heparin-binding protein termed HBP-44. The high overall identity suggests that these molecules are interspecies homologues and indicates that the pathogenic domain, previously thought to be a portion of gp 330, is in fact a distinct protein. Further, the 120-residue carboxyl-terminal region of alpha 2M receptor-associated protein has 26% identity with a region of apolipoprotein E containing the low density lipoprotein receptor binding domain. Pulse-chase experiments revealed that the newly formed alpha 2M receptor-associated protein remains cell-associated, while surface labeling experiments followed by immunoprecipitation suggest that this protein is present on the cell surface forming a complex with the alpha 2M receptor heavy and light chains.  相似文献   

7.
Identification of the GTP-binding proteins from human platelet particulate fractions was attained by their purification via successive column chromatography steps followed by amino acid sequencing. To enhance the likelihood of identifying the GTP-binding proteins, two assays were employed to monitor GTP-binding activities: (i) guanosine 5'-(3-O-[35S]thio)triphosphate (GTP gamma S)-binding followed by rapid filtration and ii) [alpha-32P]GTP-binding following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotting onto nitrocellulose membranes. The latter assay permitted the isolation of a 28-kDa GTP-binding protein that bound [alpha-32P]GTP prominently but was only poorly detected with the GTP gamma S-binding assay. The amino acid sequences of three peptide fragments derived from the 28-kDa protein were identical to regions of the amino acid sequence deduced from a simian ral cDNA with the exception of one conservative substitution (Asp147----Glu). A full length human ral cDNA was isolated from a placental cDNA library, and its deduced amino acid sequence, compared with simian ral, also contained the Asp----Glu substitution along with two other substitutions and an additional three NH2-terminal amino acids. In addition to the 28-kDa protein, two distinct 25-kDa GTP-binding proteins were purified from platelets. One of these proteins has been previously characterized as G25K, an abundant low molecular mass GTP-binding protein. Partial amino acid sequence obtained from the second unidentified 25-kDa protein indicates that it is the product of the rac1 gene; a member of a newly identified gene family which encode for low molecular mass GTP-binding proteins (Didsbury, J., Weber, R.F., Bokoch, G. M., Evans, T., and Snyderman, R. (1989) J. Biol. Chem. 264, 16378-16382). These results identify two new GTP-binding proteins in human platelets, ral, the major protein that binds [alpha-32P]GTP on nitrocellulose transfers, and rac1, a substrate for botulinum C3 ADP-ribosyltransferase.  相似文献   

8.
A protein of apparent Mr = 15,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is the major plasma membrane substrate for cAMP-dependent protein kinase (PK-A) and protein kinase C (PK-C) in several different tissues. In the work described here, we purified, cloned, and sequenced the canine cardiac sarcolemmal "15-kDa protein." The amino terminus of the purified protein was not blocked, allowing determination of 50 consecutive residues by standard Edman degradation. Overlapping proteolytic phosphopeptides yielded 22 additional residues at the carboxyl terminus. Dideoxy sequencing of the full-length cDNA confirmed that the 15-kDa protein contains 72 amino acids, plus a 20-residue signal sequence. The mature protein has a calculated Mr = 8409. There is one hydrophobic membrane-spanning segment composed of residues 18-37. The acidic amino-terminal end (residues 1-17) of the protein is oriented extracellularly, whereas the basic carboxyl-terminal end (residues 38-72) projects into the cytoplasm. The positively charged carboxyl terminus contains the phosphorylation sites for PK-A and PK-C. In the transmembrane region, the 15-kDa protein exhibits 52% amino acid identity with the "gamma" subunit of Na,K-ATPase. High stringency Northern blot analysis revealed that 15-kDa mRNA is present in heart, skeletal muscle, smooth muscle, and liver but absent from brain and kidney. We propose the name "phospholemman" for the 15-kDa protein, which denotes the protein's location within the plasma membrane and its characteristic multisite phosphorylation.  相似文献   

