首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of SV40 DNA replication by phosphorylation of T antigen.   总被引:46,自引:5,他引:41       下载免费PDF全文
The role of phosphorylation in regulating the biochemical properties of SV40 large T antigen has been examined. Treatment of purified T antigen with calf intestinal alkaline phosphatase resulted in the removal of 80% of the 32P label. This partially dephosphorylated T antigen displayed an increase in its ability to support DNA replication in vitro. This increase in replication activity was paralleled by an activation of specific DNA binding to site II, a necessary element within the origin of SV40 DNA replication. In contrast, the ATPase activity of dephosphorylated T antigen remained unchanged. These results demonstrate that DNA replication is regulated by phosphorylation of an origin specific DNA binding protein.  相似文献   

2.
W J Tang  W R Folk 《Journal of virology》1989,63(12):5478-5482
Polyomavirus DNA replication is normally restricted to rodent cells, and simian virus 40 (SV40) DNA replication is restricted to primate cells. We demonstrate that DNAs containing the polyomavirus origin can be replicated in monkey cells which constitutively express SV40 large T antigen. Permissivity is most likely caused by SV40 T antigen modification of cellular protein(s) required to replicate the polyomavirus origin. A possible target for the T-antigen-induced modification is DNA polymerase alpha-DNA primase.  相似文献   

3.
The replication of DNA containing either the polyoma or SV40 origin has been done in vitro. Each system requires its cognate large-tumour antigen (T antigen) and extracts from cells that support its replication in vivo. The host-cell source of DNA polymerase alpha - primase complex plays an important role in discriminating between polyoma T antigen and SV40 T antigen-dependent replication of their homologous DNA. The SV40 origin- and T antigen-dependent DNA replication has been reconstituted in vitro with purified protein components isolated from HeLa cells. In addition to SV40 T antigen, HeLa DNA polymerase alpha - primase complex, eukaryotic topoisomerase I and a single-strand DNA binding protein from HeLa cells are required. The latter activity, isolated solely by its ability to support SV40 DNA replication, sediments and copurifies with two major protein species of 72 and 76 kDa. Although crude fractions yielded closed circular monomer products, the purified system does not. However, the addition of crude fractions to the purified system resulted in the formation of replicative form I (RFI) products. We have separated the replication reaction with purified components into multiple steps. In an early step, T antigen in conjunction with a eukaryotic topoisomerase (or DNA gyrase) and a DNA binding protein, catalyses the conversion of a circular duplex DNA molecule containing the SV40 origin to a highly underwound covalently closed circle. This reaction requires the action of a helicase activity and the SV40 T antigen preparation contains such an activity. The T antigen associated ability to unwind DNA copurified with other activities intrinsic to T antigen (ability to support replication of SV40 DNA containing the SV40 origin, poly dT-stimulated ATPase activity and DNA helicase).  相似文献   

4.
T antigen and template requirements for SV40 DNA replication in vitro.   总被引:63,自引:7,他引:63       下载免费PDF全文
A cell-free system for replication of SV40 DNA was used to assess the effect of mutations altering either the SV40 origin of DNA replication or the virus-encoded large tumor (T) antigen. Plasmid DNAs containing various portions of the SV40 genome that surround the origin of DNA replication support efficient DNA synthesis in vitro and in vivo. Deletion of DNA sequences adjacent to the binding sites for T antigen either reduce or prevent DNA synthesis. This analysis shows that sequences that had been previously defined by studies in vivo to constitute the minimal core origin sequences are also necessary for DNA synthesis in vitro. Five mutant T antigens containing amino acid substitutions that affect SV40 replication have been purified and their in vitro properties compared with the purified wild-type protein. One protein is completely defective in the ATPase activity of T antigen, but still binds to the origin sequences. Three altered proteins are defective in their ability to bind to origin DNA, but retain ATPase activity. Finally, one of the altered T antigens binds to origin sequences and contains ATPase activity and thus appears like wild-type for these functions. All five proteins fail to support SV40 DNA replication in vitro. Interestingly, in mixing experiments, all five proteins efficiently compete with the wild-type protein and reduce the amount of DNA replication. These data suggest that an additional function of T antigen other than origin binding or ATPase activity, is required for initiation of DNA replication.  相似文献   

