首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 6 毫秒
1.
In rat substantia nigra (SN), Chemokine (CXC motif) receptor 4 (CXCR4) for the chemokine stromal cell-derived factor (SDF)-1alpha is expressed on dopaminergic (DA) neurones, but also on non-DA cells, suggesting presynaptic actions. Using whole-cell patch-clamp recordings in DA neurones of rat SN slices at a holding potential of -60 mV, we showed here that SDF-1alpha exerts multiple presynaptic effects. First, SDF-1alpha (10 nm) induced an increase in the frequency of spontaneous and miniature GABA(A) postsynaptic currents by presynaptic mechanisms, consistent with the presence of CXCR4 on GABAergic neurones of the SN, as revealed by immunocytochemistry. Second, SDF-1alpha (0.1-1 nm) induced a glutamatergic inward current resistant to tetrodotoxin (TTX), most probably the result of glutamate release from non-neuronal cells. This inward current was not blocked by the CXCR4 antagonist AMD 3100 (1 microm), consistent with the lack of CXCR4 on astrocytes as shown by immunocytochemistry under basal conditions. Finally, SDF-1alpha (10 nm) induced, via CXCR4, an outward G protein-activated inward rectifier (GIRK) current, which was TTX sensitive and prevented by application of the GABA(B) antagonist CGP55845A, suggesting GABA spillover on to GABA(B) receptors. Our results show that SDF-1alpha induces, via presynaptic mechanisms, alterations in the excitability of DA neurones as confirmed by current-clamp experiments.  相似文献   

2.
Stromal cell-derived factor-1 (SDF-1), the ligand of the CXCR4 receptor, is a chemokine involved in chemotaxis and brain development that also acts as co-receptor for HIV-1 infection. We previously demonstrated that CXCR4 and SDF-1alpha are expressed in cultured type-I cortical rat astrocytes, cortical neurones and cerebellar granule cells. Here, we investigated the possible functions of CXCR4 expressed in rat type-I cortical astrocytes and demonstrated that SDF-1alpha stimulated the proliferation of these cells in vitro. The proliferative activity induced by SDF-1alpha in astrocytes was reduced by PD98059, indicating the involvement of extracellular signal-regulated kinases (ERK1/2) in the astrocyte proliferation induced by CXCR4 stimulation. This observation was further confirmed showing that SDF-1alpha treatment selectively activated ERK1/2, but not p38 or stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). Moreover, both astrocyte proliferation and ERK1/2 phosphorylation, induced by SDF-1alpha, were inhibited by pertussis toxin (PTX) and wortmannin treatment indicating the involvement of a PTX sensitive G-protein and of phosphatidyl inositol-3 kinase in the signalling of SDF-1alpha. In addition, Pyk2 activation represent an upstream components for the CXCR4 signalling to ERK1/2 in astrocytes. To our knowledge, this is the first report demonstrating a proliferative effect for SDF-1alpha in primary cultures of rat type-I astrocytes, and showing that the activation of ERK1/2 is responsible for this effect. These data suggest that CXCR4/SDF-1 should play an important role in physiological and pathological glial proliferation, such as brain development, reactive gliosis and brain tumour formation.  相似文献   

3.

Background

Gene therapy and viral therapy are used for cancer therapy for many years, but the results are less than satisfactory. Our aim was to construct a new recombinant adenovirus which is more efficient to kill hepatocarcinoma cells but more safe to normal cells.

Methods

By using the Cancer Targeting Gene-Viro-Therapy strategy, Apoptin, a promising cancer therapeutic gene was inserted into the double-regulated oncolytic adenovirus AD55 in which E1A gene was driven by alpha fetoprotein promoter along with a 55 kDa deletion in E1B gene to form AD55-Apoptin. The anti-tumor effects and safety were examined by western blotting, virus yield assay, real time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, Hoechst33342 staining, Fluorescence-activated cell sorting, xenograft tumor model, Immunohistochemical assay, liver function analysis and Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling assay.

Results

The recombinant virus AD55-Apoptin has more significant antitumor effect for hepatocelluar carcinoma cell lines (in vitro) than that of AD55 and even ONYX-015 but no or little impair on normal cell lines. Furthermore, it also shows an obvious in vivo antitumor effect on the Huh-7 liver carcinoma xenograft in nude mice with bigger beginning tumor volume till about 425 mm3 but has no any damage on the function of liver. The induction of apoptosis is involved in AD55-Apoptin induced antitumor effects.

Conclusion

The AD55-Apoptin can be a potential anti-hepatoma agent with remarkable antitumor efficacy as well as higher safety in cancer targeting gene-viro-therapy system.  相似文献   

4.
5.
6.
During apoptotic and excitotoxic neuron death, challenged mitochondria release the pro-apoptotic factor cytochrome c. In the cytosol, cytochrome c is capable of binding to the apoptotic protease-activating factor-1 (APAF-1). This complex activates procaspase-9 in the presence of dATP, resulting in caspase-mediated execution of apoptotic neuron death. Many forms of Ca(2+)-mediated neuron death, however, do not lead to prominent activation of the caspase cascade despite significant release of cytochrome c from mitochondria. We demonstrate that elevation of cytosolic Ca(2+) induced prominent degradation of APAF-1 in human SH-SY5Y neuroblastoma cells and in a neuronal cell-free apoptosis system. Loss of APAF-1 correlated with a reduced ability of cytochrome c to activate caspase-3-like proteases. Ca(2+) induced the activation of calpains, monitored by the cleavage of full-length alpha-spectrin into a calpain-specific 150-kDa breakdown product. However, pharmacological inhibition of calpain activity indicated that APAF-1 degradation also occurred via calpain-independent pathways. Our data suggest that Ca(2+) inhibits caspase activation during Ca(2+)-mediated neuron death by triggering the degradation of the cytochrome c-binding protein APAF-1.  相似文献   