9.
The interleukin 1 (IL-1) receptor from mouse EL-4 thymoma cells was purified to homogeneity by a method which utilized ligand affinity chromatography and classical chromatographic techniques. After solubilization of the receptor from intact cells with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, the IL-1 binding activity was purified greater than 23,000-fold. Analysis of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblot, and ligand blot demonstrated that a single protein of molecular mass of approximately 80 kDa is the IL-1 binding polypeptide. The purified protein bound IL-1 with a dissociation constant of approximately 1.1 X 10(-10) M, which is indistinguishable from the affinity of the cell-bound receptor. The amino acid composition of this protein is strikingly similar to the composition deduced from the sequence of a cDNA coding for an IL-1 receptor from EL-4 cells. Protein sequence analysis of Staphylococcus aureus V-8 protease-derived peptides yields data consistent with the sequence proposed from cloned cDNA. These studies have demonstrated that the high affinity IL-1 receptor on EL-4 cells is the 80-kDa protein.  相似文献   

10.
The d-glucose transporter of bovine-thymocyte plasma membrane was partially purified using several procedures in sequence. Dimethylmaleic anhydride extraction removed extrinsic membrane proteins (approximately 50% of the total membrane protein) after which sodium cholate solubilized 40% of the residual protein. Reconstitution of solubilized proteins into phospholipid liposomes indicated a 2.5-fold increase in sugar transport specific activity relative to membrane solubilized without dimethylmaleic anhydride extraction. Detergent removal by gel filtration on G-50 Sephadex resulted in reaggregation of intrinsic membrane proteins. Ultracentrifugation of the reaggregated proteins generated a particulate fraction (pellet 1) which contained about 50% of the total d-glucose transport activity of the preparation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of pellet 1 demonstrated removal of a major band at 68,000 daltons and two minor bands not removed by dimethylmaleic anhydride. The 68,000-dalton protein was not removed by any other method tested. Chromatography of resolubilized pellet 1 on a tandem-bed column of agarose ethanethiol and agarose lentil lectin resulted in a 6-fold increase in transport specific activity of nonabsorbed proteins relative to pellet 1. Approximately 15% of the protein (80–90% of the transport activity) applied to the tandem-bed column was recovered in the nonabsorbed fraction. Sodium dodecyl sulfate-gel electrophoresis of proteins in the nonabsorbed fraction showed apparent enrichment of a diffuse zone at 52,00045,000 daltons. The overall increase in specific activity of the partially purified preparation was about 12-fold relative to unpurified solubilized proteins.  相似文献   

11.
Abstract: Under typical culture conditions, cerebellar granule cells die abruptly after 17 days in vitro. This burst of neuronal death involves ultrastructural changes and internucleosomal DNA fragmentations characteristic of apoptosis and is effectively arrested by pretreatment with actinomycin-D and cycloheximide. The level of a 38-kDa protein in the particulate fraction is markedly increased during age-induced cell death and by pretreatment with NMDA, which potentiates this cell death. Conversely, the age-induced increment of the 38-kDa particulate protein is suppressed by actinomycin-D and cycloheximide. N-terminal microsequencing of the 38-kDa protein revealed sequence identity with glyceraldehyde-3-phosphate dehydrogenase (GAPDH). A GAPDH antisense oligodeoxyribonucleotide blocks age-induced expression of the particulate 38-kDa protein and effectively inhibits neuronal apoptosis. In contrast, the corresponding sense oligonucleotide of GAPDH was completely ineffective in preventing the age-induced neuronal death and the 38-kDa protein overexpression. Moreover, the age-induced expression of the 38-kDa protein is preceded by a pronounced increase in the GAPDH mRNA level, which is abolished by actinomycin-D, cycloheximide, or the GAPDH antisense, but not sense, oligonucleotide. Thus, our results suggest that overexpression of GAPDH in the particulate fraction has a direct role in age-induced apoptosis of cerebellar neurons.  相似文献   