5.
K L Collins  A A Russo  B Y Tseng    T J Kelly 《The EMBO journal》1993,12(12):4555-4566
DNA polymerase alpha is the only enzyme in eukaryotic cells capable of starting DNA chains de novo and is required for the initiation of SV40 DNA replication in vitro. We have cloned the 70 kDa subunit of human DNA polymerase alpha (hereafter referred to as the B subunit) and expressed it as a fusion protein in bacteria. The purified fusion protein forms a stable complex with SV40 T antigen, both in solution and when T antigen is bound to the SV40 origin of DNA replication. Analysis of mutant forms of the B subunit indicates that the N-terminal 240 amino acids are sufficient to mediate complex formation. The B subunit fusion protein promotes formation of a complex containing T antigen and the catalytic subunit (subunit A) of DNA polymerase alpha, suggesting that it serves to tether the two proteins. These physical interactions are functionally significant, since the ability of T antigen to stimulate the activity of the catalytic subunit of DNA polymerase alpha is highly dependent upon the B subunit. We suggest that the interactions mediated by the B subunit play an important role in SV40 DNA replication by promoting DNA chain initiation at the origin and/or facilitating the subsequent priming and synthesis of DNA chains on the lagging strand template. The protein may play similar roles in cellular DNA replication.  相似文献   

6.
Simian virus 40 large T antigen untwists DNA at the origin of DNA replication.   总被引:18,自引:0,他引:18  
Simian virus 40 large tumor antigen (SV40 T antigen) untwists DNA at the SV40 replication origin. In the presence of ATP, T antigen shifted the average linking number of an SV40 origin-containing plasmid topoisomer distribution. The loss of up to two helical turns was detected. The reaction required the presence of the 64-base pair core origin of replication containing T antigen DNA binding site II; binding site I had no effect on the untwisting reaction. The presence of human single-stranded DNA binding protein (SSB) slightly reduced the degree of untwisting in the presence of ATP. ATP hydrolysis was not required since untwisting occurred in the presence of nonhydrolyzable analogs of ATP. However, in the presence of a nonhydrolyzable analog of ATP, the requirement for the SV40 origin sequence was lost. The origin requirement for DNA untwisting was also lost in the absence of dithiothreitol. The origin-specific untwisting activity of T antigen is distinct from its DNA helicase activity, since helicase activity does not require the SV40 origin but does require ATP hydrolysis. The lack of a requirement for SSB or ATP hydrolysis and the reduction in the pitch of the DNA helix by just a few turns at the replication origin distinguishes this reaction from the T antigen-mediated DNA unwinding reaction, which results in the formation of a highly underwound DNA molecule. Untwisting occurred without a lag after the start of the reaction, whereas unwound DNA was first detected after a lag of 10 min. It is proposed that the formation of a multimeric T antigen complex containing untwisted DNA at the SV40 origin is a prerequisite for the initiation of DNA unwinding and replication.  相似文献   

7.
Study of the proteins involved in DNA replication of a model system such as SV40 is a first step in understanding eukaryotic chromosomal replication. Using a cell-free system that is capable of replicating plasmid DNA molecules containing the SV40 origin of replication, we conducted a series of systematic fractionation-reconstitution experiments for the purpose of identifying and characterizing the cellular proteins involved in SV40 DNA replication. In addition to the one viral-encoded replication protein, T antigen, we have identified and begun to characterize at least six cellular components from a HeLa cytoplasmic extract that are absolutely required for SV40 DNA replication in vitro. These include: (i) two partially purified fractions, CF IC and CF IIA, and (ii) four proteins that have been purified to near homogeneity, replication protein-A, proliferating cell nuclear antigen, DNA polymerase alpha-primase complex, and topoisomerase (I and II). Replication protein-A is a multi-subunit protein that has single-stranded DNA binding activity and is required for a T antigen-dependent, origin-dependent unwinding reaction which may be an important early step in initiation of replication. Fraction CF IC can stimulate this unwinding reaction, suggesting that it also may function during initiation. Proliferating cell nuclear antigen, DNA polymerase alpha-primase, and CF IIA all appear to be involved in elongation of nascent chains.  相似文献   