7.
The present study was undertaken to investigate the dynamic expression of hypoxia induciblefactor-1 α (HIF-1α) and transforming growth factor-β1 (TGF-β1) in hypoxia-induced pulmonary hypertensionof rats.It was found that mean pulmonary arterial pressure (mPAP) increased significantly after 7 d ofhypoxia.Pulmonary artery remodeling index and right ventricular hypertrophy became evident after 14 d ofhypoxia.HIF-1α mRNA staining was less positive in the control,hypoxia for 3 d and hypoxia for 7 d,butbegan to enhance significantly after 14 d of hypoxia,then remained stable.Expression of HIF-1 α protein inthe control was less positive,but was up-regulated in pulmonary arterial tunica intima of all hypoxic rats.TGF-β1 mRNA expression in pulmonary arterial walls was increased significantly after 14 d of hypoxia, butshowed no obvious changes after 3 or 7 d of hypoxia.In pulmonary tunica adventitia and tunica media,TGF-β1 protein staining was less positive in control rats,but was markedly enhanced after 3 d of hypoxia,reaching its peak after 7 d of hypoxia,and then weakening after 14 and 21 d of hypoxia.Western blottingshowed that HIF- 1α protein levels increased significantly after 7 d of hypoxia and then remained at a highlevel. TGF-β1 protein level was markedly enhanced after 3 d of hypoxia,reaching its peak after 7 d ofhypoxia,and then decreasing after 14 and 21 d of hypoxia.Linear correlation analysis showed that HIF-1αmRNA, TGF-β1 mRNA, TGF-β1 protein were positively correlated with mPAP,vessel morphometry andright ventricular hypertrophy index.TGF-β1 protein (tunica adventitia) was negatively correlated withHIF-lα mRNA.Taken together,our results suggest that changes in HIF-lα and TGF-β1 expression afterhypoxia play an important role in hypoxia-induced pulmonary hypertension of rats.  相似文献   

8.
Human insulin-like growth factor-1 (hIGF-1) is a growth factor with clinical significance in medicine. The therapeutic potential of recombinant hIGF-1 (rthIGF-1) stems from the fact that hIGF-1 resembles insulin in many aspects of physiology. The expression of hIGF-1 in transgenic tobacco and rice plants using different expression cassettes is reported here. In the present study, two coding sequences were tested, one with the original human sequence, but partially optimized for expression in E. coli and the other with a plant-codon-optimized sequence that was expected to give a higher level of expression in plant systems. Three different hIGF-1 recombinant expression constructs were generated. All expression constructs utilized the maize ubiquitin 1 promoter with or without a signal sequence. Analyses conducted using a hIGF-1 specific ELISA kit showed all transgenic plants produced hIGF-1 and the accumulated hIGF-1 increased from the E. coli codon bias to higher levels when the hIGF-1 coding sequence was codon-optimized to match that of the maize zeamatin protein – the most transcribed gene in maize endosperm suspension cells. Further analyses that compared the functionality of the bacterial signal peptide Lam B in plants showed that this leader peptide led to lower expression levels when compared to transgenic plants that did not contain this sequence. This indicated that this expression construct was functional without removal of the bacterial signal sequence. The maize ubiquitin 1 promoter was found to be more active in rice plants than tobacco plants indicating that in this case, there was a class preference that was biased towards a monocot host. Biological analyses conducted using protein extracts from transgenic plants showed that the rthIGF-1 was effective in stimulating the in vitro growth and proliferation of human SH-SY5Y neuroblastoma cells. This indicated that the plant-produced rthIGF-1 was stable and biologically active. As some plants have been reported to express an endogenous insulin-like protein, we also looked for any effect of the human growth factor in transgenic plants, but no developmental or morphological differences with wild type tobacco or rice plants were detected. Since insulin and hIGF-1 share some overlapping roles, hIGF-1 may become a substitute therapeutic agent in subjects with certain defects in their insulin receptor signaling. Hence, if the full beneficial potential of rthIGF-1 is achieved, it is expected that in the future the demand will likely increase significantly.  相似文献   

9.
10.
Systemic administration with bone marrow mesenchymal stem cells (BMSCs) is a promising approach to cure myocardial ischemia (MI), while the efficacy of cell transplantation is limited by the low engraftment of BMSCs. Tanshinone IIA (Tan IIA) has been reported many times for the treatment of MI. Therefore, the present study was performed to investigate whether Tan IIA could increase the migration of BMSCs to ischemic region and its potential mechanisms. In our study, we found that combination treatment with Tan IIA and BMSCs significantly alleviated the infarct size when compared with control group (31.46 ± 3.00% vs. 46.95 ± 6.51%, p < 0.05). Results of real-time PCR showed that Tanshinone IIA (Tan IIA) did increase the migration of BMSCs to ischemic region in vivo, which was correlated with cardiac function recovery after MI. Furthermore, 2 μM Tan IIA could enhance the migration capability of BMSCs in vitro (3.69-fold of control), and this enhancement could be blocked by AMD3100 (a CXC chemokine receptor 4 blocker). CXCR4, together with its specific receptor, stromal cell-derived factor-1 (SDF-1) plays a critical role in the stem cell recruitment. Our experiment indicated that Tan IIA could promote SDF-1α expression in the infarct area and enhance the CXCR4 expression of BMSCs in vitro. Therefore, we postulated that Tan IIA could increase the BMSCs migration via up-regulating SDF1/CXCR4 axis.  相似文献   

11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号