12.
The termite soldier is unique because of its defensive task in a colony. In Nasutitermitinae (family Termitidae), soldiers use in their defense frontal glands, which contain various chemical substances. To isolate the gene products related to the chemical defense, we compared the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles of soldier heads with those of workers of the nasute termite Nasutitermes takasagoensis. We identified a 26-kDa soldier-specific protein (Ntsp1) that exists most abundantly in the dorsal head including the frontal gland. We determined the N-terminal amino acid sequence of Ntsp1, and then cloned the Ntsp1 cDNA by rapid amplification of the cDNA ends-polymerase chain reaction (RACE-PCR). A putative signal peptide was detected upstream of the N-terminus and the Ntsp1 protein showed sequence homologies with known insect secretory carrier proteins, which bind to hydrophobic ligands such as juvenile hormone, suggesting that Ntsp1 belongs to this class of proteins. Northern blot analysis confirmed that the expression level of Ntsp1 was high only in the soldier head. In addition, the localization of Ntsp1 expression was limited in epithelial cells of the frontal gland reservoir, suggesting that this protein binds to some terpenoid(s) preserved in the frontal gland reservoir.  相似文献   

13.
The proteins secreted by Mycobacterium tuberculosis are an important target for vaccine development. To identify the antigens from M. tuberculosis culture filtrate (CF) that strongly stimulate T-cells, the CF was fractionated by ion-exchange chromatography and then non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis with mini-whole gel elution. Each fraction was screened for its ability to induce interferon-gamma (IFN-gamma) production in peripheral blood mononuclear cells isolated from healthy tuberculin reactors. The protein bands that strongly induced IFN-gamma production were subjected to N-terminal sequencing. Two new proteins, a 17-kDa protein (Rv0164, MTSP17) and an 11-kDa (Rv3204, MTSP11) protein, were identified. The recombinant MTSP17 (rMTSP17) and rMTSP11 induced significant production of IFN-gamma and interleukin (IL)-12p40 in peripheral blood mononuclear cells from healthy tuberculin reactors. Interestingly, IL-12p40 production in response to rMTSP11 was significantly higher than that in response to rMTSP17 or the three components of the antigen 85 complex. These results suggest that MTSP11 antigen should be further evaluated as a component of a subunit vaccine.  相似文献   

14.
The atrial natriuretic peptide (ANP) stimulates cGMP production and protein phosphorylation in a particulate fraction of cultured rat aortic smooth muscle cells. Three proteins of 225, 132, and 11 kDa were specifically phosphorylated in response to ANP treatment, addition of cGMP (5 nM), or addition of purified cGMP-dependent protein kinase. The cAMP-dependent protein kinase inhibitor had no effect on the cGMP-stimulated phosphorylation of the three proteins but inhibited cAMP-dependent phosphorylation of a 17-kDa protein. These results demonstrate that the particulate cGMP-dependent protein kinase mediates the phosphorylation of the 225-, 132-, and 11-kDa proteins. The 11-kDa protein is phospholamban based on the characteristic shift in apparent Mr from 11,000 to 27,000 on heating at 37 degrees C rather than boiling prior to electrophoresis. ANP (1 microM) increased the cGMP concentration approximately 4-fold in the particulate fractions, from 4.3 to 17.7 nM, as well as the phosphorylation of the 225-, 132-, and 11-kDa proteins. In contrast, the biologically inactive form of ANP, carboxymethylated ANP (1 microM), did not stimulate phosphorylation of any proteins nor did the unrelated peptide hormone, angiotensin II (1 microM). These results demonstrate the presence of the cGMP-mediated ANP signal transduction pathway in a particulate fraction of smooth muscle cells and the specific phosphorylation of three proteins including phospholamban, which may be involved in ANP-dependent relaxation of smooth muscle.  相似文献   