8.
We have made use of the cell-free SV40 DNA replication system to identify and characterize cellular proteins required for efficient DNA synthesis. One such protein, replication protein C (RP-C), was shown to be involved with SV40 large T antigen in the early stages of viral DNA replication in vitro. We demonstrate here that RP-C is identical to the catalytic subunit of cellular protein phosphatase 2A (PP2Ac). The purified protein dephosphorylates specific phosphoamino acid residues in T antigen, consistent with the hypothesis that SV40 DNA replication is regulated by modulating the phosphorylation state of the viral initiator protein. We also show that purified RP-C/PP2Ac preferentially stimulates SV40 DNA replication in extracts from early G1 phase cells. This finding suggests that the activity of a cellular factor that influences the net phosphorylation state of T antigen is cell cycle dependent.  相似文献   

9.
Plasmids containing the SV40 origin replicate in the presence of SV40 T antigen and a cell free extract derived from human 293 cells. Upon fractionation of this extract, two essential replication factors have been identified. One of these is a multi-subunit DNA binding protein containing polypeptides of 70,000, 34,000 and 11,000 daltons which may function as a eukaryotic single strand DNA binding protein (SSB). The other partially purified fraction is required with T antigen for the first stage of DNA replication, the formation of a pre-synthesis complex at the replication origin. These results, and others, define multiple stages of SV40 DNA replication in vitro which are analogous to multiple stages of Escherichia coli and phage lambda replication, and may reflect similar events in the replication of cellular chromosomes.  相似文献   

10.
A mutant simian virus 40 (SV40) large tumor (T) antigen bearing alanine instead of threonine at residue 124 (T124A) failed to replicate SV40 DNA in infected monkey cells (J. Schneider and E. Fanning, J. Virol. 62:1598-1605, 1988). We investigated the biochemical properties of T124A T antigen in greater detail by using purified protein from a baculovirus expression system. Purified T124A is defective in SV40 DNA replication in vitro, but does bind specifically to the viral origin under the conditions normally used for DNA replication. The mutant protein forms double-hexamer complexes at the origin in an ATP-dependent fashion, although the binding reaction requires somewhat higher protein concentrations than the wild-type protein. Binding of T124A protein results in local distortion of the origin DNA similar to that observed with the wild-type protein. These findings indicate that the replication defect of T124A protein is not due to failure to recognize and occupy the origin. Under some conditions T124A is capable of unwinding short origin DNA fragments. However, the mutant protein is almost completely defective in unwinding of circular plasmid DNA molecules containing the SV40 origin. Since the helicase activity of T124A is essentially identical to that of the wild-type protein, we conclude that the mutant is defective in the initial opening of the duplex at the origin, possibly as a result of altered hexamer-hexamer interactions. The phenotype of T124A suggests a possible role for phosphorylation of threonine 124 by cyclin-dependent kinases in controlling the origin unwinding activity of T antigen in infected cells.  相似文献   

11.
A cell-free DNA replication system dependent upon five purified cellular proteins, one crude cellular fraction, and the simian virus 40 (SV40)-encoded large tumor antigen (T antigen) initiated and completed replication of plasmids containing the SV40 origin sequence. DNA synthesis initiated at or near the origin sequence after a time lag of approximately 10 min and then proceeded bidirectionally from the origin to yield covalently closed, monomer daughter molecules. The time lag could be completely eliminated by a preincubation of SV40 ori DNA in the presence of T antigen, a eucaryotic single-stranded DNA-binding protein (replication factor A [RF-A]), and topoisomerases I and II. In contrast, if T antigen and the template DNA were incubated alone, the time lag was only partially decreased. Kinetic analyses of origin recognition by T antigen, origin unwinding, and DNA synthesis suggest that the time lag in replication was due to the formation of a complex between T antigen and DNA called the T complex, followed by formation of a second complex called the unwound complex. Formation of the unwound complex required RF-A. When origin unwinding was coupled to DNA replication by the addition of a partially purified cellular fraction (IIA), DNA synthesis initiated at the ori sequence, but the template DNA was not completely replicated. Complete DNA replication in this system required the proliferating-cell nuclear antigen and another cellular replication factor, RF-C, during the elongation stage. In a less fractionated system, another cellular fraction, SSI, was previously shown to be necessary for reconstitution of DNA replication. The SSI fraction was required in the less purified system to antagonize the inhibitory action of another cellular protein(s). This inhibitor specifically blocked the earliest stage of DNA replication, but not the later stages. The implications of these results for the mechanisms of initiation and elongation of DNA replication are discussed.  相似文献   

12.
SV40 DNA replication has been studied extensively as a model for eukaryotic DNA replication. The initiation of SV40 DNA replication depends on certain cellular enzymes and on a multifunctional viral phosphoprotein, T antigen, whose activity is controlled positively and negatively by its phosphorylation state. Several cellular protein kinases and phosphatases that act on T antigen have now been identified. The recent elucidation of the step in initiation that is sensitive to T antigen's phosphorylation state raises the question of whether initiation of cellular DNA replication may utilize a similar regulatory mechanism.  相似文献   

13.
A peptide encompassing the N-terminal 82 amino acids of simian virus 40 (SV40) large T antigen was previously shown to bind to the large subunit of DNA polymerase alpha-primase (I. Dornreiter, A. Höss, A. K. Arthur, and E. Fanning, EMBO J. 9:3329-3336, 1990). We report here that a mutant T antigen, T83-708, lacking residues 2 to 82 retained the ability to bind to DNA polymerase alpha-primase, implying that it carries a second binding site for DNA polymerase alpha-primase. The mutant protein also retained ATPase, helicase, and SV40 origin DNA-binding activity. However, its SV40 DNA replication activity in vitro was reduced compared with that of wild-type protein. The reduction in replication activity was accompanied by a lower DNA-binding affinity to SV40 origin sequences and aberrant oligomerization on viral origin DNA. Thus, the first 82 residues of SV40 T antigen are not strictly required for its interaction with DNA polymerase alpha-primase or for DNA replication function but may play a role in correct hexamer assembly and efficient DNA binding at the origin.  相似文献   

14.
We describe a new complementation function within the simian virus 40 (SV40) A gene. This function is required for viral DNA replication and virus production in vivo but, surprisingly, does not affect any of the intrinsic enzymatic functions of T antigen directly required for in vitro DNA replication. Other well-characterized SV40 T-antigen mutants, whether expressed stably from integrated genomes or in cotransfection experiments, complement these mutants for in vivo DNA replication and plaque formation. These new SV40 mutants were isolated and cloned from human cells which stably carry the viral DNA. The alteration in the large-T-antigen gene was shown by marker rescue and nucleotide sequence analysis to be a deletion of 322 bp spanning the splice-donor site of the first exon, creating a 14-amino-acid deletion in the large T antigen. The mutant gene was expressed in H293 human cells from an adenovirus vector, and the protein was purified by immunoaffinity chromatography. The mutant protein directs greater levels of DNA replication in vitro than does the wild-type protein. Moreover, the mutant protein reduces the lag time for in vitro DNA synthesis and can be diluted to lower levels than wild-type T antigen and still promote good replication, which is in clear contrast to the in vivo situation. These biochemical features of the protein are independent of the source of the cellular replication factors (i.e., HeLa, H293, COS 7, or CV1 cells) and the cells from which the T antigens were purified. The mutant T antigen does not transform Rat-2 cells. Several different models which might reconcile the differences observed in vivo and in vitro are outlined. We propose that the function of T antigen affected prepares cells for SV40 replication by activation of a limiting cellular replication factor. Furthermore, a link between the induction of a cellular replication factor and transformation by SV40 is discussed.  相似文献   

15.
Studies of simian virus 40 (SV40) DNA replication in a reconstituted cell-free system have established that T antigen and two cellular replication proteins, replication protein A (RP-A) and DNA polymerase alpha-primase complex, are necessary and sufficient for initiation of DNA synthesis on duplex templates containing the SV40 origin of DNA replication. To better understand the mechanism of initiation of DNA synthesis, we analyzed the functional interactions of T antigen, RP-A, and DNA polymerase alpha-primase on model single-stranded DNA templates. Purified DNA polymerase alpha-primase was capable of initiating DNA synthesis de novo on unprimed single-stranded DNA templates. This reaction involved the synthesis of a short oligoribonucleotide primer which was then extended into a DNA chain. We observed that the synthesis of ribonucleotide primers by DNA polymerase alpha-primase is dramatically stimulated by SV40 T antigen. The presence of T antigen also increased the average length of the DNA product synthesized on primed and unprimed single-stranded DNA templates. These stimulatory effects of T antigen required direct contact with DNA polymerase alpha-primase complex and were most marked at low template and polymerase concentrations. We also observed that the single-stranded DNA binding protein, RP-A, strongly inhibits the primase activity of DNA polymerase alpha-primase, probably by blocking access of the enzyme to the template. T antigen partially reversed the inhibition caused by RP-A. Our data support a model in which DNA priming is mediated by a complex between T antigen and DNA polymerase alpha-primase with the template, while RP-A acts to suppress nonspecific priming events.  相似文献   