15.
The involvement of protein kinase C in the signal transduction of gonadotropin-releasing hormone (GnRH) action was investigated with a GnRH superagonist, partial agonists, and antagonists in intact rat pituitary cells. Exposure of 32P-labeled cells to GnRH or to the superagonist [D-Nal(2)6]GnRH (200 times GnRH potency in vivo) induced the enhanced phosphorylation of 42-, 34-, 11-, and 10-kDa proteins and the dephosphorylation of a 15-kDa protein as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/autoradiography. This effect was blocked in a dose-dependent manner by potent GnRH antagonists. At its maximally effective concentration of 10(-9) M, [D-Nal(2)6]GnRH induced an up to 2 times more pronounced phosphorylation of endogenous substrates than GnRH at 10(-7) M. This was in accord with its ability to cause an 8-fold increase in the translocation of protein kinase C to the particulate fraction vs. 3.4-fold for GnRH. This effect correlated with potency for a series of GnRH agonists ( [D-Nal(2)6]GnRH greater than GnRH greater than [Gly2]LH-RH) and was prevented by GnRH antagonists, as assessed by a novel phorbol ester receptor binding assay and by a standard kinase assay. Downregulation of protein kinase C by prolonged incubation of the pituitary cells with high concentrations of active phorbol esters abolished protein kinase C activity and also prevented the phosphorylation induced by GnRH, or [D-Nal(2)6]GnRH. The same effect was obtained by preincubating the cells with the protein kinase C inhibitor H-7. In this study we identify for the first time physiological substrates for protein kinase C in intact pituitary cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A Schmid  R Benz    B Schink 《Journal of bacteriology》1991,173(16):4909-4913
Porins were purified from cells of the anaerobic gram-negative bacterium Pelobacter venetianus grown with 20-kDa polyethylene glycol. After treatment of the cell envelope fraction with sodium dodecyl sulfate-containing solutions, the murein contained only two major peptidoglycan-associated proteins of 14 and 23 kDa. Both proteins were released from the peptidoglycan by the detergent Triton X-100. Genapol X-80 released only the 23-kDa protein. This protein was purified by chromatography on a hydroxyapatite column. It did not form sodium dodecyl sulfate-resistant oligomers. Reconstituted in lipid bilayer membranes, the 23-kDa protein formed cation-selective channels with a single-channel conductance of 230 pS in 1 M KCl. The channel is not a general-diffusion pore, since its conductance depends only moderately on the salt concentration. The channel conducted ammonium much better than potassium or rubidium ions, suggesting that it is probably involved in ammonium uptake. The outer membrane of P. venetianus contains a further, non-murein-associated pore with an unknown molecular mass. It is also cationically selective and has a single-channel conductance of 1.6 nS in 1 M KCl, which suggests that its effective diameter is similar to that of porins from enteric bacteria.  相似文献   

17.
A 15-kilodalton protein has been identified as a major component of the residual protein fraction of mouse epididymal/vas spermatozoal heads, demembraned by treatment with Triton X-100 and sequentially extracted with 1 M NaCl/2-mercaptoethanol/DNase I. Two-dimensional electrophoresis of that protein before and after treatment with alkaline phosphatase indicated that it is present in epididymal/vas spermatozoa as a series of five differentially phosphorylated molecules with pI 6.0-7.0. Cyto-immunofluorescence with an affinity-purified antibody to the 15-kDa protein localized that protein to a circumscribed region of the demembraned mouse sperm head mediad from the dorsal margin. By radioimmunoassay, the 15-kDa protein was shown to be sperm-unique and species-specific. The antibody was nonreactive with homogenates of meiotic spermatogenic cells and round spermatids (stages 1-11) but was reactive with a non-phosphorylated 15.5-kDa protein of elongating spermatids (stages 12-16) and testicular spermatozoa. Following alkaline phosphatase treatment, the spermatozoal 15-kDa protein migrated to the position of the spermatidal 15.5-kDa protein on a sodium dodecyl sulfate gel. Thus, we conclude that the 15-kDa protein of mouse spermatozoa is synthesized during the elongation phase of spermiogenesis (stages 12-16) and is phosphorylated in the terminal period of that phase and/or after excursion of spermatozoa from the seminiferous tubules.  相似文献   