16.
We have combined in vitro DNA replication reactions and immunological techniques to analyze biochemical interactions between simian virus (SV40) large T antigen and components of the cellular replication apparatus. First, in vitro SV40 DNA replication was characterized with specific origin mutants. Next, monoclonal antibodies were used to demonstrate that a specific domain of T antigen formed a complex with cellular DNA polymerase alpha. Several antibodies were identified that coprecipitated T antigen and DNA polymerase alpha, while others were found to selectively prevent this interaction and concomitantly inhibit DNA replication. DNA polymerase alpha also bound efficiently to a T-antigen affinity column, confirming the immunoprecipitation results and providing a useful method for purification of the complete protein complex. Taken together, these results suggest that the T-antigen-polymerase association may be a key step in the initiation of SV40 DNA replication.  相似文献   

17.
18.
Simian virus 40 (SV40) large tumor antigen (T antigen) is mainly localized in the nucleus where it exhibits two biochemical properties: DNA binding and helicase activity. Both activities are necessary for viral DNA replication and may also enable T antigen to modulate cellular growth. Here we present biochemical and electron microscopic evidence that the helicase activity can start at internal sites of fully double-stranded DNA molecules not containing the SV40 origin or replication. Using T antigen specific monoclonal antibodies, this unwinding reaction can be biochemically divided in an initiation (duplex opening) and a propagation step. The duplex opening reaction (as well as the propagation step) does not depend on a specific DNA sequence or secondary structure. In addition, we have found that T antigen forms an ATP dependent nucleoprotein complex at double-stranded DNA, which may be an essential step for the sequence independent duplex DNA opening reaction.  相似文献   

19.
We have analyzed T antigens produced by a set of simian virus 40 (SV40) A gene deletion mutants for ATPase activity and for binding to the SV40 origin of DNA replication. Virus stocks of nonviable SV40 A gene deletion mutants were established in SV40-transformed monkey COS cells. Mutant T antigens were produced in mutant virus-infected CV1 cells. The structures of the mutant T antigens were characterized by immunoprecipitation with monoclonal antibodies directed against distinct regions of the T-antigen molecule. T antigens in crude extracts prepared from cells infected with 10 different mutants were immobilized on polyacrylamide beads with monoclonal antibodies, quantified by Coomassie blue staining, and then assayed directly for T antigen-specific ATPase activity and for binding to the SV40 origin of DNA replication. Our results indicate that the T antigen coding sequences required for origin binding map between 0.54 and 0.35 map units on the SV40 genome. In contrast, sequences closer to the C terminus of T antigen (between 0.24 and 0.20 map units) are required for ATPase activity. The presence of the ATPase activity correlated closely with the ability of the mutant viruses to replicate and to transform nonpermissive cells. The origin binding activity was retained, however, by three mutants that lacked these two functions, indicating that this activity is not sufficient to support either cellular transformation or viral replication. Neither the ATPase activity nor the origin binding activity correlated with the ability of the mutant DNA to activate silent rRNA genes or host cell DNA synthesis.  相似文献   

20.
DNA replication from the SV40 origin can be reconstituted in vitro using purified SV40 large T antigen, cellular topoisomerases I and II, replication factor A (RF-A), proliferating cell nuclear antigen (PCNA), replication factor C (RF-C), and a phosphocellulose fraction (IIA) made from human cell extracts (S100). Fraction IIA contains all DNA polymerase activity required for replication in vitro in addition to other factors. A newly identified factor has been purified from fraction IIA. This factor is required for complete reconstitution of SV40 DNA replication and co-purifies with a PCNA-stimulated DNA polymerase activity. This DNA polymerase activity is sensitive to aphidicolin, but is not inhibited by butylanilinodeoxyadenosine triphosphate or by monoclonal antibodies which block synthesis by DNA polymerase alpha. The polymerase activity is synergistically stimulated by the combination of RF-A, PCNA, and RF-C in an ATP-dependent manner. Purified calf thymus polymerase delta can fully replace the purified factor in DNA replication assays. We conclude that this factor, required for reconstitution of SV40 DNA replication in vitro, corresponds to human DNA polymerase delta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号