18.
Methylotrophic yeasts induce large peroxisomes when grown on methanol. The recent ability to stabilize and isolate these peroxisomes at pH 5.5 has led to the demonstration that two polypeptides comprise the bulk of the peroxisome of Candida boidinii, alcohol oxidase, and a 79-kDa species, determined by sodium dodecyl sulfate-polyacrylamide electrophoresis (Goodman, J.M., Scott, C.W., Donahue, P.N., and Atherton, J.P. (1984) J. Biol. Chem. 259, 8485-8493). The 79-kDa peroxisomal protein is now identified as dihydroxyacetone synthase, the first enzyme in the assimilatory pathway of formaldehyde utilization. This identification is based on several criteria: The enzyme activity is mainly in a particulate fraction at pH 5.5 but not at pH 8.0. It copurifies with alcohol oxidase and catalase on sucrose gradients. The 79-kDa protein behaves as a 135,000-kDa dimer on gel filtration, similar to the published behavior of the enzyme. The specific activity of dihydroxyacetone synthase in the pure 79-kDa preparation (3.20 units/mg of protein) is close to that reported for the purified enzyme (3.88 units/mg of protein). Antibodies against dihydroxyacetone synthase were used to show that its synthesis, induction, and assembly are similar to that of alcohol oxidase. Neither contains a detectable cleaved leader sequence and both are assembled post-translationally. The localization of dihydroxyacetone synthase to the peroxisome may influence the regulation of the two pathways of formaldehyde utilization and may protect the cell from damage by formaldehyde.  相似文献   

19.
K Watabe  Y Kakiuchi  M Kondo 《Microbios》1975,12(50):221-224
Solubilization of spore coat protein of Bacillus thiaminolyticus was investigated using various reagents, and partial characterization of solubilized protein was carried out. Five per cent of the sodium dodecyl sulphate (SDS) treatment was the most effective for solubilization of coat protein, and 5% SDS + 8 M urea and 0.06 N NaOH were also useful. Acrylamide gel disc electrophoresis indicated that the SDS-soluble fraction mainly consists of a single band of protein and its molecular weight was estimated at about 15,000. The SDS+ urea-soluble fraction comprised two proteins with a molecular weight of 14,500 and 32,000, and an alkali-soluble fraction of 12,000 and 25,000 respectively.  相似文献   

20.
Presence of lectin-like receptors on the membranes of human monocytic leukemia cell line THP-1 cells for clustered sialylated poly-N-acetyllactosaminyl sugar chains on the membranes of oxidized erythrocytes and T-lympoid cells was investigated. Membranes of THP-1 cells differentiated into macrophages were solubilized, and the membrane proteins obtained by affinity chromatographies using lactoferrin-Sepharose and band 3-Sepharose were purified by successive DE column chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Proteins of 50, 60, and 80 kDa with specificity to bind to sialylated poly-N-acetyllactosaminyl sugar chains were detected in the chromatographic fractions. A 50-kDa protein was isolated in a pure form. N-Terminal amino acid sequence of the protein was Lys-Gln-Lys-Val-Ala-Gly-Lys-Gln-Pro-Val-, which has not been found in the N-terminal regions of the hitherto known proteins. The antibody, raised against the chemially synthesized peptide composed of the N-terminal amino acid sequence, bound to 50-, 60-, and 80-kDa proteins as analyzed by immunoblotting and immunoprecipitation, indicating that these proteins had the same N-terminal amino acid sequence. The results demonstrate that THP-1 cells have novel 50-, 60-, and 80-kDa lectin-like proteins with the same N-terminal amino acid sequence on the cell surface which would bind to clustered sialylated poly-N-acetyllactosaminyl sugar chains generated on oxidized erythrocytes and T-lymphoid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号